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Abstract: Researchers have explored various methods to fully exploit the all-weather characteristics of
Synthetic aperture radar (SAR) images to achieve high-precision, real-time, computationally efficient,
and easily deployable ship target detection models. These methods include Constant False Alarm
Rate (CFAR) algorithms and deep learning approaches such as RCNN, YOLO, and SSD, among others.
While these methods outperform traditional algorithms in SAR ship detection, challenges still exist in
handling the arbitrary ship distributions and small target features in SAR remote sensing images.
Existing models are complex, with a large number of parameters, hindering effective deployment.
This paper introduces a YOLOv7 oriented bounding box SAR ship detection model (YOLOv7oSAR).
The model employs a rotation box detection mechanism, uses the KLD loss function to enhance
accuracy, and introduces a Bi-former attention mechanism to improve small target detection. By
redesigning the network’s width and depth and incorporating a lightweight P-ELAN structure, the
model effectively reduces its size and computational requirements. The proposed model achieves
high-precision detection results on the public RSDD dataset (94.8% offshore, 66.6% nearshore), and
its generalization ability is validated on a custom dataset (94.2% overall detection accuracy).

Keywords: YOLO algorithm; ship detection; oriented bounding box; Synthetic aperture radar
(SAR) images

1. Introduction

In coastal military and industrial operations, achieving the all-weather and precise
detection of ship targets is imperative for the swift allocation of resources. This capability
plays a pivotal role in upholding national maritime security and fostering civilian produc-
tion activities. To address this objective, an array of prior studies have been conducted.
Synthetic aperture radar (SAR) microwave imaging technology has garnered considerable
attention, in contrast to conventional optical imaging techniques, given its all-weather,
continuous, and anti-interference detection capabilities. With the ongoing advancement
of microwave remote sensing technology, numerous satellites (such as Nuwa, Haise, Qilu,
ICEYE, StriX, Capella, TerraSAR, and Radasat2) are equipped with SAR sensors, contribut-
ing to a substantial enhancement in SAR image resolution. However, existing SAR ship
detection algorithms face challenges related to suboptimal precision and deployment con-
venience. Therefore, there is an urgent need to refine algorithmic accuracy and enhance
their deployability in order to meet these critical objectives [1–4].

The methods for detecting ships based on SAR images are commonly categorized into
two groups: traditional algorithms [5,6] and deep learning algorithms. Traditional algo-
rithms include Constant False Alarm Rate (CFAR) methods, such as adaptive CFAR (e.g.,
VI-CFAR, VTM-CFAR) and ordered statistics CFAR (e.g., OS-CFAR, CMLD-CFAR) [6–9].
These algorithms exhibit poor detection accuracy, require manual clutter modeling, and
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have limited generalization capabilities, making them less commonly used. With the
rise of artificial intelligence, deep learning algorithms have become mainstream in target
detection tasks. Notable algorithms include Regions with CNN features (RCNN) [10],
Fast R-CNN [11], Faster R-CNN [12], You Only Look Once (YOLO) [13–18], SSD [19], and
Retina-Net [20].

In the field of SAR image detection, algorithms initially applied horizontal bounding
box-based methods for ship detection. The first improved Faster R-CNN algorithm, com-
bining traditional and deep learning methods, was proposed in 2017, achieving satisfactory
results [21]. Subsequent researchers, like Zhao, Y and Zhao, L et al., aiming to address
the challenges of detecting multi-scale ships and complex backgrounds in SAR images,
introduced innovative approaches. These include a two-stage detection network called
the Attention Receptive Pyramid Network (ARPN), which incorporates receptive field
modules (RFB) and convolutional block attention modules (CBAM) to establish a top-down
fine-grained feature pyramid. This enhances the relationship between non-local features
and refines information from different feature maps to improve the detection performance
of multi-scale ships in SAR images [22]. To further enhance the multi-scale detection capa-
bility of models, various researchers introduced numerous multi-scale detection modules
or modified network structures. For instance, Wei et al. introduced a High-Resolution Ship
Detection Network (HR-SDNet) based on HR-net, which combines high-resolution and low-
resolution convolutional layers to achieve accurate and robust ship detection [23]. Chen
Zhuo, using YOLOv7, presented the CSD-YOLO algorithm for complex scenes multi-scale
ship detection. This algorithm incorporates Shuffle Attention (SA) mechanisms and Atrous
Spatial Pyramid Pooling (ASPP) to enhance the model’s multi-scale feature extraction
capabilities, demonstrating the adaptability of YOLOv7 to complex-background SAR ship
detection [24]. Additionally, Jingpu Wang, aiming to address the low detection rates and
high false positives in detecting small ships in SAR images, redesigned a feature extraction
network based on the characteristics of the ship targets in SAR images. The proposed
Path Argumentation Fusion Network (PAFN) improves the fusion of different feature
maps. Although the aforementioned methods show promising performances in SAR ship
detection, effectively capturing ship targets, the imaging mechanism of SAR images differs
from optical images [25]. Due to the different imaging mechanisms between SAR and
optical images, factors such as the speed, direction, size, and material of ships can affect the
imaging results of SAR sensors, leading to blurred boundaries of ship targets in the images
and presenting challenges for precise localization. Most algorithms are primarily based
on traditional horizontal bounding boxes, making it difficult to accurately describe and
locate targets that require specific orientation information, such as ships. Therefore, a more
flexible approach is needed to adapt to the irregular shapes of ship targets in SAR images
and the continuously changing orientation of these ships, providing accurate boundary
box information for precise localization of the ship targets.

To address the issue of inaccurate localization using horizontal bounding boxes for ship
detection in SAR images, many scholars have introduced the concept of rotated bounding
boxes into SAR object detection models. Some researchers, such as Zicong Zhu et al., have
adapted network architectures to meet the demands of rotated box detection. Zicong Zhu
introduced a new representation called non-continuous angle representation, and designed
an automatic organization mechanism and a specific head structure for organizing points,
proposing the AutoAnchor Network, which focuses on the detection of rotated objects [26].
Jiaming Han, Jian Ding, and others pioneered the rotation-equivariant detector (Redet) to
tackle the problem of objects distributed in arbitrary directions. This method introduced
a rotation-equivariant network to precisely predict orientations and significantly reduce
model size [27]. Additionally, they proposed rotation-invariant RoI Align (RiRoI Align),
which adapts to the orientation of RoIs for feature extraction. Subsequently, they further
proposed the single-stage alignment network (S2A-Net), including a feature alignment
module (FAM) and an oriented detection module (ODM), which improved its detection
performance of multi-scale ships in SAR images [28]. Other researchers directly improved
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existing object detection networks to adapt to rotated bounding box detection scenarios.
For example, Jian Ding, Nan Xue, and others proposed the ROI-Transformer model, which
introduces spatial transformations into the Region of Interest (RoI) and learns transforma-
tion parameters under the supervision of oriented bounding box (OBB) annotations. This
innovative approach effectively addresses challenges in computer vision related to aerial
image object detection. In cases where OBB annotations are available, the ROI-Transformer
outperforms deformable Position-Sensitive RoI pooling, highlighting its flexibility and
effectiveness in improving detection accuracy and alignment [29]. Yongchao Xu and their
team introduced the Gliding Vertex model, which accurately describes multi-oriented
objects by sliding the vertex on the edge of a horizontal bounding box, avoiding the direct
regression issues that may cause confusion. By introducing length ratio regression and
an obliquity factor based on the area ratio, these additional target variables are added
to the Faster R-CNN regression head, achieving minimal computational overhead [30].
Zheng Ziyang and others proposed a method for detecting rotating ships in Synthetic
aperture radar (SAR) images, introducing the concept of rotation angles to make it suitable
for rotated box detection scenarios. They also introduced a rotation box loss function
and a transfer attention module, enhancing the performance of a YOLOv4-based rotating
box target detection network in SAR image ship detection [31]. Ge Ji, Wang Chao, and
others aimed to address the azimuth-sensitive object detection issue in complex scenes
in SAR images, using aircraft detection in complex SAR scenes as an example. They
adopted YOLOX as their basic framework, introducing an inverted pyramid convolution
aggregation network and proposing a spatial orientation attention module. They also
introduced a spatial orientation-enhanced path aggregation feature pyramid network to
capture feature transformations in different directions, emphasizing object features and
suppressing background effects. Building upon this, they proposed a network enhanced
with spatial orientation attention [32]. These algorithms efficiently and accurately perform
target detection in various application scenarios. However, for nearshore ship detection,
due to large and complex scenes, dense distributions, and the arbitrary orientations of
ship targets, the discrimination and regression of the above algorithms are not accurate
enough. These algorithms have inadequately tackled certain challenges in the academic
domain. Examples include the accurate measurement of predicted values versus ground
truth for the boundaries of rotated boxes during the training process, the handling of
errors in loss when detecting square-like objects, and the complexities associated with their
intricate designs. Furthermore, the substantial increase in model parameters resulting from
these complexities poses challenges in the deployment phase within academic research
settings. Their complex designs also lead to large model parameters, making deployment
challenging.

