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Abstract: Mapping and quantification of forest biomass change are key for forest management and
for forests’ contribution to the global carbon budget. We explored the potential of covering this
with repeated acquisitions with TanDEM-X. We used an eight-year period in a Tanzanian miombo
woodland as a test case, having repeated TanDEM-X elevation data for this period and repeated field
inventory data. We also investigated the use of GEDI space–LiDAR footprint AGB estimates as an
alternative to field inventory. The map of TanDEM-X elevation change appeared to be an accurate
representation of the geography of forest biomass change. The relationship between TanDEM-X phase
height and above-ground biomass (AGB) could be represented as a straight line passing through
the origin, and this relationship was the same at both the beginning and end of the period. We
obtained a similar relationship when we replaced field plot data with the GEDI data. In conclusion,
temporal change in miombo woodland biomass is closely related to change in InSAR elevation, and
this enabled both an accurate mapping and quantification wall to wall within 5–10% error margins.
The combination of TanDEM-X and GEDI may have a near-global potential for estimation of temporal
change in forest biomass.

Keywords: InSAR; DEM; temporal change; forest; biomass

1. Introduction

Forest generates a suite of ecosystem services, including wood production and carbon
storage. Monitoring growing stock and above-ground biomass (AGB) is valuable for a range
of purposes such as forest management and global carbon accounting and carbon cycle
modeling [1]. Deforestation and forest degradation in the tropics contribute considerable
fractions of anthropogenic greenhouse gas emissions [2], and performance-based payment
is one way to reduce this problem and requires forest monitoring data at large scale [3].

Satellite remote sensing can provide data at large scale for forest monitoring. Defor-
estation areas can be mapped with optical and SAR sensors, and associated forest carbon
losses can be estimated by combining this with carbon density data for the given type
of forest [4–6]. These methods can have limitations and discrepancies [7,8]. Another ap-
proach is to use satellite LiDAR full-waveform footprints of Global Ecosystem Dynamics
Investigation (GEDI) for sampling-based AGB estimation [9].

In this study we employ X-band interferometric SAR (InSAR). TanDEM-X is a satellite
mission that provides single-pass, across-track interferometry, offering sufficiently high
coherence to enable extraction of accurate phase height in forest. With the short wavelength,
we obtain a phase center high up in the forest canopy and thereby a sensitive method for
mapping temporal change in forest canopy height and associated AGB change. The idea is
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that phase height decrease and increase are effects of disturbance and growth, respectively,
and that the corresponding change in AGB can be estimated with a conversion factor from
phase height to AGB.

The capability of this approach has not been fully demonstrated yet; however, it is
timely now because a second, global elevation model based on TanDEM-X is underway
which, in combination with the former global DEM from 2012, will provide phase height
change, and possibly estimates of forest AGB change, at high resolution globally. The
approach is based on several studies. First, X-band InSAR phase height above ground is
related to forest AGB and other forest attribute data in a reasonably linear way [10–15], and
it has been shown that forest AGB in some cases can be mapped equally as accurately as
with airborne laser scanning [16]. Secondly, studies of change between SRTM and TanDEM-
X elevation models, or between repeated TanDEM-X data, have shown that the phase height
change provides change maps that correspond well with known logging and thinning
areas [15,17], with the spatial distribution of the loss category in global data sets based on
Landsat [4] and with the changes seen in protected and unprotected forest areas [18,19]
and, finally, with change maps based on repeated airborne laser scanning [20]. However,
errors in the SRTM data and differences in wavelength and acquisition geometries have
resulted in uncertainty, low accuracy and bias in estimates of AGB change based on SRTM
and TanDEM-X elevation models [18,20]. Finally, while this approach relies on a stable
relationship between InSAR phase height and AGB, this is not always the case [21]. The
relationship changes considerably between frozen and unfrozen conditions because the
X-band microwaves penetrate deeper down into a frozen forest canopy than an unfrozen
one [22]. We assume also that the penetration rate differs between leaf-on and leaf-off
canopy conditions.

In this study, we intend to explore the full potential of this approach and have novel
elements in place for that. First, we now have TanDEM-X data repeated at two points in
time. Secondly, we have repeated field inventory data with AGB estimates at the same
points in time. The study area is a Tanzanian forest, and such repeated field data are possibly
unique for a tropical forest and valuable both for estimating the conversion factor between
phase height and AGB and for checking that the relationship is stable and comparable
at both points in time. Thirdly, we explore the use of GEDI as an alternative to field
inventory in combination with TanDEM-X in a novel way. There is ongoing research on the
fusion of TanDEM-X and GEDI for estimation of forest height, structure and biomass [23,24];
however, our approach in the present study is complementary to that. The present approach
has prerequisites, which are that the relationship between phase height and AGB is straight
and linear, that it passes through origin and that it is similar at both points in time. The idea
is to derive the conversion factor from a relationship by combining data from TanDEM-X
with the field inventory plots or the GEDI footprints, both having known terrain heights.

