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Abstract: Forest fires are caused by various climatic and anthropogenic factors. In Republic of
Korea, forest fires occur frequently during spring when the humidity is low. During the past decade,
the number of forest fire incidents and the extent of the damaged area have increased. Satellite
imagery can be applied to assess damage from these unpredictable forest fires. Despite the increasing
threat, there is a lack of comprehensive analysis and effective strategies for addressing these forest
fires, particularly considering the diverse topography of Republic of Korea. Herein, we present
an approach for the automated detection of forest fire damage using Sentinel-2 images of 14 areas
affected by forest fires in Republic of Korea during 2019–2023. The detection performance of deep
learning (DL), machine learning, and spectral index methods was analyzed, and the optimal model
for detecting forest fire damage was derived. To evaluate the independent performance of the models,
two different burned areas exhibiting distinct characteristics were selected as test subjects. To increase
the classification accuracy, tests were conducted on various combinations of input channels in DL.
The combination of false-color RNG (B4, B8, and B3) images was optimal for detecting forest fire
damage. Consequently, among the DL models, the HRNet model achieved excellent results for both
test regions with intersection over union scores of 89.40 and 82.49, confirming that the proposed
method is applicable for detecting forest fires in diverse Korean landscapes. Thus, suitable mitigation
measures can be promptly designed based on the rapid analysis of damaged areas.

Keywords: forest fire detection; satellite imagery; deep learning; model performance

1. Introduction

Forest fires, which damage both life and property in forests or their surrounding areas,
are caused by various factors such as topographical and weather conditions and human
negligence. In Republic of Korea, forest fires occur suddenly during the dry season from
March to May, when the humidity is low [1]. According to the Korean Forest Service
(https://www.forest.go.kr/ (accessed on 24 January 2024)), an average of 537 forest fires
have occurred per year in the past decade, damaging 3560 ha of area. In 2022, 756 forest
fires occurred, resulting in 24,797 ha of burned area. Specifically, a considerably large
forest fire occurred in March 2022 in Uljin and Samcheok, lasting 10 days; it resulted in
the spread of several domestic forest fires, affecting approximately 20,923 ha [2]. From
a national perspective, forest fires are large-scale disasters that demand a substantial
amount of human resources and time to mitigate the damage caused. Anthropogenic
forest fires, which account for most forest fire incidents in Republic of Korea, are even
more challenging to tackle quickly because their occurrence cannot be predicted as easily
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as natural forest fires [3]. The Korean Forest Service categorizes forest fire management
into three stages: prevention, suppression, and post-suppression [4]. Local governments
are making major efforts to prevent forest fires, although completely preventing their
occurrence is challenging through proactive prevention measures alone. Therefore, research
on efficiently detecting burned areas is necessary to establish a prompt and accurate
response system for assessing the extent and magnitude of forest fire damage [5].

Previous studies have detected forest fire damage using satellite imagery that can help
to periodically survey extensive areas [6–10]. These studies have emphasized the impor-
tance of satellite imagery owing to its potential for application in environmental monitoring
and natural disaster management, as well as its advantage in enhancing preparedness in
situations when predicting the time and location of forest fires is difficult [11]. In satellite
optical images, the reflectance properties of burned and intact forests are contrasting [12,13];
particularly, burned forests exhibit low reflectance values in the near-infrared (NIR) range
and high reflectance values in the short-wavelength infrared (SWIR) range, whereas intact
forests exhibit low reflectance values in the red range and high reflectance values in the
NIR range [14]. Based on these characteristics, spectral indices (SI), such as the normalized
difference vegetation index (NDVI), burn area index, char soil index, and normalized burn
ratio (NBR), have been developed to effectively detect burned areas [15–18]. Additionally,
studies have been conducted using the difference scheme to emphasize the contrast be-
tween areas before and after forest fires [19–22]. Escuin et al. [23] presented noteworthy
findings for evaluating the severity of burned areas using NDVI, NBR, and their differenced
indices—dNDVI and dNBR. Particularly, the use of differential imaging has been effective
in distinguishing between burned and unburned areas, whereas single-temporal indices
have demonstrated superior performance in assessing severe damage caused by forest fires.
Furthermore, Smiraglia et al. [24] effectively identified forest fire areas by analyzing dNBR,
dNBR2, and dNDVI.