To tackle the challenges associated with complex models, which result in large pa-
rameters and high computational requirements, hindering deployment, researchers have
explored alternative strategies. Some have undertaken studies to address these issues. For
instance, Yang-Lang, Chang et al. focused on mitigating the problem of excessive informa-
tion in remote sensing images, which makes training models challenging. They developed
a streamlined YOLOv2 model, named YOLOv2-reduced, by eliminating unnecessary layers
in the detection process of the You Only Look Once version 2 (YOLOv2) model. This ap-
proach aimed to reduce computation time, enhance GPU utilization, and improve detection
accuracy [33]. Similarly, Xiaowo Xu et al. aimed to decrease model parameters while pre-
serving detection accuracy. They opted for model pruning while adopting the lightweight
YOLOv5s model [34]. Although these methods can address the issue of oversized models,
the process of redesigning and pruning networks is relatively complex. Additionally, their
effectiveness is influenced by the dataset, making them solutions that may not universally
apply to the problem.

This paper introduces a novel rotation box object detection model called YOLOv7oSAR,
aiming to address the challenges of low accuracy, the imprecise localization of small
targets, and the hindrance to deployment posed by the complexity of current rotation box
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algorithms. This model is based on the YOLOv7 [16], a continuation of the YOLO algorithm
series released by the original authors. The algorithm demonstrates high-precision detection
results on the Rotation box SAR Ship Detection Dataset (RSDD) published by Professor
Xu Cong’an’s team in 2022 [35]. To tackle the issues of arbitrary target orientation and
challenging localization, this paper introduces a rotation box detection mechanism built
upon the YOLOv7 framework.

The following are the contributions of this article:

1. The proposed YOLOV7oSAR is a highly accurate SAR image ship detection network
based on the YOLOV7 framework. It introduces Kullback–Leibler Divergence (KLD)
loss [36] during training to enhance the accuracy of the inference model’s final results.

2. To improve the model’s small target detection capability in large scenes, the article
introduces the BRA dynamic sparse attention mechanism [37]. This is a plug-and-play
BCBS structure, which, compared to traditional self-attention mechanisms, acquires
critical information from the entire image more quickly with lower spatial complexity,
thereby enhancing the model’s capability to detect small targets.

3. In order to reduce model parameters, this article redesigns the network’s depth
and width to align with research objectives. Additionally, it introduces the Partial
convolution (PConv) structure [38] and proposes the lightweight P-ELAN structure,
ensuring a reduction in model parameters without significantly affecting model
performance. This reduction in parameters contributes to a smaller model size and
lower hardware computational requirements.

The subsequent sections of this article are structured as follows: Section 2 provides
an introduction to the materials and methods, Section 3 outlines the experimental design,
and Section 4 articulates the findings from ablation experiments, comparative experiments,
and validation experiments, followed by a comprehensive discussion. Section 5 offers a
summary of the entire article, concluding with insights into future prospects.

2. Materials and Methods

This section provides an overview of the entire research process, illustrating the
technical roadmap, which is shown in Figure 1. This study involves enhancing the YOLOv7
network for ship detection in Synthetic aperture radar (SAR) images. Initially, the model
is trained and improved on the publicly available RSDD. In the shallow regions of the
model, a BRA attention mechanism is introduced to enhance its capability of detecting
small targets. Additionally, the network architecture is modified by incorporating Pconv
convolution to replace the ELAN structure, aiming to make the model more lightweight.
Subsequently, to validate and test the model’s detection performance in different scenarios,
a dataset for detecting ships, with slanting bounding boxes, in a harbor is created.

Section 2.1 specifically outlines the structure of the baseline network, YOLOv7. In
Section 2.2, the structure of the YOLOv7oSAR model is introduced. Additionally, Section 2.3
covers the introduction of the small target detection module and lightweight detection
module.

2.1. YOLOv7 Network Architecture

In the field of real-time object detection, the YOLO series is highly acclaimed for its re-
markable balance between computational efficiency and accuracy. YOLOv7, released by the
original team with practical paper support, is one of the most recent versions of the recently
released YOLO algorithms. This paper focuses on improving the YOLOv7 algorithm. Its
network comprises a backbone and a head, with input image dimensions set at 512 × 512.
The head generates three layers of feature maps and introduces the BCBS structure, con-
sisting of the Convolutional-Batch Normalization-Silu (CBS) and Convolutional-Batch
Normalization-Sigmoid (CBM) layers, and incorporating a BRA attention mechanism. As
SAR images typically have a single channel, preprocessing involves converting them into
a three-channel format. Feature extraction begins with four layers of CBS, followed by
MP-1 and ELAN layers, generating feature maps at different scales. These feature maps
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are input into the head network for further processing, where the ELAN layer enhances
feature extraction efficiency and robustness by regulating long and short gradient paths.
The model introduces the PConv layer for lightweighting [16].
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The improvements in YOLOv7 are mainly manifested in the ELAN structure, reparam-
eterized model architecture, and effective label assignment strategy. These enhancements
elevate its detection performance while reducing the model parameters. Utilizing this
model for ship target detection in SAR images ensures heightened accuracy and signif-
icantly reduces the required hardware performance. This nuanced balance makes the
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model particularly practical in scenarios with limited computational resources, all while
maintaining exceptional detection efficacy.

2.2. YOLOv7oSAR Network Architecture

To achieve a more precise localization of ship targets, this paper introduces rotated
bounding boxes for detection. In contrast to horizontal bounding boxes, a rotated bounding
box includes an additional angle parameter θ, as shown in Equation (2) compared to Equa-
tion (1). In the four-parameter representation, Cx and Cy represent the center coordinates of
the bounding box, h denotes the length of the bounding box’s longer side, and w represents
the length of its shorter side. In the representation with five parameters, Cx and Cy denote
the center coordinates of the bounding box, h represents the length of the bounding box’s
longer side, w represents the length of its shorter side, and θ represents the rotation angle
of the rotated box, where θ is constrained within the range θ ∈ [−(π/2), (π/2)). This
paper adopts the convention of representing the longer side in OpenCV. The rotation angle,
denoted as θ, is the counterclockwise rotation angle relative to the horizontal axis (x-axis),
representing the angle between the longer side of a rectangle (typically the wider side) and
the horizontal axis. The coordinate system’s origin is usually at the top-left corner, with
the x-axis extending horizontally to the right and the y-axis vertically downward. In this
system, counterclockwise rotation is indicated by negative angles, while clockwise rotation
is represented by positive angles. Here, the longer side refers to the side of the rectangle
with a length strictly greater than its adjacent side.