AGB = k IHTDX (1)

where k is the conversion factor, IH is the interferometric phase height above ground and
the subscript TDX refers to TanDEM-X. This is used to estimate temporal change of AGB
based on temporal change of elevation H as follows:

∆AGB = k∆HTDX (2)

In addition, we employ a new method for estimating the conversion factor from phase
height to AGB.

The primary objective of this study was to investigate forest biomass change derived
from repeated TanDEM-X elevation data sets, including the accuracy of a change map and a
wall-to-wall estimate. A secondary objective was to investigate whether GEDI footprint AGB
estimates could replace field inventory plots as ground truth and calibration data.
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2. Materials and Methods

We selected a rectangular study area in Liwale in the Lindi region, Tanzania (Figure 1).
The study area was 45 km × 45 km. The area has woodlands of the miombo type with high
trees and shrubs and grasses on the forest floor. It varies between wet and dry vegetation
types, and the dominating tree species are Brachystegia sp., Julbernadia sp. and Pterocarpus
angolensis. The climate typically has four seasons, i.e., a wet period in November–January;
a dry February; a wet period in March–May; and, finally, a dry period in June–October.
Mean annual temperature range is 20–30 ◦C, and annual rainfall range is 600–1000 mm. We
used the spatial reference UTM36S for processing and visualization of the data sets.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 16 
 

 

2. Materials and Methods 
We selected a rectangular study area in Liwale in the Lindi region, Tanzania (Figure 

1). The study area was 45 km × 45 km. The area has woodlands of the miombo type with 
high trees and shrubs and grasses on the forest floor. It varies between wet and dry vege-
tation types, and the dominating tree species are Brachystegia sp., Julbernadia sp. and Pter-
ocarpus angolensis. The climate typically has four seasons, i.e., a wet period in November–
January; a dry February; a wet period in March–May; and, finally, a dry period in June–
October. Mean annual temperature range is 20–30 °C, and annual rainfall range is 600–
1000 mm. We used the spatial reference UTM36S for processing and visualization of the 
data sets. 

 
(a) (b) 

Figure 1. (a) The location of the study area in Tanzania, Africa, and (b) the 45 km × 45 km area with 
NAFORMA field plot clusters and GEDI footprints shown on a background of a hill-shade grayscale 
elevation model of the TanDEM-X global DEM from 2012. The time periods for GEDI in 2019 and 
2020 were as follows: GEDI 1 = 19 December–20 January; GEDI 2 = April–20 May; GEDI 3 = 19 Jan-
uary and 20 July; and GEDI 4 = 19 July. 

2.1. NAFORMA National Forest Inventory Data 
Our first and main reference data set was a subset of the National Forestry Resource 

Monitoring and Assessment Program of Tanzania (NAFORMA) plots. We used this data 
set both to estimate a conversion factor between InSAR height and AGB and to have a 
ground truth for AGB change. This is possibly a unique data set for the tropics as it has 
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years of growth. The plot size was 707 m2. Each plot contained a set of 2, 5, 10 and 15 m 
radius concentric circles where all trees with diameters at breast height (DBHs) exceeding 
1, 5, 10 and 20 cm, respectively, were recorded [26]. A tree was measured if it was taller 
than or equal to 1.35 m and capable of reaching at least 5 m in height. Cactus, palm, bam-
boo and shrubs were not recorded. DBH was measured on each tree, and the measure-
ments at the two points in time corresponded well, having strong correlations (R2 > 0.99). 
Tree height was measured for every fifth tree. For trees without measured height, the 

Figure 1. (a) The location of the study area in Tanzania, Africa, and (b) the 45 km × 45 km area
with NAFORMA field plot clusters and GEDI footprints shown on a background of a hill-shade
grayscale elevation model of the TanDEM-X global DEM from 2012. The time periods for GEDI
in 2019 and 2020 were as follows: GEDI 1 = 19 December–20 January; GEDI 2 = April–20 May;
GEDI 3 = 19 January and 20 July; and GEDI 4 = 19 July.