The estimation index developed based on the spectral characteristics of optical images
is highly effective in measuring forest fire damage. However, its performance may vary de-
pending on the fire severity, land cover (LC) type, and regional characteristics [25]. Recently,
the use of machine learning (ML) and deep learning (DL) techniques has been emphasized
to accurately detect forest fire damage. Specifically, research incorporating DL has proven
to be effective in detecting burned forests and is being rapidly developed [26–29]. Hu
et al. [30] evaluated the performance of nine ML and DL models in a large-scale forest
fire area. DL models generally showed higher performance, but when spatial contextual
information was lacking, ML methods yielded better results. A previous study [31] demon-
strated that utilizing high-resolution Planet Scope images, particularly in the NIR band,
based on the U-Net architecture was most suitable for detecting burned forests in 12 forest
fire regions in Republic of Korea. Furthermore, various combinations of input variables,
including RGB images, have been considered to improve the performance of burned area
detection using DL and ML methods [32–35]. Knopp et al. [36] analyzed Sentinel-2 images
using random forest and U-Net models and determined that a five-band combination (red,
green, blue, NIR, and SWIR) is optimal as the input channel. Lee et al. [37] confirmed that
in U-Net analysis, the addition of dNDVI and dNBR to all bands as input combinations
in the pre- and post-periods resulted in the best performance for two burned areas in
Republic of Korea. Tonbul et al. [38] demonstrated the higher performance of a method that
incorporated NBR, dNBR, and NDVI SI into DL with ML models, compared to a method
that used only spectral bands. This report suggested the effectiveness of utilizing indices
based on spectral bands for burned area detection.

Previous studies have generally shown insufficient consideration of the variability in
terrain characteristics and LC types depending on the location of forest fires. Consequently,
these limitations have posed challenges in accurately assessing the extent of fire damage
in affected areas. Therefore, the aim of this study was to propose effective methods for
rapidly and accurately assessing the extent of fire damage in Republic of Korea by selecting
optimized input images and models tailored to its complex and variable terrain and LC
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types. Our study specifically targeted the automatic detection of burned areas resulting
from 14 recent forest fires. We analyzed burned area performance detection when utilizing
DL models (U-Net and HRNet), ML (AutoML), and spectral indices (NDVI and NBR).
Specifically, we investigated the impact of different input images with a particular emphasis
on DL models, exploring two plans and three combinations. Additionally, we conducted
a comparative analysis based on LC to evaluate detection performance in the complex
terrain of Republic of Korea. Following this process, we identified the optimal burned
area detection input images and models tailored to Republic of Korea’s geographical
characteristics, with the overarching goal of proposing efficient methods for assessing the
damage caused by forest fires.

2. Study Area and Data
2.1. Study Area

Fourteen forest fire incidents that occurred in Republic of Korea over the past 5 years
(2019–2023) and covered 210 ha or more area were selected for analysis (Figure 1). Over
67% of the land in Republic of Korea is covered by forests and is vulnerable to fires.
Approximately 60% of forest fires occur during the dry spring, when precipitation is
low [39]. Furthermore, forest fires in Republic of Korea are more likely to be caused
by anthropogenic factors, such as the burning of agricultural fields and accidental fires
caused by human negligence, rather than natural causes. These fires pose a major threat
in densely populated urban areas, causing substantial damage [2,40]. The 14 forest fires
analyzed in this study occurred in various regions throughout Korea, with their locations
encompassing various LCs such as urban areas, barren lands, and water bodies, in addition
to forests. The Ministry of Environment, Republic of Korea (ME) classifies LC into seven
major categories: urban areas, croplands, forests, grasslands, wetlands, barren lands, and
waterbodies, providing this classification annually (Figure S1).
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Table 1. Characteristics of the forest fires in Republic of Korea and Sentinel-2 images used for training and validation.

Year Area Location Event Date End Date Burned Area
(ha) Image Date Image Size

(Pixels) Dataset

2023

A Nangok-dong, Gangneung-si, and
Gangwon-do 11 April 11 April 379 12 April, 19 April, and 27 April 403 × 327

Training/
Validation

B Daedong-myeon, Hampyeong-gun, and
Jeollanam-do 3 April 4 April 475 22 April, 27 April, and 2 May 357 × 426

C Boksang-myeon, Geumsan-gun, and
Chungcheongnam-do 2 April 4 April 889.36 9 April, 12 April, and 22 April 548 × 392

D Seobu-myeon, Hongseong-gun, and
Chungcheongnam-do 2 April 4 April 1454 12 April, 22 April, and 27 April 788 × 695

E Pyeongeun-myeon, Yeongju-si, and
Gyeongsangbuk-do 3 April 3 April 210 7 April, 17 April, and 19 April 322 × 272

2022

F Bubuk-myeon, Miryang-si, and
Gyeongsangnam-do 31 May 3 June 763 3 June and 18 June 331 × 694

G Uiheung-myeon, Gunwi-gun, and Daegu
Metropolitan City 10 April 12 April 347 19 April, 24 April, and 4 May 605 × 475

H Yulgok-myeon, Hapcheon-gun, and
Gyeongsangnam-do 28 February 1 March 675 3 March, 15 March, and 4 April 602 × 430