(Cx, Cy, w, h) (1)

(Cx, Cy, w, h, θ) (2)

Hence, the YOLOv7’s network architecture is not well-suited to rotated bounding
box detection tasks, necessitating modifications to its network structure. The adjustments
primarily involve two aspects: 1. Altering the model’s parameter output from its original
four parameters to five parameters. 2. Adapting the Intersection over Union (IOU) metric
to accommodate rotated detection using poly-IOU, and subsequently modifying the corre-
sponding code. Figure 2 illustrates the network architecture in this paper, while Figure 3
details the architecture further. The CBS module, as shown in (Figure 3a), is composed of a
convolutional layer, a batch normalization layer (BN), and a Silu layer. Here, ‘k’ represents
the number of convolutional kernels, while ‘s’ indicates the stride during the convolution
process. As illustrated in (Figure 3b), the ELAN module represents an efficient network
structure. By regulating the shortest and longest gradient paths, this module enables the
network to learn more features and enhances its robustness. (Figure 3c) represents the REP
module. The REP module is divided into two parts: training and inference. The training
module consists of three branches, namely a 3 × 3 convolution for feature extraction, a
1 × 1 convolution for feature smoothing, and an identity branch for directly transmitting
information. The inference module consists of a 3 × 3 convolution, reparameterized based
on the training module. (Figure 3d) is the MP module, comprising two branches. One
branch undergoes max-pooling followed by a 1 × 1 convolution, while the other branch,
after a 1× 1 convolution, proceeds through a 3× 3 convolution for down-sampling. Finally,
the results from both branches are added together. (Figure 3e) consists of two parts; the role
of the SPP module is to enlarge the receptive field through max-pooling, enabling the algo-
rithm to adapt to images with different resolutions. In the first branch, four different scales
of max-pooling are applied to assist the model in better recognizing targets of different
sizes. The CSPC module divides features into two parts, with one undergoing conventional
processing and the other undergoing SPP structure processing. Finally, the two parts are
merged to reduce computational load, thereby improving speed and accuracy.
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Due to the distinctive characteristics of rotated detection boxes, the conventional
Intersection over Union (IOU) metric, which quantifies the spatial overlap between two
bounding boxes by dividing the area of their intersection by the area of their union, may
inadequately represent the overlap inherent in tilted or rotated bounding boxes. As a
consequence, traditional IOU calculations may lack precision in evaluating the disparities
between predicted and ground truth bounding boxes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 25 
 

 

sampling. Finally, the results from both branches are added together. (Figure 3e) consists 
of two parts; the role of the SPP module is to enlarge the receptive field through max-
pooling, enabling the algorithm to adapt to images with different resolutions. In the first 
branch, four different scales of max-pooling are applied to assist the model in better rec-
ognizing targets of different sizes. The CSPC module divides features into two parts, with 
one undergoing conventional processing and the other undergoing SPP structure pro-
cessing. Finally, the two parts are merged to reduce computational load, thereby improv-
ing speed and accuracy. 

 
Figure 2. YOLOv7oSAR structure. 

 
(a) 

 
(b) 

Figure 3. Cont.



Remote Sens. 2024, 16, 913 8 of 25Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 25 
 

 

 
(c) 

 
(d) 

(e) 

Figure 3. Structure of basic components of YOLOv7oSAR. 

Due to the distinctive characteristics of rotated detection boxes, the conventional In-
tersection over Union (IOU) metric, which quantifies the spatial overlap between two 
bounding boxes by dividing the area of their intersection by the area of their union, may 
inadequately represent the overlap inherent in tilted or rotated bounding boxes. As a con-
sequence, traditional IOU calculations may lack precision in evaluating the disparities be-
tween predicted and ground truth bounding boxes. 

In response to this challenge, several scholars have introduced a range of rotated box 
detection algorithms, such as the Radar Region Proposal Network (RRPN) [39], one-stage 
anchorfree rotated object detector (FCOSR) [40], and ROI-Transformer [29], with the ob-
jective of approximating the nuanced distinctions between predicted and ground truth 
boxes. However, these approaches are subject to the limitations inherent in the traditional 
definition of rotated boxes, which encompass issues of angle and edge interchangeability, 
as well as class edge interchangeability. These constraints impede the accurate regression 
of predicted rotated bounding boxes. 

To address these limitations, the Kullback–Leibler Divergence (KLD) loss function is 
employed, treating bounding boxes as Gaussian distributions and quantifying the relative 
entropy between the predicted and ground truth bounding boxes. This methodological 
refinement serves to overcome the challenges associated with conventional calculation 
methods, offering a more sophisticated and effective approach to the precise regression of 
rotated bounding boxes. 

First, we need to convert the rotated bounding box (𝐶𝑥, , 𝐶𝑥, 𝑤, ℎ, 𝜃) into a 2D Gauss-
ian distribution form 𝒩(𝑚, Σ) (m represents the mean vector and Σ represents the co-
variance matrix); R represents the rotation matrix and S represents the diagonal matrix 
of eigenvalues. Equations (3) and (4) are the detailed transformation formulas. 

Figure 3. Structure of basic components of YOLOv7oSAR.

In response to this challenge, several scholars have introduced a range of rotated
box detection algorithms, such as the Radar Region Proposal Network (RRPN) [39], one-
stage anchorfree rotated object detector (FCOSR) [40], and ROI-Transformer [29], with the
objective of approximating the nuanced distinctions between predicted and ground truth
boxes. However, these approaches are subject to the limitations inherent in the traditional
definition of rotated boxes, which encompass issues of angle and edge interchangeability,
as well as class edge interchangeability. These constraints impede the accurate regression
of predicted rotated bounding boxes.

To address these limitations, the Kullback–Leibler Divergence (KLD) loss function is
employed, treating bounding boxes as Gaussian distributions and quantifying the relative
entropy between the predicted and ground truth bounding boxes. This methodological
refinement serves to overcome the challenges associated with conventional calculation
methods, offering a more sophisticated and effective approach to the precise regression of
rotated bounding boxes.

First, we need to convert the rotated bounding box (Cx, Cx, w, h, θ) into a 2D Gaussian
distribution form N (m, Σ) (m represents the mean vector and Σ represents the covariance
matrix); R represents the rotation matrix and S represents the diagonal matrix of eigenvalues.
Equations (3) and (4) are the detailed transformation formulas.

Σ1/2 = RSR>

=

(
cosθ −sinθ
sinθ cosθ

)( w
2 0
0 h

2

)(
cosθ sinθ
−sinθ cosθ

)
=

( w
2 cos2θ + h

2 sin2θ w−h
2 cosθsinθ

w−h
2 cosθsinθ w

2 sin2θ + h
2 cos2θ

) (3)
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m =
(

x, y)> (4)

Therefore, the Kullback–Leibler Divergence (KLD) loss is expressed as Equation (5):

Dkl
(

Np
∣∣∣∣Nt

)
= 1

2
(
µp − µt

)>Σ−1
t
(
µp − µt

)
+ 1

2 Tr
(

Σ−1
t Σp

)
+ 1

2 ln |Σt |
|Σp| − 1

(5)

In this context, Np denotes the 2D Gaussian probability distribution associated with
the predicted rotated bounding box, expressed as Xp ∼ Np

(
µp, Σp

)
. Here, Np signifies

the central position of the 2D Gaussian distribution, while µp represents the covariance
matrix, Σp providing insights into the distribution’s shape, orientation, and correlation.
Similarly, Nt represents the 2D Gaussian probability distribution linked to the true rotated
bounding box, written as Xt ∼ Nt(µt, Σt). In summary, µt denotes the central position and
Σt denotes the covariance matrix of the 2D Gaussian distribution, adding details about the
distribution’s shape, orientation, and correlation.