2.1. NAFORMA National Forest Inventory Data

Our first and main reference data set was a subset of the National Forestry Resource
Monitoring and Assessment Program of Tanzania (NAFORMA) plots. We used this data
set both to estimate a conversion factor between InSAR height and AGB and to have
a ground truth for AGB change. This is possibly a unique data set for the tropics as it
has AGB at two points in time based on field measurements. The data set comprised
11 L-shaped clusters each with 8 plots, totaling 88 plots (Figure 1). The measurements were
carried out in February–June 2012 [25] as part of the national campaign, and they were
repeated in February 2020 as part of the present project. This provided a period of eight
years of growth. The plot size was 707 m2. Each plot contained a set of 2, 5, 10 and 15 m
radius concentric circles where all trees with diameters at breast height (DBHs) exceeding
1, 5, 10 and 20 cm, respectively, were recorded [26]. A tree was measured if it was taller
than or equal to 1.35 m and capable of reaching at least 5 m in height. Cactus, palm, bamboo
and shrubs were not recorded. DBH was measured on each tree, and the measurements
at the two points in time corresponded well, having strong correlations (R2 > 0.99). Tree
height was measured for every fifth tree. For trees without measured height, the height was
predicted using diameter–height models. These models were fitted using height sample
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trees from plots across the entire Liwale region, measured in 2012, including the plots
selected for the current study. However, we limited our analysis to plots within the same
NAFORMA strata as the 11 clusters within our study area. Specifically, we retained plots
from NAFORMA strata 5, 6, 7 and 8 [27]. To construct the diameter–height models, we
combined strata 5 and 6 (representing low-volume plots) and strata 7 and 8 (representing
high-volume plots), creating separate models for each merged stratum. In total, our data
set comprised 1173 height sample trees, with 398 and 775 distributed among low- and
high-volume plots, respectively. The models took the form of h = 1.3 + α × DBHβ, where
α and β are the model parameters. The goodness of fit for these models, as indicated
by R2 and root-mean-square error relative to the mean observed biomass (RMSE, %),
were 0.54 and 36% for the low-volume plots and 0.58 and 32% for the high-volume plots.
We predicted the biomass of each tree using allometric biomass models developed by
Mugasha et al. [28], incorporating both field-measured DBH and predicted height as input
variables. Plot-wise AGB estimates were obtained by summing the biomass predictions for
each tree and scaling to per hectare values. The field data contained terrain elevation.

2.2. GEDI

Our second reference data set was 3890 footprints acquired with the GEDI spaceborne
LiDAR sensor (Figure 1), which served as an alternative for estimating the conversion
factor between InSAR height and AGB. The GEDI instrument comprises three lasers gener-
ating eight ground transects, each with ~25 m diameter footprints spaced approximately
every 60 m along the track and with 600 m between transects. For AGB, we used the
GEDI Level 4A (L4A) AGBD (Mg/ha) data, version 2.1 [29], which were provided for each
footprint. This AGBD variable had been obtained through parametric models based on
simulated GEDI Level 2A (L2A) waveform relative height (RH) metrics from airborne
LiDAR and ground-based measurements of AGB [30]. There were distinct models for
various regions and plant functional types [29]. The model most applicable to this study
area was Deciduous Broadleaf Trees Africa [31]. For InSAR height, we used the terrain
elevation variable provided with the footprint data representing the elevation of the ground
underneath the canopy, which we subtracted from the TanDEM-X DEM. We selected GEDI
data based on both quality and time of acquisition to overlap with the leaf-on season as
close to the TanDEM-X acquisition from December 2019 as possible. This led to the identifi-
cation of four prioritized time periods: (a) December–20 January 2019; (b) April–May 2020;
(c) June 2020; and (d) July 2019. To ensure data quality, we used a quality filter requiring
that the waveforms should have L2A and L4A quality flags = 1 and beam sensitivity and
geolocation/sensitivity_a2 > 0.95 to ensure sufficient signal-to-noise ratio (SNR) to pene-
trate canopies with up to at least 95% canopy cover, which would be sufficient for detecting
both ground under dense canopy and the top of sparse canopies.

2.3. TanDEM-X

TanDEM-X is a Synthetic Aperture Radar (SAR) interferometer based on two satellites
moving in close formation and generating across-track, single-pass acquisitions which is
mainly used to generate digital surface models (DSMs). The wavelength is X-band = 3.1 cm.
This short wavelength has limited penetration ability down into the forest canopy, and it
results in a DSM close to the top of the canopy. We used TanDEM-X DSMs at two points
in time, coinciding fairly well with the timing of the field plot inventories. We obtained
the data from German Aerospace Center’s (DLR) data-sharing platform EOWEB. The
TanDEM-X data used in this study were all acquired in dual-pol (HH), stripmap mode.

For the first point in time, we used the two global DEM tiles S10E037 and S10E038. We
used the 0.4-arcsecond spatial resolution version. We combined the two tiles by mosaicking
and resampled them to 5 m resolution and UTM36S using bilinear interpolation. The two
tiles were composed of acquisitions covering a period of almost three years, i.e., between
December 2010 and September 2013. Based on the EOWEB archive and the metadata of the
tiles, we identified the mean date of the acquisitions for our study area to be in May 2012.
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For the second point in time, no DSM was available. A TanDEM-X-based DEM
(“Change-DEM”) is under construction. We generated a DSM for the study area based on
three suitable TanDEM-X data sets from December 2019 that covered almost the entire study
area. The data were obtained as single-look complex data provided in the CoSSC format.
For convenience, we have labeled them A, B and C (Table 1). They all had a height of
ambiguity (HoA) of around 55 m.