I Buk-myeon, Uljin-gun, and
Gyeongsangbuk-do 4 March 13 March 20,923 15 March, 4 April, and 9 April 1814 × 1968

J Seongsan-myeon, Gangneung-si, and
Gangwon-do 4 March 5 March 4000 4 April, 9 April, and 24 April 1214 × 909

K Yanggu-eup, Yanggu-gun, and Gangwon-do 10 April 12 April 759 17 April and 17 May 485 × 573

2020 L Pungcheon-myeon, Andong-si, and
Gyeongsangbuk-do 24 April 26 April 1944 29 April, 12 May, 29 May, 1 June,

6 June, and 8 June 1204 × 798

2019
M Okgye-myeon, Gangneung-si, and

Gangwon-do 4 April 5 April 1260 20 April 771 × 573
Test

N Toseong-myeon, Goseong-gun, and
Gangwon-do 4 April 5 April 1227 20 April 1056 × 693
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Previous studies achieved optimal results when performing ML and DL analyses by
dividing the dataset into training, validation, and test sets at various ratios, such as 8:1:1
or 6:2:2 [28,36]. However, with this approach, it is difficult to assess burned area detection
performance objectively because images from the same area as the training dataset can also
be used in the test. Therefore, in this study, the datasets used for ML and DL were analyzed
by dividing 12 of the 14 areas mentioned in Table 1 in an 8:2 ratio. Furthermore, to conduct
an independent performance analysis of the forest fire detection model, fires that occurred
in Areas M and N in 2019 were selected as Test Areas. The forest fire that occurred in Area
M exhibited relatively dense burned regions, but Area N showed a dispersed burn pattern
reflecting intermixed urban areas. Therefore, these areas were selected as suitable test sites
for the burned area detection model for Republic of Korea. The characteristics of the forest
fire-affected areas used in the study are listed in Table 1.

2.2. Sentinel-2 Multispectral Instrument

Images from the multispectral instrument (MSI) on board the Sentinel-2 satellite
were utilized for this research. These images are openly provided by the European Space
Agency (ESA, https://scihub.copernicus.eu/ (accessed on 6 June 2023)), which operates
two satellites, Sentinel-2A and B, each with a temporal resolution of 10 days. If data from
both satellites are used, the revisit period is shortened to 5 days. Sentinel-2 consists of
13 spectral bands with spatial resolutions ranging from 10 to 60 m, covering visible, NIR,
and SWIR regions [41]. The information on the spectral bands used in the study is provided
in Table 2. In Republic of Korea, the changes in the four seasons are distinct, leading
to rapid transformations in the surrounding forests. Therefore, to conduct an accurate
analysis, 39 level-1C images were obtained (Table 1) by referencing the event start and
finish dates and focusing on images with a cloud cover of 10% or less.

Table 2. Sentinel-2 spectral band information used in this study.

Band Central Wavelength Resolution

Band2–Blue 0.490 µm

10 m
Band3–Green 0.560 µm
Band4–Red 0.665 µm
Band8–NIR 0.842 µm

Band11–SWIR1 1.610 µm
20 mBand12–SWIR2 2.190 µm

NIR, near infrared; SWIR, short-wavelength infrared.

3. Methodology

The research flow chart is depicted in Figure 2. The following steps were undertaken:

(1) Satellite image preprocessing: preprocess images to correct atmospheric disturbances
in Sentinel-2 satellite images and improve clarity.

(2) Generation of ground truth (GT) data: manually label forest fire-affected areas within
the imagery for training and validation.

(3) Creation of method-specific datasets: tailor datasets for different detection methods
(DL, ML, and SI) by extracting relevant features and integrating GT data.

(4) Environment configuration and hyperparameter optimization: set up computational
resources and fine-tune algorithm parameters for optimal performance.

(5) Evaluation of detection results: assess algorithm performance using accuracy assess-
ment techniques and compare with GT data.

(6) Analysis of forest fire damage in relation to LC types: analyze the detected forest fire
damage areas in the context of different LC types, such as forests and grass.

https://scihub.copernicus.eu/
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3.1. Data Preparation
3.1.1. Sentinel-2 Image Preprocessing

To detect forest fire areas, the following preprocessing steps were performed.

1. Level-1C images with top of atmosphere (TOA) reflectance values were atmospheri-
cally corrected using Sen2cor to derive level-2A surface reflectance with bottom of
atmosphere (BOA) reflectance values [42].

2. To align the spatial resolution of the Sentinel-2 image with that of the band, an up-
sampling process was performed. The nearest neighbor interpolation method was
applied to resample the SWIR (B11 and B12) data with a spatial resolution of 20–10 m.

3. A subset of equal size was obtained through the area of intersection, utilizing the
geographical coordinates from the areas where forest fires occurred.