2.3. Model Optimization

This section delineates optimization strategies with a dual focus: the augmentation of
model precision and the mitigation of model resource consumption.

2.3.1. BCBS Module

Influenced by successful models in the vision Transformer category, such as the Vision
Transformer (VIT) [41] and Detection Transformer (DETR) [42], remarkable achievements
have been made in image processing tasks, demonstrating the potential of Transformers
in the field of computer vision. However, traditional self-attention mechanisms face
bottlenecks in terms of computation and memory complexity, making them challenging
to apply effectively to relevant tasks. Inspired by the Swin-Transformer [43], BRA has
emerged, featuring adaptive sparse queries. This innovation allows the model to efficiently
query key regions and aggregate attention with a smaller parameter count and faster speed,
thereby enhancing the model’s capability in detecting small objects.

The formulas for traditional attention mechanisms are represented as Equations (6)
and (7):

Attention(Q, K, V) = softmax
(

QKT
√

C

)
V

MHSA(X) = Concat(head0, head1, . . . , headh)Wo
(6)

headi = Attention
(

XWq
i , XWk

i , XWv
i

)
(7)

In the context of attention mechanisms, three key matrices are utilized: the query
matrix Q ∈ RNq×c, the key matrix K ∈ RNkv×C, and the weight matrix V ∈ RNkv×C. Here,
Nq represents the number of query vectors, Nkv denotes the number of key vectors (and
corresponding value vectors), and C signifies the number of input channels. The softmax
function is applied to each row during computation, and

√
C is employed to maintain

gradient stability during training.
In Transformer models, the multi-head attention mechanism, represented in Equation

(7), involves the matrices Q, K, and V, derived from a common input tensor X ∈ RN×C.
Here, N = H×W, where H and W represent the height and width of the spatially unfolded
feature map. The tensor is divided into h segments along the channel dimension, forming
“heads” denoted as headi ∈ RN× C

h . The projection weights Wq
i , Wk

i , and Wv
i ∈ RC× C

h

shape the attention mechanism. A linear transformation, Wo ∈ RC×C, combines the
outputs across heads. The computational complexity is O

(
N2).

To address this issue, BRA adopts a dynamic, query-aware sparse attention mechanism.
This attention mechanism filters out irrelevant key–value pairs at a coarse-grained level,
retaining a small set of key routing regions. Fine-grained one-to-one attention calculations
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are then performed on the union of these routing regions. The implementation of attention

is as follows: For a given feature map Xr ∈ RS2× HW
S2 ×C, we partition the feature map X into

non-overlapping regions of size S× S by reshaping it into Q, K, V ∈ RS2× HW
S2 ×C. We obtain

tensors for the queries, keys, and values of Xr as shown in Equations (8)–(10):

Q = XrWq (8)

K = XrWk (9)

V = XrWv (10)

where Wq, Wk, and Wv ∈ RC×C are the weight matrices for Q, K, and V, respectively.
Subsequently, a regional aggregation process is applied by computing the average

values for both Q and K, Q, and K yielding region-level queries and key values denoted as
Qr, Kr ∈ RS2×C. Subsequently, the matrix product of Qr and the transposed Kr result in the
formation of the region adjacency matrix Ar. In this matrix, the individual elements signify
the degree of association between respective regions.

Following this, a selective region pruning strategy is implemented, wherein only the
top k connections for each region are retained. This process culminates in the derivation
of the routing index matrix Ir ∈ NS2×k, where S2 denotes the total number of partitioned
regions and k signifies the quantity of preserved connections chosen for retention.

Regarding the obtained routing index matrix Ir, we conduct fine-grained one-to-one
attention calculations. This operation focuses on the top K key regions for each region,
aggregating their corresponding key values. The formulas are as shown in Equations (11)
and (12):

Kg = gather(K, Ir) (11)

Vg = gather(V, Ir) (12)

For Kg, Vg ∈ RS2× kHW
S2 ×C, Kg and Vg represent the aggregated tensors of the keys and

values and the subsequent attention operation is defined as shown in Equation (13):

O = Attention(Q, Kg, Vg) + LCE(V) (13)

In this context, O denotes the resultant output. The designation “Local Context
Enhancement” (LCE) characterizes the introduced operation dedicated to augmenting the
local context. Within this attention mechanism, the convolutional kernel size is explicitly
set to 5. Figure 4 illustrates the visual effect of the Boundary Refinement Attention (BRA)
mechanism, which progressively filters the entire image from coarse to fine, focusing
on small target areas. Figure 5 shows the BCBS structure, where the BRA (Boundary
Refinement Attention) mechanism is embedded into the CBS (Contextual Block and Spatial
Attention) structure. This structure allows for on-the-fly integration and can be easily
embedded into any other structure.

2.3.2. Model Scaling and the P-ELAN Module

Typically, a reduction in model size involves strategies such as parameter pruning
and knowledge distillation, aiming to mitigate computational demands during model
deployment. However, these methodologies often entail complex procedures, necessitating
extensive experimental tuning, and are susceptible to substantial performance variations
based on the dataset. Consequently, this study proposes a compression strategy tailored
to the current model. The overarching goal is to diminish the model parameters without
compromising accuracy, thereby effectively reducing the inference time of the model.
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Model scaling represents a significant paradigm for resizing models effectively. This
approach involves the fine-tuning of model parameters such as width, depth, resolu-
tion, and the count of feature pyramids to achieve a nuanced balance between network
parameters, computational overhead, inference speed, and accuracy. Notably, YOLOv7
incorporates a substantial number of concatenation structures, prompting the need for
a redefined approach to model scaling in its application. In this study, we adhere to the
original YOLOv7 network architecture and leverage the scaling factor configurations from
YOLOv7-tiny for network training.

To achieve fast neural networks with low latency and high throughput, many re-
searchers and practitioners have focused on optimizing their convolutional structures.
Notable examples include MobileNet [44], ShuffleNet [45], and GhostNet [46], which are
based on improved convolutional architectures such as Depthwise Separable Convolu-
tion (DWConv)and Group Convolution (GConv). While these methods effectively reduce
the floating-point computation and inference time of models, an excessive emphasis on
minimizing floating-point computations introduces a plethora of additional operations, in-
cluding concatenation, shuffling, and pooling. Ironically, this has led to the observation that,
in practical applications, the inference speed of models has not decreased but, in fact, the
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increased latency has contributed to longer model inference times. To ensure that reducing
parameters does not affect the model’s speed, this section introduces PConv, a convolutional
structure designed to reduce redundant computations and optimize model memory access.
The DWConv is a common variant in convolutional structures that separates convolutional
kernel operations. This design aims to reduce floating-point computations by dividing the
convolution into depthwise and pointwise convolutions. As a result, the total number of
floating-point operations in the computational device is significantly reduced compared to
conventional convolutions.