Table 1. TanDEM-X CoSSC data sets with date of acquisition and height of ambiguity (m).

Data Set Date HoA

A 20 December 2019 55.7
B 31 December 2019 55.2
C 31 December 2019 55.3

2.4. TanDEM-X Processing

The processing from SLC to DSM consisted of a sequence of processing steps where we
used ENVI version 5.6.1 and Sarscape version 5.6 software (Figure 2). For each acquisition,
we first generated an interferogram by combining the complex data of the two satellites.
We worked towards a final product with 5 m × 5 m resolution and used a multi-looking
value of 2 in azimuth and 1 or 2 in range. We used the TanDEM-X global DEM from 2012
as reference, i.e., to generate a synthetic interferogram, which we subtracted from the INT,
and derived a differential interferogram. This represented the height change for the period
2012–2019, which was dominated by forest height changes caused by logging and growth.
Some terrain elevation changes due to construction might have happened; however, we
have considered this as of minor influence here. We filtered the differential interferogram
with a Goldstein filter [32] to reduce phase noise. We carried out a phase unwrapping of
this using the Minimum Cost Flow method and geocoded this to 5 m × 5 m resolution
using bilinear interpolation.
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Finally, we converted the geocoded, unwrapped phase (φ) to height values (H′) as
follows:

H′ = φHoA/2π (3)

These height values represent height change over time, ∆H, but also contain systematic
errors in the form of considerable and large-scale bias and tilt caused by software-specific
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issues and depend on orbital parameters and phase height ambiguities. The height change
can be calculated by removing the systematic errors as follows:

∆H = H′ − k0 − k1E − k2N, (4)

where k0, k1 and k2 are correction parameters for bias and tilting, and E and N are geo-
graphical coordinates for easting and northing. To estimate these correction parameters,
we manually placed 52 Ground Control Points (GCPs) around the study area. We placed
them in no-forest locations which apparently had stable elevation and high coherence, i.e.,
mainly farmlands, fields and urban no-building sites, by visual interpretation of imagery
on Google Satellite Hybrid. We ensured that there was no height change over time at the
location of the GCPs by checking that the unwrapped phase was stable and the coherence
was high around the points. We spread them fairly evenly over the study area while in
particular placing them in overlapping areas between the acquisitions to ensure a seamless
mosaic. For each of the three TanDEM-X data sets, we estimated correction parameters
with linear regression analyses using the GCPs, where height change over time should be
zero, as follows:

H′
GCP = k0 + k1E + k2N + e (5)

where H′
GCP is the phase height values for the GCPs, and ε is the residual error. The three

regression models had RMSE values between 0.46 and 0.87 m, with a maximum residual
value of 1.9 m. We inserted the estimated correction parameters into Equation (4) and
obtained final height change values.

We generated a radar layover and shadow mask and inserted missing values for pixels
in such areas. In addition, we discarded all extreme ∆H values, i.e., those lower than
−30 and higher than 30 m. We also mosaicked the coherence magnitude to be used for
placing the GCPs. We combined the ∆H from the three processed TanDEM-X data sets into
a mosaic of ∆H. This covered the study area, except for a small area in the lower-left corner.
In the areas where the three data sets overlapped, we used the arithmetic mean.

2.5. Height-to-Biomass Conversion

The estimation of AGB change contained two steps. First, we derived a conversion
factor from InSAR height above ground (IH) and AGB, and, secondly, we used this to
directly convert the change in InSAR elevation to estimated change in AGB. The notable
advantage of this approach is that terrain elevation is required for the sample of plots only
and not wall to wall. The first step required the height above ground of the TanDEM-X
phase center for the reference plots, which we calculated as the difference between the
TanDEM-X DSM and the terrain elevation. For the NAFORMA plots, we had terrain
elevation data both based on airborne laser scanning and from dGPS acquired during
field work [33]. We obtained two data sets, i.e., one for 2012 and one for 2019. Phase height
of GEDI footprints was calculated in the same way.

An important aspect of the NAFORMA and GEDI plots is their small size for using
the TanDEM-X DSM. The plot diameters were 30 and 25 m, corresponding to an area
of 707 and 491 m2, respectively. The main problem here is the spatial mismatch between
the reference data and the TanDEM-X data. For NAFORMA plots, the entire biomass of a
tree is assigned either inside or outside the plot based on the position of the center of the
trunk, while the phase center height of TanDEM-X depends on the vertical distribution
of scatterers, i.e., mainly the leaves and branches of the tree, which can cover a large
area both inside and outside the plot [34]. Both reference data sets have a circular shape,
while TanDEM-X consists of raster cells that do not exactly fit the circular outlines. In
addition, in a heterogeneous forest, there can be local radar layover and shadowing effects.
Additionally, GEDI data have up to ~10 m geolocation uncertainty, which makes colocation
with other data sources challenging [35].