4. The image was reconstructed using histogram equalization to emphasize the contrast
and make it easier to distinguish burned woodland and intact forest areas. Linear
stretching was applied to expand the contrast of the histogram, resulting in values
between 2% and 98%.

5. Min–max normalization was applied because the distribution of reflectance values
varies among different bands. The reflectance values were rescaled to a range of 0–255
using the minimum and maximum values of each band.

3.1.2. Generation of Ground Truth

GT data are crucial for evaluating the accuracy of detection algorithms. To generate
the GT dataset for analyzing forest fire regions, pre-processed Sentinel-2 images along
with Google Earth images were utilized. The labeling process was conducted manually
by directly inspecting and labeling the areas using the Labkit tool within ImageJ Fiji Java
8. Unburned areas were designated as 0 and burned areas as 1. Using the semi-automatic
labeling capability of the Labkit tool, which partially relies on user perception [43], the la-
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beling process was completed. Subsequently, the acquired Sentinel-2 images were analyzed
to identify regions affected by fire.

3.2. Deep Learning Approaches

This study compared various combinations of input channels to detect burned areas
caused by forest fires, including natural-color RGB (B4, B3, and B2) and false-color RNG
(B4, B8, and B3) images. False-color images are particularly useful for identifying forest
fire damage. Previous studies have evaluated the feasibility of DL-based models for
burn area segmentation in some localities testing band combinations for suitability [36,44].
Furthermore, the results obtained by applying indices were analyzed to distinguish burned
forests according to the input channel. The combinations of spectral bands and indices
analyzed in the study are listed in Table 3. Two analysis plans were established: Plan 1
included three combinations of individual spectral bands from MSI, and Plan 2 included
additional SI (NDVI and NBR). The addition of SI to the input channels in Plan 2 was aimed
to improve burn area detection while still maintaining the optimal input combination
for DL.

Table 3. Plan and input parameter combinations for deep learning forest fire detection.

Plan Combination Input Channel Composition

P1
C1 B4, B3, and B2
C2 B4, B8, and B3
C3 B2, B3, B4, B8, B11, and B12

P2
(NDVI and NBR)

C1 B4, B3, B2 + NDVI, and NBR
C2 B4, B8, B3 + NDVI, and NBR
C3 B2, B3, B4, B8, B11, B12 + NDVI, and NBR

NDVI, normalized difference vegetation index; NBR, normalized burn ratio.

3.2.1. U-Net Model

Ronneberger et al. [45] proposed U-Net, a DL model with a network structure that
resembles the letter U, hence the name. The model has been used in various research
fields, including satellite image segmentation and medical image analysis. It shows good
performance in these applications using a small amount of training data. The U-Net ar-
chitecture primarily involves the fusion of low-resolution features into high-resolution
features through up-sampling while utilizing skip connections to transmit information
from the encoder to the decoder. Consequently, the model can effectively preserve the
characteristics and high-resolution information of important objects and perform segmenta-
tion tasks efficiently. In this study, three different backbones were considered for the UNet
model: VGGNet, ResNet, and S5-D16. Among them, S5-D16 exhibited the most superior
performance and was thus chosen as the backbone for the UNet model. Consequently, an
analysis of the U-Net model using S5-D16 as the backbone was conducted.

3.2.2. HRNet Model

The HRNet model constructs its network by gradually including multi-scale feature
fusions, considering both high-resolution and low-resolution features simultaneously. This
model can effectively manage various sizes and comprehensive information of objects [46].
The HRNet modification HRNetV2 is a network architecture designed to improve the
performance of segmentation in high-resolution images. This network can maintain the
original high resolution while simultaneously preserving the characteristics of various
resolutions during the computation process [47]. An extension of HRNetV2 that incor-
porates an object-contextual representations (OCR) mechanism, named HRNetV2+OCR,
was proposed [48]. This extension enhances the segmentation of each pixel by actively
utilizing contextual information from neighboring pixels and objects, resulting in more
accurate object segmentation. In this study, the HRNetV2+OCR model was utilized using
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HRNetV2-W48 as the backbone. Here, “W” represents the width of the network; the larger
the number, the deeper the network and the greater the number of parameters.

3.2.3. Deep Learning Environment

For DL analysis, a dataset was constructed by selecting only the patches from the
built GT data that exhibited burned areas. To boost the training data size, augmentation
techniques such as random flip, random rotate, grid distortion, brightness contrast, and
gaussian blur were applied to the training dataset using the Python Albumentations library.
The DL models used in this study were subjected to iterative experimentation to tune
their hyperparameters, resulting in optimal performance for each model. Each model
was trained for 40,000 iterations, and the performance of the test dataset was evaluated
using the checkpoint of the best-performing model. A crop size of 256 × 256 pixels was
chosen as it yielded the best results among the three sizes tested (128, 256, and 512 pixels).
The batch size and learning rate of the two models were determined through iterative
experimentation. The hyperparameters of the DL model used in the study are listed in
Table 4. They were derived from optimal values based on repeated experiments, and these
settings are an important component of the DL model.