For example, considering an input I ∈ Rc×h×w, where c denotes the number of chan-
nels, h represents the image height, and w signifies the image width, the floating-point
operations for Depthwise Separable Convolution are expressed as h× w× k2 × c. In con-
trast, regular convolution necessitates h × w × k2 × c. Despite the evident decrease in
computational workload, precision maintenance mandates an expansion in the convolu-
tion’s channel count. This augmentation, unfortunately, results in heightened memory
access, subsequently impeding the model’s speed. This predicament is especially conse-
quential for edge devices.

To address this issue, this paper introduces the PConv structure, which simultaneously
reduces computational redundancy and memory access. It applies regular convolution to
only a subset of input channels for spatial feature extraction while keeping the remaining
channels unchanged. For consecutive or regular memory access, this convolution considers
the first or last consecutive cp channels as representatives of the entire feature map for
computation. Assuming the input and output feature maps have the same number of
channels, the floating-point operations (FLOPs) of PConv are only related to the number of
channels in the feature map.

h× w× k2 × c2
p (14)

For a typical partial ratio r = cp
c = 1

4 , PConv’s floating-point operations (FLOPs) are
only 1

16 of regular Conv. Additionally, PConv has a smaller memory footprint, i.e., h× w×
2cp + k2 × c2

p ≈ h× w× 2cp; its memory access is only 1
4 that of regular Conv. Figure 6

demonstrates the transformation of the CBS (Contextual Block and Spatial Attention)
structure by replacing the Conv structure with the Pconv structure. Additionally, by
replacing the CBS structure in the ELAN (Enhanced Local-Attention Network) structure, a
P-ELAN structure is obtained.
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3. Experimental Design
3.1. Experimental Setup

All experiments in this study were conducted on the Ubuntu operating system with
the following specific configuration:

- Operating System: Ubuntu 20.04 LTS—we chose Ubuntu 20.04 LTS for its stability
and widespread support in the community.

- Processor: Intel (R) Core (TM) i9-10900X CPU @ 3.70GHz—our hardware configuration
includes a high-performance Intel Xeon processor, providing reliable computational
capabilities.
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- Memory: 128 GB—additionally, we equipped the system with 128 GB of memory to
ensure no memory constraints during large-scale deep learning model training.

- Graphics Card: NVIDIA GeForce RTX 3090 with 24 GB of VRAM—this graphics
card offers excellent computational performance and parallel processing capabilities,
significantly improving training efficiency.

Regarding software tools, we utilized PyTorch 1.7 for model construction and training.
PyTorch is a popular deep learning framework known for its rich features and user-friendly
API, facilitating convenient model construction and training processes. To accelerate
computations, we employed CUDA 11.0 for GPU acceleration, fully leveraging the parallel
computing capabilities of the RTX 3090 graphics card and significantly reducing model
training time.

3.2. Dataset

To authentically evaluate the model’s performance, this study utilized the publicly
available Synthetic aperture radar Ship Detection Dataset (RSDD) for training and valida-
tion. This dataset encompasses a rich variety of data sources, including diverse imaging
modalities and polarization techniques, along with a well-distributed set of ship instances.
Beyond the conventional perspective of vessels in open waters, this dataset covers various
scenarios, including coastal regions, ports, and islands. Due to the limited availability
of publicly accessible data for ship detection with slant-range annotations [23,47–50], a
proprietary dataset was created to further assess the model’s generalization capabilities,
focusing on ship classification and detection.

3.2.1. RSDD—The Rotated Ship Detection Dataset in SAR Images

The RSDD, meticulously curated and publicly disclosed by the research team led by
Professor Xu Cong’an at the Naval Aviation University, encompasses a comprehensive
compilation of 127 scenes. Among these, 84 scenes are derived from the high-resolution
Gaofen-3 satellite, while an additional 41 scenes originate from TerraSAR-X, complemented
by 2 uncropped large-scale images. This dataset is characterized by its richness in terms of
diverse imaging modalities, polarization modes, and resolutions, featuring a total of 7000
meticulously sliced images. This dataset can be downloaded at https://radars.ac.cn/web/
data/getData?dataType=SDD-SAR accessed on 27 February 2024.

A distinctive feature of the RSDD lies in its contemporaneity, reflecting recent ship
instances with arbitrary rotation angles, substantial aspect ratios, a notable prevalence of
diminutive targets, and a wealth of diverse contextual scenes. The annotation process, a
fusion of automated procedures and meticulous manual correction, attests to the dataset’s
efficiency in providing accurate and detailed ship instance annotations. This dataset serves
as an invaluable resource for advancing the research in SAR ship detection, offering a
faithful representation of real-world data complexities.

3.2.2. SAR Image Ship Verification Dataset

In order to verify the robustness of our model, this paper created a simplified dataset
following the approach of the RSDD model. The following is an introduction to this dataset:
Pearl Harbor is located approximately 15 miles southwest of Honolulu, Hawaii, and is one
of the most renowned harbors in the United States. Serving as Hawaii’s largest port, the
geographical coordinates of Pearl Harbor range between approximately 21.3◦N and 21.5◦N
latitude and 157.9◦E and 157.95◦E longitude. The harbor’s strategic importance and rich
historical background have established it as a crucial military base in Hawaii. Throughout
history, Pearl Harbor has housed various types of warships, including battleships, aircraft
carriers, destroyers, submarines, and more. Currently, the primary types of ships docking
at Pearl Harbor include destroyers, submarines, support ships, and others. This dataset
aims to conduct a simple evaluation of the detection and classification capabilities of our
target detection model on another dataset. Figure 7 illustrates the geographical location of
the dataset selection area and a comparison of various types of vessels under SAR and in

https://radars.ac.cn/web/data/getData?dataType=SDD-SAR
https://radars.ac.cn/web/data/getData?dataType=SDD-SAR
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optical images. In this study, a simple classification of different types of vessels under SAR
images was conducted by consulting the literature and using optical images for assistance.
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Figure 7. The upper-left image (a) displays the actual study area, the upper-right image shows
high-resolution data from the Gaofen-3 satellite, and the lower-right image shows data from the
Planet optical satellite. In (b), a comparison of various types of vessels under SAR and in optical
images is presented. The upper section illustrates different types of vessels under the Gaofen-3
satellite, while the lower section showcases various types of vessels under the Planet optical satellite.
The categories, from left to right, are a destroyer, support ship, submarine, and ship (encompassing
civilian and research vessels).

The data preprocessing pipeline comprises five key steps: the complex data conversion
of SAR images, multi-view processing, filtering and denoising, orthorectification, and
channel expansion. Unlike traditional optical images, SAR images typically have only
one channel. Since model training requires reading image information through OpenCV,
which can only read conventional RGB images, for the convenience of model training the
final preprocessing step involves duplicating the original single-channel image twice to
expand it into a three-channel image. Given the often substantial size of remote sensing
images, direct detection from the original image is infeasible. Consequently, a slicing
process precedes detection, wherein an overlap ratio, typically ranging from 40% to 70%, is
set to mitigate potential target omission.

Popular annotation software such as Labelme v5.4.1 and roLabelimg v3.0 can meet
these requirements. Labelme is suitable for annotating horizontal bounding boxes, while
ro-labelimg is effective for annotating rotated bounding boxes. In the case of smaller
datasets, manual annotation using software is feasible. For more extensive datasets, it is
recommended to use the Polar Encodings SAR ship rotated bounding box detection model
for rough annotation. Table 1 displays the detailed data types used in the dataset, ultimately
creating a small SAR image dataset with rotated bounding boxes for ship classification,
consisting of 2000 slices.

Table 1. Validation dataset’s data format.