These sources of errors generate noise, or random errors. Such random errors should
not influence the statistical relationship between AGB and IH. However, for the present
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study, the random errors would lead to noisy scatterplots and difficulties in determining
whether the relationship is straight and linear or not. Hence, we reduced the random errors
by aggregating plot data, and we obtained mean values for AGB and for IH for groups of
plots. The NAFORMA plots belonged to clusters, and, hence, using the cluster means in
the analysis was intuitive anyway.

For GEDI data, we performed clustering that at the same time solved another issue.
The GEDI data were unevenly distributed over the area, where some parts of the study area
had no GEDI footprints while other were densely littered with footprints. To make a more
balanced representation of different parts of the study area, and to reduce random errors of
single footprints, we split the area up into quadratic grid cells and made aggregated means
of AGB and IH for each grid cell. We tested a range of gridding from 2 × 2 to 32 × 32 and
selected 8 × 8 as the most suitable one.

A ratio between two random variables does not have a defined standard deviation.
To cover the need for uncertainty estimates, we estimated the standard error of the ratios,
i.e., conversion factors, in two different ways. For the NAFORMA plots, we had two ratio
estimates from the two years, and we estimated the SE based on these two estimates. For
the GEDI plots, we used a bootstrapping approach. We generated 100 data sets by random
sampling with replacement from the grid cells. From each data set, we calculated the ratio
between mean AGB and mean IH, and we used the standard deviation between these ratios
as an estimate of the standard error of the ratio, or conversion factor.

We described the relationship between AGB and IH using the ratio between their
mean values. In this way, the conversion from IH to AGB is based on this ratio, or we can
call it proportionality value. This approach has the advantage that it ensures a straight line
through the origin, and, in addition, it is an unbiased estimator for AGB.

2.6. Geography of Change

We visually assessed the geography of change by focusing on the spatial distribution
of pixels and clusters of pixels with a large decrease in elevation. This should represent
areas that had forest harvesting, in particular clear cuts, carried out during the eight years.
We assessed this based on the presence of forests and the distance from Liwale town, partly
based on coherence magnitude and partly on Sentinel-2 RGB imagery. We used a Sentinel-2
data set acquired on 19 June 2020 with a cloud cover of 8%.

2.7. Estimating Above-Ground Biomass Change

We used the mean value of the AGB change from NAFORMA plots as a target value
and compared this with the predicted AGB change based on InSAR elevation change. We
supplemented this with scatterplots showing AGB and InSAR elevation change for single
plots and cluster means to gain an understanding of the accuracy of the method for small
areas. We used a leave-one-out approach for estimating accuracy. In addition, we also
estimated the AGB change wall to wall, including uncertainty estimates. In this latter
case, we did not know the true value, and the idea behind this was to demonstrate the
application of the method for an area wall to wall.

For analyses of the change in AGB for NAFORMA plots, we included an analysis
where we excluded the largest residuals. The rationale behind this was the difference in
timing between field inventory and TanDEM-X acquisitions. The study area was not only
forest, but contained urban, residential and farmland areas around Liwale town. We can
assume that there is disturbance of the forest going on constantly, for firewood gathering
and logging to increase the farmland. In the beginning of the eight-year study period, the
field plot inventory was carried out mainly in February, while the TanDEM-X acquisitions
were centered in May. During the three-month difference period, the disturbance taking
place after the field inventory and before the TanDEM-X acquisitions will represent a
mismatch between the data sets. This is particularly the case for clear cuts, which would
have large AGB values from the field inventory, while the TanDEM-X elevation would
correspond to no biomass. At the other end of the period, there was about seven months
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of temporal mismatch. Together, the two mismatching periods made up 10 months for a
period of 8 years, or 10% of the time. It is possible that the largest 10% of residuals can be
attributed to this temporal mismatch. Hence, we discarded the largest 10% of residuals in
terms of absolute value and carried out supplementary analysis on these plots only.