Table 4. Hyperparameters used in the DL model for detecting forest fire-damaged areas.

Model U-Net HRNet

Backbone Network S5-D16 HRNetV2-W48
Input Image Size 256 × 256 pixels

Loss Function Binary Cross Entropy
Optimizer AdamW
Batch Size 8 4

Learning Rate 5 × 10−6 5 × 10−3

Output Probability Map

3.3. Machine Learning Approaches
3.3.1. AutoML Model

AutoML can automate the process of applying ML to increase productivity and
efficiency [49,50]. It improves the performance accuracy through automatic parameter
optimization for various artificial intelligence models, such as random forest, support
vector machine, and gradient boosting machine, and then assembles the top N models as a
best-performing model. Moreover, this technique minimizes the involvement of the model
developer in the process, from data preprocessing to algorithm selection and tuning.

3.3.2. Machine Learning Environment

For ML analysis, ArcGIS Pro v2.9.0 was used to extract spectral band values and GT
data for each point based on the coordinates of satellite imagery (in geo-tiff format) for
each region. Random data sampling was performed to address the imbalance between the
burned and unburned areas, with a ratio of approximately 1:10. Subsequently, an AutoML
analysis was conducted using the open-source, low-code-based ML library PyCaret in
Python. This involved binary classification, 10-fold cross-validation, and grid search for
hyperparameter optimization. Consequently, the optimal ML model for each input image
was constructed.

3.4. Spectral Indices-Based Approaches

NDVI and NBR indices were applied to analyze the SI-based data. In the SI analysis,
the threshold can be set based on the user’s visual judgment. However, to analyze the
automatic burned area detection performance, the thresholding technique proposed by
Otsu [51] was employed. The Otsu algorithm divides pixels into two classes using a user-
defined threshold value, t; iteratively calculates the contrast distributions of the two classes;
and selects the optimal threshold value, t, which maximizes the uniformity of the contrast



Remote Sens. 2024, 16, 884 9 of 19

distributions for each class (Equation (1)). Through this process, a binary comparison was
performed between the burned and unburned areas.

σ2
B(t) = w0(t) · w1(t) · [µ0(t)− µ1(t)]

2 (1)

The interclass average is the probability that pixels µ0 and µ1 belong to classes w0 and
w1, respectively.

3.4.1. Normalized Difference Vegetation Index (NDVI)

Tucker [15] developed NDVI as an index that capitalizes on a striking difference
in reflectance of plants between the NIR and red wavelengths. In plants, reflectance in
the NIR band is high, whereas that in the red region is relatively low. The NDVI value
obtained through Equation (2) varies from −1 to 1. NDVI may be used to assess vegetation
characteristics. It is utilized not only for forest monitoring, soil moisture analysis, and LC
change detection, but also for monitoring natural disasters, such as forest fires and dust
storms.

NDVI =
NIR–Red

NIR + Red
(2)

3.4.2. Normalized Burn Ratio

García and Caselles [18] developed NBR, which utilizes the difference in reflectance
between NIR and SWIR to detect damage caused by forest fires. The calculating formula
for NBR is similar to that for NDVI. Unaffected forests that have not experienced forest
fires exhibit high NIR reflectance, whereas burned forests have high reflectance values in
the SWIR band. Thus, a high NBR value indicates undamaged forest areas, while a low
value indicates recently burned areas and resembles bare ground. Generally, in areas that
have not been burned, the NBR value tends to be close to zero. This study applied the B12
band, which showed high performance in previous research, to calculate the NBR index
(Equation (3)) using two SWIR bands in Sentinel-2 images [52].

NBR =
NIR–SWIR

NIR + SWIR
(3)

3.4.3. Spectral Indices Analysis

When analyzing NDVI and NBR, images are collected before and after the occurrence
of a forest fire, and subsequently, the difference is calculated to determine the extent of
the burned forest. However, in this study, we used the LCs provided by the National
Geographic Information Institute to compare the performance of a single-temporal au-
tomated analysis. Initially, a forest-masking shapefile was constructed for the whole of
Republic of Korea. Subsequently, a code was implemented using the Geospatial Data
Abstraction Library [53] to clip the forest area based on the footprint of the input satellite
image, resulting in a forest-masking shapefile. This shapefile was used to exclude water
bodies and urban areas from our analysis as they exhibit low reflectance similar to burned
areas. Finally, an exponential analysis was performed using the Otsu algorithm, and this
process was implemented with a Python-based automated framework.