Sensor Longitude Latitude Time Imaging
Mode

Resolution
(m)

Polarization
Mode

Product
Level

Incidence
Angle (◦)

Imaging
Width
(km)

GF-3 W158.0 N21.4 20220228 SL 1 HH L2 20–50 10
GF-3 W158.0 N21.4 20220313 SL 1 HH L2 20–50 10
GF-3 W158.0 N21.4 20220415 SL 1 HH L2 20–50 10
GF-3 W158.0 N21.4 20220515 SL 1 HH L2 20–50 10
GF-3 W157.9 N21.4 20220613 SL 1 HH L2 20–50 10

3.3. Evaluation Criteria

The dataset is divided into three parts: the training set, validation set, and test set. The
division ratio can be adjusted appropriately based on the dataset’s size. In this experiment,
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the ratio is set as 7:2:1. Hyperparameters are the parameters set before the training process
begins, and they can be adjusted based on the training results. After adjustments, the
model is retrained. The number of training epochs in this study is set to 300, the batch size
is 4, and the image size is 512 × 512. Other hyperparameters are fine-tuned based on the
YOLOv7’s official model hyperparameters.

The final result is evaluated based on the detection evaluation metrics of the COCO
dataset, which include average precision (AP), AP50, AP75, APS, APM, and APL. AP50
represents the average precision at an IOU (Intersection over Union) threshold of 0.5, while
AP75 represents the average precision at an IOU threshold of 0.75. AP represents the
average precision at different IOU thresholds (0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90),
and, in this study, the AP50 is chosen as the detection accuracy metric.

In this detection task, the IOU is replaced by the KLD IOU to measure the overlap
between a detection box and a ground truth box. For a given KLD IOU threshold, the
average precision (AP) is the mean of the precision values across the precision–recall (P–R)
curve. Here, P denotes precision and R denotes recall. The specific expressions are as
shown in Equations (15)–(18):

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

AP =

1∫
0

P(r)dr (17)

mAP =
1
N ∑N

i=1 AP(i) (18)

where TP denotes the count of positive instances within the detection box, FP signifies the
count of false positives (also referred to as negative instances) within the detection box, and
FN represents the count of missed detections. The sum of TP and FN equals the total count
of the ground truth boxes. P(r) represents the precision–recall curve, consisting of multiple
sets of precision and recall. It is crucial to note that the P–R curve is often discontinuous in
practical computations. Therefore, AP typically denotes the average of all precision values
along the P–R curve.

To assess the model’s parameter count and computational requirements, this study
calculates the model’s parameter count and floating-point operations (FLOPs). The model
parameter count refers to the total number of trainable parameters in a deep learning
model, including weights and biases, and is commonly used to measure the model’s
parameterization. FLOPs represent the number of floating-point operations performed per
second. In deep learning, this is often used to gauge the model’s computational complexity,
indicating the number of floating-point operations executed during the inference or training
process. The quantity of FLOPs is typically closely related to the model’s computational
demands and speed. A higher number of FLOPs generally implies a larger computational
burden, necessitating better hardware.

The formulas for calculating the parameter count for each convolutional layer are as
shown in Equations (19) and (20):

Convolutional Layer params = (Co × (kw × kh ×Ci + 1)) (19)

Fully Connected Layer params = (C0 × (Ci + 1)) (20)

where Co represents the number of output channels, Ci represents the number of input
channels, kw represents the width of the convolutional kernel, and kh represents the height



Remote Sens. 2024, 16, 913 16 of 25

of the convolutional kernel. The term w× h×Ci inside the parentheses denotes the number
of weights in a single convolutional kernel. The parameter count for the bias is represented
by adding one to the count of a single convolutional kernel’s parameters, and thus the
parentheses encapsulate the parameter count for a single convolutional kernel. When
performing batch normalization, bias is not needed. In such cases, there is no need to add
one to the count in the formula. In fully connected layers, the parameter count is directly
obtained by calculating the product of the output channel number and the input channel
number, plus one.

The FLOPs calculations for each layer of the convolutional and fully connected layers
are as shown in Equations (21) and (22):

FLOPs for Convolutional Layer = [(Ci × kw × kh) + (Ci × kw × kh − 1) + 1]× Co ×W × H (21)

FLOPs for Fully Connected Layer = (2Ci − 1)× Cm (22)

where the value of [(Ci × kw × kh) + (Ci × kw × kh − 1) + 1] represents the computational
cost (multiplications and additions) required to calculate one point in the feature map
through a convolutional operation. Ci × kw × kh denotes the multiplication operations in
a single convolutional kernel, and Ci × kw × kh − 1 represents the addition operations in
a single convolutional kernel. The parameter count for the bias is represented by adding
one to the count of a single convolutional kernel’s parameters. W and H are the length and
width of the feature map, and Co ×W × H represents the total number of elements in the
feature map. In a fully connected layer, the computational cost is directly calculated by
multiplying two times the output channel number by the input channel number minus
one.

The computational complexity of the model in this paper primarily consists of the sum
of 101 convolutional layers and 3 fully connected layers. As each convolutional layer has
different parameters, it is necessary to calculate the complexity for each layer separately.
However, detailed calculations for each layer are not provided here. An approximate
estimation can be obtained through Equations (21) and (22), and the calculation formula is
as follows (23):

Model Computational Complexity =
101

∑
i=1

([(Ci × kw × kh) + (Ci × kw × kh − 1) + 1])+
3

∑
i=1

((2Ci − 1)× Cm) (23)

4. Results
4.1. Ablation Experiment

This study performed model scaling by adjusting both width and depth, with the
depth multiple set to 0.30 and the width multiple set to 0.5. Compared to the original
model parameters, where all factors were set to 1, this configuration achieved comparable
accuracy. The rationale behind these adjustments lies in the fact that the original model was
designed for optical image detection, whereas SAR images lack the visual richness found
in their optical counterparts. Thus, an oversized model is unnecessary for detecting ships
in SAR images. Therefore, the chosen scaling factors in this study are deemed judicious,
reducing the original model’s parameter size while maintaining an equivalent accuracy to
the model set with the original parameters. All enhancements in this work are grounded in
these scaling factors’ modifications to the model’s coefficients.

To further enhance the ship detection capabilities of the model, we introduced the
BRA mechanism and embedded it within CBS, proposing the BCBS structure. The BRA
mechanism allows the model to rapidly focus on key image areas, improving its proficiency
in detecting small targets, with only a marginal increase in the model’s parameter size.
This study incorporates it into the shallow feature layers of the model to enhance its small
target detection capability. Additionally, for model lightweighting, we not only adjusted
the model’s structure by reducing its width and depth but also introduced the PConv
structure. We refined the Efficient Layer Aggregation Networks (ELAN) module into the
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PConv ELAN (P-ELAN) module. In experiments, by replacing the ELAN in the head region
with P-ELAN, we achieved a reduction in model parameters and greater computational
efficiency. To validate the effectiveness of these improvements, this study conducted
ablation experiments, and the results are presented in Table 2 and Figure 8:

Table 2. Performance metrics of YOLOv7oSAR variants.