3. Results
3.1. Height-to-Biomass Conversion

The proportionality factors between AGB and InSAR height on NAFORMA plots
were 13.8 and 14.2 in 2012 and 2020, respectively (Figure 3). The mean value of this
was 14.0 t/ha/m. In comparison, ordinary least-squares regression models resulted in
similar values, i.e., regression slopes of 14.4 and 14.5, respectively, and minor intercepts
of 1.62 and −1.46. The R2 values were 0.49 and 0.54, respectively, for 2012 and 2020, and
the residual errors (RMSE) were 43.1 and 41.5 t/ha in AGB. On average, this corresponded
to an RMSE of 84% relative to the mean AGB stock of 49.5 t/ha calculated for both years
together. The RMSE values were strongly influenced by a few high-biomass plots. By
removing plots above 300 t/ha, the RMSE was reduced to 27 t/ha. One high-influence
point in 2020 is highlighted in red in the upper-right corner of the scatterplot (Figure 3b).
This plot contained one large Brachystegia bussei tree with a diameter at breast height of
120 cm and an estimated height of 27 m. We do not know the location of this tree inside
the plot, but we can imagine that the main scattering elements in this tree’s canopy for the
TanDEM-X microwaves, coming at an incidence angle of 34◦, may well be outside of the
plot. In addition, effects from local layover, shadowing and spatial smoothing during the
processing for such a large, solitary tree may well produce errors. Based on the GEDI L4A
data, the proportionality factor was 11.4, based on all footprints and the mean values of
AGB and IH (Figure 3c).
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Figure 3. Relationship between above-ground biomass (AGB, t/ha) and InSAR height (m) for (a)
NAFORMA 2012 plot data and TanDEM-X global DEM, (b) NAFORMA 2020 plot data and TanDEM-
X 2019 where one high-influence point is highlighted in red and (c) GEDI L4A 2019 and 2020 footprints
and TanDEM-X 2019. Black dots are plots and red line represents proportionality.

After clustering the plots, we obtained relationships that complied to the prerequisites
of the present approach by being straight and linear, passing through origin and being
similar at both points in time (Figure 4). The heteroscedasticity seen in Figure 3 was
removed by the clustering, indicating that random errors caused by small plots were the
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main reason for the heteroscedasticity. The two obtained conversion factors, or slopes, were
moderately different. They differed by 15%. The NAFORMA-plot-based conversion factor
was higher (14.0) than the GEDI-based factor (12.1). The plot-based factor had an estimated
standard error that was small, being only 0.18. It was considerably smaller than the one
based on GEDI.
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Figure 4. Relationship between above-ground biomass (AGB, t/ha) and InSAR height (m) after
clustering for (a) NAFORMA plots and (b) GEDI. The lines represent the proportionality, and are
the ones we used as the final conversion factors, kN for NAFORMA plots and kG for GEDI L4A
footprints.Blue color on lines and dots represent 2012, green represents 2020, and black dots with red
line represent GEDI footprints.

The clustering of GEDI footprints into 8× 8 cells worked well. Out of the 64 8 × 8 grid cells,
42 had at least one footprint. This means that we had a fairly large number of clusters and, at
the same time, a fairly good coverage of the area (66%, Table 2). When we split the area up in
other grids, the results were similar. For the alternatives with small cells, the advantage was a
high number of obtained conversion values, while, on the other hand, the disadvantage was
that a small fraction of the study area was covered. In addition, we obtained several extreme
values for small cells containing only one or two GEDI footprints.

Table 2. Results for alternative clustering settings for GEDI data, where N = total number of
cells, % GEDI area means the percentage of cells having at least one GEDI footprint and k is the
conversion factor.

Alt. N % GEDI Area k

2 × 2 4 100 11.5
4 × 4 16 88 11.9
8 × 8 64 66 12.1

16 × 16 256 39 11.6
32 × 32 1024 26 11.7

The next processing step for GEDI data, the bootstrapping, also worked well. This
was demonstrated firstly by the identical estimate for the conversion factor (12.1) provided.
We also confirmed the correctness of the bootstrap approach using ordinary linear regres-
sion. The regression slope based on the 8 × 8 cell means was 11.8 ± 0.60, while separate
regression models for each of the 100 data sets produced 100 regression slopes with a mean
value of 11.6 and a standard deviation of 0.59, while the mean SE of the slopes was 0.62.
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3.2. Geography of Change

The 2012–2020 estimated AGB change contained a clear spatial pattern dominated
by areas that experienced a decrease. These areas that experienced a decrease appeared
as an outline of logged areas with Liwale town in the center (Figure 5). This suggested
an expansion of urban and farmland areas into the remaining forest areas around the
town. The areas that experienced a decrease corresponded fairly well to the apparent
no-vegetation areas with a red-brown, light color in the Sentinel-2 RGB imagery. We should
not expect such a complete correspondence because some clear cuts from the beginning
of the 8-year period might have regrown with new vegetation. The remaining forest
appeared as dark green in the Sentinel-2 RGB imagery. Some patches appeared to have
experienced forest growth with increased AGB. These changes cannot be verified by the
Sentinel-2 RGB image.
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3.3. Estimated Above-Ground Biomass Change