3.5. Accuracy Evaluation

The performance of the forest fire area detection model was evaluated using a confu-
sion matrix, which represents the relationship between the model’s predicted results and
actual values. Model performance was evaluated using accuracy (Equation (4)), precision
(Equation (5)), recall (Equation (6)), F1-score (Equation (7)), and intersection over union
(IoU, Equation (8)) based on the derived true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) forest fire pixels detected by the model. These indices can be
used to evaluate the predictive ability of the model and assist in interpreting the results. Ac-
curacy indicates the overall prediction accuracy, whereas precision and recall measure how
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accurately the model predicted and how well it detected the actual case. The F1-score is
applied to evaluate the overall performance of a model by considering the balance between
precision and recall. IoU is used to evaluate model accuracy by measuring the overlap
of predicted and actual regions in object detection or segmentation. These evaluation
metrics were used to assess the performance of the forest fire damage detection model;
additionally, the strengths and weaknesses of the model were determined to provide future
improvement directions.

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 − score = 2 × Precision × Recall
Precision + Recall

(7)

IoU =
Intersection

Union
(8)

4. Results
4.1. Input Image Combination for Deep Learning Models

Table 5 lists the quantitative results of U-Net and HRNet. The results were averaged
for Test Areas M and N (Figure 1) to provide an overall performance comparison for each
model and combination. The quantitative analysis results, obtained by applying various
combinations of input variables, differed slightly in the application results of C2 and C3
between the models. When C1 was applied, it showed the worst performance across all
models. Across DL models, U-Net exhibited superior performance with an IoU of 85.61
and 85.76% in the P1-C2 and P2-C3 datasets, respectively. However, HRNet achieved the
best result with an IoU of 85.95 for P1-C2. Both DL models demonstrated the poorest
performance when applied to P1-C1.

Table 5. DL model performance depending on input image combination.

Model Plan Combination IoU (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%) Inference
Time (s)

U-Net

P1

C1 77.04 95.48 92.63 81.90 85.08 9.31

C2 85.61 96.75 89.50 94.91 91.78 9.42

C3 83.96 96.58 93.82 88.18 90.73 10.02

P2

C1 76.66 95.41 93.38 80.53 84.94 9.39

C2 85.76 96.95 93.25 90.67 91.90 9.30

C3 85.88 96.92 92.55 91.45 91.98 9.73

HRNet

P1

C1 74.63 94.89 90.35 79.93 83.01 6.50

C2 85.95 96.92 90.42 93.78 91.99 5.40

C3 81.74 95.93 91.06 87.64 89.24 6.11

P2

C1 78.01 95.70 90.98 82.94 85.73 5.96

C2 83.96 96.22 87.93 94.51 90.65 6.04

C3 84.05 96.46 89.57 91.93 90.69 6.11

A comparison of the quantitative results of each plan revealed no significant differ-
ences overall. Figure 3 demonstrates that effective segmentation was achieved in dense
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forest fire areas. However, from a qualitative perspective, anomalies were detected in
buildings, agricultural areas, and other mixed areas in urban and suburban regions. From
the perspective of input images, C1 exhibited low results in the input images, similar to
quantitative values. This was interpreted as a result of subtle differences in pixel values in
urban areas in the C1 image, whereas burned forests and other areas were clearly distin-
guished in images that included spectral bands beyond the visible spectra, such as NIR
and SWIR. From the perspectives of P1 and P2, the final outcomes were compared when a
single time point SI was used and not used. Unexpectedly, C2 images outperformed the
others in cases excluding the index, implying that even with only false-color three-band
imagery, the effective detection of burned areas can be achieved. Therefore, even in the
absence of the SWIR band in optical satellites, it will be possible to apply this approach to
different environments in the future.
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4.2. Comparison of the Model Results in Test Study Areas

The analysis of each combination of P1 and P2 in Section 4.1 was performed by
applying P1-C2, which showed the best performance. The quantitative accuracies of DL
and ML model analyses and SI-based methods, such as NDVI and NBR, are presented
in Table 6, for study Areas M and N, respectively. In Area M, NDVI exhibited the lowest
accuracy with an IoU of 61.50%, although it showed high accuracy in all other methods.
However, in the detection of burned areas in the imbalanced data of Area N, the DL method
demonstrated significantly superior performance compared to the ML and SI methods.
This highlights the DL method’s ability to exhibit superior classification performance even
in scenarios where the data are imbalanced. By applying AutoML in the ML methods,
wherein several ML models were automatically evaluated and selected, light gradient
boosting machine was selected as the algorithm with the highest performance. In the SI-
based approach, NBR demonstrated superior performance compared to NDVI. Therefore,
NBR can be effectively utilized for detecting forest fire damage when classifying burned
forests instead of or in addition to NDVI.
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Table 6. Quantitative performance of each forest fire detection analysis model in Test Areas M and N.
Accuracy evaluation of each model (%).