Module/Metric AP50 Offshore AP50 Nearshore Param (M) FLOPs

YOLOv7oSAR 0.927 0.586 9.14 M 16.6 GFLOPs
YOLOv7oSAR + BRA 0.949 0.660 9.16 M 16.7 GFLOPs

YOLOv7oSAR + PConv 0.920 0.534 8.21 M 15.4 GFLOPs
YOLOv7oSAR + BRA + PConv 0.938 0.634 8.23 M 15.5 GFLOPs
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The model’s accuracy in offshore detection improved by 2.2%, and its nearshore
detection accuracy increased by 7.4% after incorporating the BRA attention mechanism.
Table 1 indicates that the improvement in accuracy is higher for the nearshore area than
for the offshore area. This is likely due to the more complex background in nearshore
areas compared to offshore ones, making the BRA attention mechanism more pronounced
and resulting in a significant enhancement in nearshore detection. From Figure 8, it is
evident that the model with the BRA attention mechanism excels in detecting small vessels.
Small vessels that were initially undetectable can now be successfully identified, whether
nearshore or offshore.

After introducing the PConv convolutional structure, the model’s parameter count
decreased by 7.8%, and its computational load decreased by 10.1%. However, there was a
2.7% decline in offshore accuracy and 5.2% decrease in nearshore accuracy. This decline
may be attributed to the complexity of nearshore scenes, where the model, after reducing its
parameters, experienced a slight decrease in its ability to accurately locate objects in overly
intricate scenarios. When incorporating all modules, including the BRA and PConv, into
the model, its accuracy increased by 1.1% for nearshore and decreased by 5% for offshore
detection. Its parameter count decreased by 10.1%, and its computational load decreased
by 7.1%. The PConv module can be replaced based on the specific requirements of practical
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applications. In this study, only the ELAN structure in the model’s head network was
replaced with the P-ELAN structure.

4.2. Comparative Experiment

Our proposed method has been compared with several advanced models. For instance,
the Gliding Vertex model accurately describes multi-oriented objects by sliding the vertices
on the horizontal bounding box, avoiding the confusion caused by direct regression. It
introduces length ratio regression and an obliquity factor based on the area ratio, enhancing
the model’s robustness to rotated targets [30]. Redet presents a rotation-equivariant detector,
achieving precise orientation prediction and significantly reducing model size. It introduces
a rotation-invariant RoI Align for feature extraction, adapting to the RoI’s direction [27].
S2ANet incorporates a rotation-equivariant network for accurate arbitrary-oriented object
detection. It contains a rotation-invariant RoI Align module for adaptive feature extraction
based on the RoI’s direction [28]. ROI-Transformer introduces a single-stage alignment
network with feature alignment and oriented detection modules. It refines its anchors
for high-quality anchor generation and aligns convolutional features adaptively with
a novel alignment convolution [29]. Rotated FCOS includes a single-stage alignment
network, improving its detection accuracy for rotated objects. It uses active rotating
filters for encoding directional information, producing orientation-sensitive and invariant
features [40]. Rotated RetinaNet extends the RetinaNet framework, efficiently detecting
rotated objects with rotated anchors and a skewed IOU. It introduces a refinement network
and feature alignment module, enhancing detection accuracy [20]. The Rotated Faster
R-CNN combines a horizontal bounding box prediction and a dedicated regression branch
for oriented bounding box. This achieves more accurate and comprehensive detection
outcomes through multitask learning [51]. These models demonstrate unique technical
designs, each excelling in handling challenging arbitrarily oriented object detection tasks.
These models’ comparison results and visual effects are shown in Table 3 and Figure 9.

Table 3. Comparison of experimental results.

Module/Metric AP50
Offshore

AP50
Nearshore Param (M) FLOPs

YOLOv7oSAR + BRA 0.949 0.660 9.16 M 16.60 GFLOPs
Gliding vertex 0.810 0.640 41.13 M 63.25 GFLOPs

Redet 0.900 0.590 31.64 M 40.98 GFLOPs
S2anet 0.790 0.450 38.54 M 63.25 GFLOPs

ROI-Transformer 0.897 0.456 55.03 M 77.15 GFLOPs
Rotated FCOS 0.900 0.635 31.89 M 51.55 GFLOPs

Rotated RetinaNet 0.898 0.638 36.42 M 53.98 GFLOPs
Rotated Faster R-CNN 0.900 0.640 41.14 M 63.26 GFLOPs

The results presented in Table 3 underscore the performance of our research model.
Achieving an offshore detection accuracy of 94.9%, it surpasses the lowest-performing
model, S2ANet, by a significant margin of 15.9% and outperforms the highest-performing
offshore model, Redet, by 4.9%, with its detection accuracy of 90%. For nearshore detection
accuracy, our model attains 68.4%, exhibiting a notable superiority over the least performing
nearshore model, S2ANet, by 23.4%, and demonstrating a modest 4.4% advantage over
the highest-performing offshore detection model, Rotated FCOS, which has a detection
accuracy of 90%. Considering the models’ parameterization, our proposed model exhibits a
parameter count that is one-third that of the minimal parameter model, Redet, and one sixth
of the maximal parameter model, ROI-Transformer. Regarding computational complexity,
our model has one third of the computational load of the least complex model, Redet, and
one fifth of the computational load of the most complex model, ROI-Transformer. These
findings underscore the efficiency and effectiveness of our model in achieving a competitive
performance with reduced computational demands.
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In observing Figure 9, it is evident that the Gliding Vertex model demonstrates a com-
prehensive and accurate detection of all ships without any instances of missed detections.
However, during the detection of offshore ships, there is a notable occurrence of square-like
bounding boxes for ships located in the middle position. Similarly, the bottommost ship in
nearshore detection exhibits a square-like bounding box. Contrastingly, models such as
ROI-Transformer, Rotated FCOS, and Rotated Faster R-CNN exhibit a more pronounced
occurrence of missed detections. Specifically, in the offshore ship detection scenario, ships
positioned at the bottom are not accurately identified. In nearshore ship detection, both the
ships on the bottom left and the bottommost ship are not precisely detected. The Rotated
RepPoints model shows fewer instances of missed detections. In offshore ship detection,
ships positioned at the bottom are not accurately detected, and, in nearshore ship detec-
tion, the bottommost ship is also not precisely identified. Models like Redet and Rotated
RetinaNet exhibit an overall absence of missed detections, showcasing a robust detection
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performance. However, these models have significantly higher parameter counts and
computational loads compared to the model proposed in this study. According to the data
in Table 3, their detection accuracy also falls short of the precision achieved by our research
model. S2ANet, while displaying commendable nearshore detection, exhibits a suboptimal
performance in offshore detection. In summary, while most models exhibit occasional
instances of missed detections, our proposed model demonstrates a superior performance
in terms of both minimizing missed detections and overall detection effectiveness.

4.3. Verification Experiment

To evaluate the detection and classification performance of our experimental model in
real-world scenarios, this study conducted performance tests on a self-made dataset. The
model’s results on the self-made dataset, as shown in Figure 10 and Table 4, demonstrated
an overall detection accuracy of 94.2%. The accuracy for each ship category is as follows:
destroyer—73.7%, support ship—94.4%, ship (civilian, research, etc.)—100.0%, submarine—
99.0%. Its overall experimental accuracy is satisfactory, with high detection accuracy for
various ship categories, except for a relatively lower accuracy in detecting destroyers. The
limitations in the data scale and the impact of slicing size during sample creation may
result in suboptimal classification performance for large vessels such as destroyers.Due
to constraints in the slice intervals and sizes, some slices of large vessels in the training
set may not be sufficiently complete, affecting model training and leading to a suboptimal
classification performance.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 10. Verification experiment. The first row represents the ground truth, and the second row 
represents the detection results. From left to right, the categories of ships correspond to destroyer, 
submarine, support ship, and general ships (civilian, research, etc.). 

Table 4. Object detection AP50 Scores by category. 