Temporal change in AGB could be estimated within 5–10% error margins. The
mean change for the NAFORMA plots was −14.5 t/ha, while the predicted mean change
was −16.0 when using the plot-based conversion factors and −13.8 with the one based on
GEDI (Table 3). This is based on the mean InSAR elevation change of −1.14 m which we
converted to AGB change. This means that the true mean change of the NAFORMA plots
was well within the range given as the predicted mean value and the standard error of the
mean and close to the true mean. In this case, the standard error was based on a leave-
one-plot-out approach. We repeated this calculation excluding the largest 10% of residuals,
and the results were slightly improved. The mean AGB change was now −12.6 t/ha, and
the estimate based on the NAFORMA plot conversion factor was −13.2 ± 0.17, while, for
GEDI, the corresponding estimate was −11.4 ± 0.42. This means that the results were fairly
robust, having small influence from extreme points.

For the study area, we had no ground truth. However, the mean InSAR elevation
change was almost identical to that of the NAFORMA plots. Hence, we can assume that
the accuracy for the entire area would be the same.
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Table 3. Change in TanDEM-X elevation, ∆DSMTDX [m], and change in above-ground biomass,
∆AGB [t/ha], for ground truth and estimates ± SE. Note that we do not have a ground truth for the
entire area. The two conversion factors kN and kG are estimated from NAFORMA plot data and GEDI
L4A footprint data, respectively.

NAFORMA Plots Study Area

∆DSMTDX −1.14 −1.10
∆AGB, ground truth −14.5

∆AGB = kN ∆DSMTDX −16.0 ± 0.21 −15.4 ± 0.20
∆AGB = kG ∆DSMTDX −13.8 ± 0.50 −13.3 ± 0.48

A closer look at the temporal change for individual NAFORMA plots revealed some
clear outliers (Figure 6). This was as expected due to a non-perfect time correspondence
between the field inventory and satellite data acquisition. After excluding the largest 10%
of residuals due to a possible mismatch in timing of the satellite acquisitions and the field
inventory, there was a Pearson correlation coefficient between the AGB change and the
InSAR elevation change of 0.70 (Figure 6). There was a moderate residual scattering around
the conversion factor line, which is attributable to the random errors caused by small plots.
The RMSE was 20.9 t/ha when we excluded the plots with the worst 10% of residuals. With
the leave-one-out cross validation, we excluded the NAFORMA plots one by one and, in
each case, calculated a conversion factor between InSAR height and AGB separately for
2012 and 2020, averaged them to a conversion factor value and calculated the RMSE. The
result of this was a mean conversion factor of 13.1 and an RMSE of 20.3 t/ha.
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Figure 6. Relationship between temporal change in AGB and InSAR height from 2012 to 2020 for
the NAFORMA plots. The dots represent plots where the largest 10% of residuals are identified in
red and between red hatched lines. The red solid lines represent the NAFORMA plot conversion
factor kN .

4. Discussion
4.1. Geography

The geography of changes appeared to be right, based on visual correspondence with
the Sentinel-2 RGB and based on Liwale town located in the center of an apparent expansion
of deforested area. Generating a correct geographical representation of real forest changes
including detection of areas experiencing both growth and disturbance appears to be easily
achievable with this method, as already shown in former studies [18,20].
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4.2. Conversion from InSAR Height to Above-Ground Biomass

In this study, we used a simple conversion from InSAR phase height to AGB, i.e.,
using a fixed proportionality factor. This approach has been compared to a more sophis-
ticated method in a boreal forest where both forest height and density were estimated
and combined [36]. In general, that latter approach performed better in terms of larger R2

values. However, the difference was variable, and, in one case, it was the opposite. In any
case, an approach using a conversion factor is the only approach that can be employed for
repeated TanDEM-X elevation data in areas without wall-to-wall Digital Terrain Models
(DTMs) available, and, in the present study, it was clearly demonstrated that the simple
linear model represented a good fit to the data.

The conversion factors we obtained between InSAR height and AGB are reliable
because similar values have been found in other studies across forest types. In the present
study, we found the two values 12.1 and 14.0 t/ha/m, which are close to those of previous
studies, varying from 11.9 [14] to 14.1 [12], from the same miombo woodland in Tanzania.
It was somewhat larger, 18.4 t/ha/m, in a very-high-AGB-density forest in northeast
Tanzania [13], and it was 13.0 based on data from a tropical forest in Brazil [37] and 14.9
in a Norway spruce forest in Norway [20]. The estimation of this conversion factor can
be performed in different ways, and different methods yield slightly different values. If
we look closer at the GEDI-based conversion factor in this study, it was 12.1 t/ha/m
based on proportionality, 11.8 with ordinary least-squares regression and 12.0 with a no-
intercept regression model. In most earlier studies, the conversion factor was estimated
by no-intercept regression models. Although different methods may yield fairly similar
conversion factors, the regression-based models have problems. An ordinary regression
model has an intercept, which will lead to non-zero, or ambiguous, AGB estimates in
no-forest areas. A no-intercept regression model has the weakness that it does not represent
an unbiased estimator of AGB. Hence, using the proportionality as we did in this paper
is an improvement. For the present approach, where we derive the change in AGB from
the change in surface model height, it is required that the relationship between AGB and
InSAR height is linear and passing through the origin. If those two criteria are not met, we
would need to know the terrain elevation wall to wall of the study area.