Test Area Evaluation U-Net HRNet AutoML NDVI NBR

M

IoU 89.11 89.40 75.58 61.50 72.98
Accuracy 96.58 96.62 95.46 90.65 94.44
Precision 93.94 93.37 92.80 85.31 83.04

Recall 94.26 95.25 80.29 85.31 85.76
F1-score 94.10 94.27 86.09 76.16 84.38

N

IoU 82.10 82.49 63.24 42.03 49.76
Accuracy 96.91 97.21 96.97 91.18 93.80
Precision 89.46 87.46 77.48 43.27 52.72

Recall 85.05 92.30 76.20 93.62 89.86
F1-score 95.55 89.70 76.20 59.18 66.45

In a comparison of the IoU value of DL models, HRNet exhibited higher values for
both study areas. However, when comparing the F1-score, which is a metric for evaluating
the model performance on imbalanced datasets, U-Net showed a performance of 95.55%
in Area N, whereas HRNet showed a performance of 89.70%. This finding shows that
U-Net can effectively overcome imbalanced conditions in complex geographical settings.
However, as shown in Figures 4 and 5, U-Net exhibited a tendency to incorrectly classify
glass as forest, demonstrating the model’s limitations. Thus, there is a need for future
improvements and enhancements. The lower performance of HRNet can be attributed
to its tendency towards underestimates in certain areas. Therefore, this issue needs to be
identified, and measures should be implemented to address it.
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4.3. Analysis Considering Land Cover

Based on the analysis of Sentinel-2 imagery, we conducted a spatial overlay analysis
utilizing LCs to estimate the fire-damaged area by LC type in a wildfire-affected region
(Figure 6). The estimated fire-damaged area by LC type revealed that forests constitute the
majority of the damaged area. Furthermore, through detailed analysis, we confirmed the
presence of fire risk in not only forests but also other LC types, such as grass and barren
areas, which are not typically associated with crops or logging. In Area M, the overall de-
tection performance was satisfactory, but AutoML exhibited some false detections in water
areas (0.70%). When analyzing Area N, although U-Net showed effective performance in
detecting burned areas, it displayed high false detection rates in water (1.29%) and crop
(5.81%) areas based on LC analysis. These results suggest that the model’s performance
may vary across different LC types. In contrast, HRNet showed lower detection rates
in urban areas (0.42%) and water bodies (0.34%), which are less susceptible to wildfire
damage, whereas forests (88.29%) dominated the damaged area, indicating its suitability
for wildfire damage detection. In the case of AutoML, relatively high false positive rates
occurred in urban (1.43%), crop (8.12%), and water (0.78%) areas (Table 7).

Table 7. Forest fire damage estimation for each LC type in the Test Area (%).

LC Type
Area M Area N

GT U-Net HRNet AutoML GT U-Net HRNet AutoML

Urban 0.05 0.10 0.07 0.15 0.22 0.46 0.42 1.43
Crop 0.11 0.16 0.16 1.14 0.72 5.81 2.75 8.12
Forest 89.12 93.93 90.40 91.66 94.12 85.77 88.29 83.35
Grass 7.32 3.40 6.48 3.11 3.88 5.12 5.10 4.96

Wetland 0.03 0.04 0.03 0.39 0.01 0.79 0.33 0.47
Barren 3.37 2.38 2.87 2.87 1.04 0.76 2.75 0.90
Water 0.00 0.00 0.00 0.70 0.00 1.29 0.34 0.78
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It is essential to emphasize the significance of LC analysis results. Accurate identifica-
tion of wildfire damage relies on LC analysis, enabling us to identify damaged areas across
diverse terrains and LC types. Additionally, further research is needed to enhance model
performance through improved data preprocessing and parameter tuning. Furthermore,
in-depth analysis of LC types with lower detection rates is warranted to refine wildfire
damage detection strategies.

5. Discussion

In this study, we evaluated different spectral bands and indices as well as ML and
DL algorithms for automated burned area detection using Sentinel-2 single-temporal
satellite imagery. Our results were comparable with those of previous studies on DL input
channels [37,38], and it was confirmed that even when single-temporal images were used,
high detection performance can be achieved if a high-quality dataset is available. However,
the application of SI to a single image to represent forest fire damage showed a relatively
low improvement in accuracy. The accuracy was improved by including data reflecting
the spatiotemporal characteristics before and after forest fire damage, enabling the more
accurate detection of vegetation changes.

Comparable levels of accuracy were achieved when imagery from very high-resolution
(VHR) satellites was used in DL models [31]. Our results indicate that DL models can
extract effective information about forest fires, even from relatively low-resolution imagery.
However, Sentinel-2 imagery has limitations in the timing of image acquisition compared
to VHR imagery, and it is affected by sunlight and clouds. Therefore, to overcome the
limitations of Sentinel-2, future research should focus on input data preparation and
fusion with other imagery platforms, such as the Sentinel-1 satellite, which collects images
regardless of whether it is day or night.