Module/Metric AP50 

All 0.942 
Destroyer 0.737 

Support ship 0.944 
Ship (civilian, research, etc.) 1.000 

Submarine 0.990 

5. Discussion 
In this study, we proposed a lightweight ship detection model for SAR images based 

on YOLOv7, with rotated bounding boxes. We enhanced the YOLOv7 model and con-
ducted relevant experiments. The results in Sections 4.2 and 4.3 demonstrate the excellent 
performance of the proposed model on the validation dataset. Furthermore, the model 
outperforms existing rotated bounding box detection models in terms of evaluation met-
rics and visual aspects. Additionally, we discussed the experimental results in conjunction 
with a theoretical analysis. 

The Kullback–Leibler Divergence (KLD) Loss Function: In order to enhance localiza-
tion accuracy and detection effectiveness, and to address the issues in previous rotated 
bounding box detection methods such as abrupt changes in boundary angles, square-like 
detection problems, and inconsistencies in loss and evaluation, we introduced the KLD 
loss function. As is evident from Table 2 and Figure 9, the utilization of the KLD loss func-
tion during training eliminates the occurrence of square-like bounding boxes observed in 
the Gliding Vertex model, resulting in more accurate localization and improved precision. 

The Impact of the BBCS Module: The BBCS module employs dynamic sparse queries 
on shallow feature maps, filtering out irrelevant key–value pairs at a coarse-grained level, 
retaining a small set of key routing regions and enhancing small target detection by the 
fine-grained querying of key routing regions. As shown in Table 1, this approach effec-
tively improves the model’s performance metrics. The visual results in Figures 8 and 9 
demonstrate that this mechanism significantly aids in small target detection. 

Figure 10. Verification experiment. The first row represents the ground truth, and the second row
represents the detection results. From left to right, the categories of ships correspond to destroyer,
submarine, support ship, and general ships (civilian, research, etc.).

Table 4. Object detection AP50 Scores by category.

Module/Metric AP50

All 0.942
Destroyer 0.737

Support ship 0.944
Ship (civilian, research, etc.) 1.000

Submarine 0.990
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5. Discussion

In this study, we proposed a lightweight ship detection model for SAR images based
on YOLOv7, with rotated bounding boxes. We enhanced the YOLOv7 model and con-
ducted relevant experiments. The results in Sections 4.2 and 4.3 demonstrate the excellent
performance of the proposed model on the validation dataset. Furthermore, the model
outperforms existing rotated bounding box detection models in terms of evaluation metrics
and visual aspects. Additionally, we discussed the experimental results in conjunction with
a theoretical analysis.

The Kullback–Leibler Divergence (KLD) Loss Function: In order to enhance localiza-
tion accuracy and detection effectiveness, and to address the issues in previous rotated
bounding box detection methods such as abrupt changes in boundary angles, square-like
detection problems, and inconsistencies in loss and evaluation, we introduced the KLD loss
function. As is evident from Table 2 and Figure 9, the utilization of the KLD loss function
during training eliminates the occurrence of square-like bounding boxes observed in the
Gliding Vertex model, resulting in more accurate localization and improved precision.

The Impact of the BBCS Module: The BBCS module employs dynamic sparse queries
on shallow feature maps, filtering out irrelevant key–value pairs at a coarse-grained level,
retaining a small set of key routing regions and enhancing small target detection by the
fine-grained querying of key routing regions. As shown in Table 1, this approach effec-
tively improves the model’s performance metrics. The visual results in Figures 8 and 9
demonstrate that this mechanism significantly aids in small target detection.

The Impact of the P-ELAN Module: The PConv ELAN (P-ELAN) module reduces the
number of channels involved in computations during the convolution process, resulting in
a reduction in model parameters and computational load. As indicated in Table 1, replacing
this module allows for a significant reduction in model parameters and computational
load without the need for complex sparsity and distillation training, while maintaining a
certain level of accuracy. An examination of Table 1 and the visual results in Figure 8 show
a notable decrease in model parameters and computational load.

Comparison with Other Models: Overall, our model demonstrates an outstanding
detection performance, as is evident from both Table 2 and Figure 9. No instances of missed
detections, as observed in models like ROI-Transformer, Rotated FCOS, and Rotated Faster
R-CNN, are present. Square-like bounding box occurrences, as observed in the Gliding
Vertex model, are also absent. Although Redet and Rotated RetinaNet show satisfactory
detection results, our model surpasses them in terms of accuracy, model size, computational
load, and overall detection effectiveness.

Limitations of this method: Firstly, our model still struggles to accurately detect
ships in overly complex scenarios, necessitating further optimization of the model and its
training data. Secondly, the process of creating slices for the test dataset in this study needs
improvement, as the small size of the slices results in incomplete representation of large
ships in the samples, ultimately making it challenging for the model to accurately detect
large ships.

6. Conclusions

This paper introduces a rotation box object detection model based on the YOLOv7
framework (YOLOv7oSAR). The model has improved localization accuracy and detection
precision through its incorporation of rotation box detection and the Kullback–Leibler
Divergence (KLD) loss function. Additionally, the model includes the BRA attention
mechanism to enhance its small object detection capabilities. By adjusting the model’s
width and depth and introducing the lightweight P-ELAN structure, the model reduces its
parameters and computational resources, making it suitable for deployment. The model
achieves state-of-the-art detection results on the RSDD and demonstrates excellent detection
performance on a custom classification dataset. Since the image resolutions of the RSDD
and the custom dataset range from 3 to 25 m, with the custom dataset having a resolution
of 1 m, this highlights the model’s outstanding performance across various SAR image
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datasets with resolutions ranging from 1 m to 25 m, showcasing its robustness. However,
despite the model’s outstanding performance in detection, there is room for improvement
in its handling of complex scenarios near the shore. In terms of detection validation, the
model exhibits accurate results, but due to limitations in the scale of the custom dataset,
larger datasets are needed to refine the dataset creation process for comprehensive testing
and subsequent algorithm improvements. Additionally, there is a scarcity of datasets
specifically designed for classifying rotated bounding boxes in ship detection based on
SAR images. This study’s future goal is to establish a larger-scale dataset, test the improved
model developed in this study, and further enhance the model’s ship detection capabilities
in complex scenarios near the shore.
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Abbreviations

KLD Kullback–Leibler Divergence
SAR Synthetic aperture radar
CBS Convolutional-Batch Normalization-Silu
BRA Bi-Level Routing Attention
BCBS Bi-Level Routing Attention Convolutional-Batch Normalization-Silu
ELAN Efficient Layer Aggregation Networks
P-ELAN PConv ELAN
FLOPs Floating-point operations
CFAR Constant False Alarm Rate
RCNN Region-based Convolutional Neural Network
SSD Single-Shot MultiBox Detector
YOLO You Only Look Once
RSDD Rotated Ship Detection Dataset in SAR Images
VI-CFAR Variable Interval Constant False Alarm Rate
VTM-CFAR Variable Threshold Method Constant False Alarm Rate.
OS-CFAR Ordered Statistic Constant False Alarm Rate
CMLD-CFAR Constant False Alarm Rate Cell Averaging Mean Level Detector
ARPN Attention Receptive Pyramid Network
RFB Receptive field modules
CBAM Convolutional block attention modules
IOU Intersection over Union
Conv Convolution
PConv Partial convolution
DWConv Depthwise Separable Convolution
Gconv Group Convolution
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RoI Region of Interest
ReDet Rotation-equivariant detector
FCOS Fully Convolutional One-Stage Object Detection
MP Max-Pooling
REP Reparameterization
BN Batch normalization
Cat Concatenate
SL Sliding Beamforming
SPPCSPC Spatial Pyramid Pooling Cross Stage Partial Concatenate
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