This GEDI-based conversion factor was somewhat lower than the ones based on the
NAFORMA plots. The difference may be attributable to different coverage and uneven
sample intensity over the area, as well as positional uncertainty on the GEDI footprints.

4.3. Comparability of the Two Points in Time

The present approach requires that the penetration of the SAR microwaves down into
the forest canopy is similar at both points in time. The basis for this is that the relationship
between InSAR height and biomass is indirect because the short-wavelength SAR mainly
interacts with small objects like leaves and small branches. Normally, the number of such
small objects would be strongly related to the AGB, which is mainly made up of the trunks.
However, a variation between leaf-on and leaf-off conditions affects the relationship [38]. In
this study, the relationship was almost identical at the two points in time, and, apparently,
the miombo woodland was in a leaf-on stage around the time of the acquisitions both in
2012 and 2019. However, this issue may limit the large-scale application of this method
based on the two TanDEM-X global DEMs. The former TanDEM-X global DEM was made
by combining data from many acquisitions, and each pixel does not have any date of
acquisition tag. The acquisition dates are given in the metadata of the DEM tiles, which
may help, but the dates are not spatially explicitly given. First, this issue would be present
for forests with seasonal leaf-on and leaf-off variations. We can imagine that this would
be the case for savannah forests and for temperate broadleaf forests. Secondly, this issue
would also occur in boreal forests, where the phase height is strongly affected by frost
versus no-frost, and, in general, dryness can affect the microwave extinction through the
canopy [22,39,40]. However, in tropical rainforest, the phase height appears to be stable
across weather types and seasons [21] so the method appears promising for such forest.
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4.4. Vertical Adjustment

The estimation of AGB change relies on one subjective processing step, i.e., the vertical
bias adjustment. In this study, we processed the three TanDEM-X single-look complex
data sets against the former global DEM. In principle, the interferogram should represent
elevation change only. However, as seen in other studies, there were errors representing
both vertical bias and tilting of the DEM. We placed GCPs around the study area, sub-
jectively in areas that appeared to be stable, no-forest locations based on optical satellite
data, and used them to correct both the tilting and bias in the three TanDEM-X data sets.
This subjective processing step could prevent a large-scale, fully automatic application of
the method. However, it appears that the tilting and bias errors are partly attributable
to software-specific processing methods. It is also possible that this adjustment could be
performed automatically. More important, however, is that, with the release of the new
global DEM based on TanDEM-X, we can assume that these errors are removed.

4.5. GEDI and TanDEM-X Combination

This study suggests that the GEDI L4A product can replace AGB from field inventory
plots for model training and validation. The conversion factors based on NAFORMA plots
and GEDI footprints were fairly similar. However, the present study is a special case here.
In general, it is uncertain whether we would obtain equally high similarity in other areas.
The GEDI AGB estimator is a generic model relating field AGB to simulated GEDI from
airborne LiDAR based on a global compilation of reference data sets [31]. For the present
study area of Tanzania, the AGB estimator is trained using the NAFORMA plot data from
2012. There is a lack of other available airborne laser scanning data from East Africa; indeed,
the broader NAFORMA area is the only training data for African deciduous forests, and,
therefore, the field-AGB-to-GEDI model is more locally tuned to this site than any other
model in the GEDI product [31]. Tanzania’s NAFORMA data set is somewhat unique for
tropical countries. We recommend a further study on the conversion factor between phase
height and AGB for forest types within the near-global coverage of GEDI. By combining
the huge GEDI data set and global TanDEM-X data acquired close in time, it should be
possible to study the variation of the AGB–InSAR height relationship. On the other hand,
the conversion factor appears to be similar for a wide range of forest types, and this reduces
the importance of having a specific conversion factor for the forest type in question.

5. Conclusions

In conclusion, temporal change in miombo woodland biomass is closely related to
change in X-band, and InSAR elevation, and this enabled both an accurate mapping of
the geography of temporal AGB change and a quantification wall to wall within 5–10%
error margins. The combination of TanDEM-X and GEDI has the potential for a spatially
explicit and near-global estimation of temporal change in AGB. However, care needs to be
taken to avoid errors based on effects of leaf-on versus leaf-off canopy conditions and frost
versus no-frost.
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