To compare DL and ML models with SI NDVI and NBR analyses, the detection of
burned areas was automated using single-temporal satellite imagery, LCs, and the Otsu
algorithm. U-Net and HRNet have their own characteristics and strengths, notably their
effectiveness even with limited datasets [27]. U-Net is based on a simple encoder–decoder
structure, making it quick to train and easy to interpret [45]. In contrast, HRNet is valuable
for effectively learning multi-scale features in high-resolution images [47]. Strategies
such as data augmentation can be employed to overcome the challenges of training on
small datasets, thereby improving the generalization performance of the models. Model
selection depends on the nature of the problem and the characteristics of the data; therefore,
further analysis comparing these models with state-of-the-art approaches is necessary.
Additionally, it is important to recognize the limitations of U-Net and HRNet and explore
new research directions to overcome them. For example, developing more efficient learning
algorithms and evaluating performance in various application domains can deepen our
understanding of different aspects of the models. However, applying the Otsu algorithm to
noisy images may pose difficulties for SI-based technology [30]. Specifically, many regions
in South Korea comprise a mixture of urban and other areas. While the ME produces LC
data using high-resolution images, the long production period and update cycle limit the
utility of SI-based technology [54,55]. This study found that these factors were primary
contributors to the occurrence of noise when applying the Otsu algorithm. Therefore, with
the advancement of research related to the ongoing generation of LC data, more accurate
analysis could be performed when reference datasets with shorter update cycles are utilized.
This advancement is expected to greatly improve the accuracy of burned area detection
technology.

In this study, we compared the independent test results of Areas M and N, which
exhibit different LC distribution patterns. In the relatively dense burned area of Area
M, all methods demonstrated high performance. However, in Area N, the detection
performance was reduced owing to the mixed terrain comprising urban and forest areas.
The findings are similar to those of a previous study [37]. Knopp et al. [36] also reported that
misclassification occurs in specific LC types, such as dark coastal areas, agricultural lands,
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and volcanic rocks, which appear as burned areas. These difficulties indicate challenges
in detecting burned forests in complex terrains. Republic of Korea possesses diverse
topographical features, necessitating the exploration of new methods suitable for these
varied environments in future research. For instance, DL input channels that consider the
characteristics of forests can be introduced by utilizing topographical information from
digital elevation models. This can enhance the accuracy of forest fire damage detection
in complex terrain environments. Our study findings can assist in developing suitable
mitigation plans for forest fires.

Forest fires in Republic of Korea are often extremely small compared to those in other
parts of the world, and analyzing them is an important challenge, especially in areas with
mixed urban and forest LCs. Therefore, the evaluation of DL model performance using
combined Sentinel-2 and VHR satellite imagery data in mixed urban–forest areas is crucial.
While VHR satellite imagery has high spatiotemporal resolutions, it mostly focuses on high
spatial resolution and covers only four bands (B, G, R, and NIR) [56]. Considering these
characteristics, in future research, we plan to apply the RNG imagery that demonstrated
excellent performance in VHR imagery and compare it with the method proposed in this
study. With this approach, we expect that the forest fire detection model can be further
improved and tuned to the terrains and environments of Republic of Korea. Our current
and future research will contribute to the effective development of applied models for
domestic forest fire management and prevention.

It is important to note that the current analysis was limited to a binary classification of
burned and unburned areas, and accurate analysis beyond this is challenging. A recent
study attempted to label the severity level of fires to enable research based on DL [57]. This
approach could enable more accurate assessment of fire damage severity. Therefore, future
research should focus on analyzing and developing models considering the severity levels
of fires.

6. Conclusions

In this study, we compared and analyzed the performance of five automated burned
area detection methods using single-temporal Sentinel-2 satellite imagery of 14 forest
fire areas in Republic of Korea. To evaluate the performance of each model, two separate
burned areas were selected as test regions. Furthermore, to develop an optimal combination
of input variables, a comparative analysis was conducted by applying two plans and
three combinations. The DL method exhibited the highest accuracy compared to the
other methods. U-Net was capable of perceiving intricate patterns or features, and this is
especially beneficial for dealing with imbalanced datasets. However, it exhibited a tendency
to misclassify agricultural lands as forested areas. In contrast, HRNet demonstrated the
highest accuracy in both qualitative and quantitative analyses. HRNet effectively detected
and distinguished forest fire damage with high accuracy in the two contrast test regions,
thereby confirming its stability in various terrains and conditions and its ability to rapidly
identify forest fire damage.
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//www.mdpi.com/article/10.3390/rs16050884/s1, Figure S1: Test area LC map. (a) Area M and
(b) Area N; Figure S2: U-Net and HRNet performance graph according to input image combination.
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