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Abstract: Due to the issues of remote sensing object detection algorithms based on deep learning, such
as a high number of network parameters, large model size, and high computational requirements, it
is challenging to deploy them on small mobile devices. This paper proposes an extremely lightweight
remote sensing aircraft object detection network based on the improved YOLOv5n. This network
combines Shufflenet v2 and YOLOv5n, significantly reducing the network size while ensuring high
detection accuracy. It substitutes the original CIoU and convolution with EIoU and deformable
convolution, optimizing for the small-scale characteristics of aircraft objects and further accelerating
convergence and improving regression accuracy. Additionally, a coordinate attention (CA) mech-
anism is introduced at the end of the backbone to focus on orientation perception and positional
information. We conducted a series of experiments, comparing our method with networks like Ghost-
Net, PP-LCNet, MobileNetV3, and MobileNetV3s, and performed detailed ablation studies. The
experimental results on the Mar20 public dataset indicate that, compared to the original YOLOv5n
network, our lightweight network has only about one-fifth of its parameter count, with only a slight
decrease of 2.7% in mAP@0.5. At the same time, compared with other lightweight networks of
the same magnitude, our network achieves an effective balance between detection accuracy and
resource consumption such as memory and computing power, providing a novel solution for the
implementation and hardware deployment of lightweight remote sensing object detection networks.

Keywords: deep learning; lightweight network; YOLOv5n; Shufflenet v2; CA; EIoU loss;
deformable convolution

1. Introduction

Remote sensing aircraft object detection is crucial in various applications. In civil
aviation and the aerospace industry, it helps identify other aircraft, drones, or obstacles
around an aircraft to prevent collisions and enhance aviation safety. It also aids in the
real-time monitoring and tracking of civil aviation flights, cargo planes, and private aircrafts
to ensure their flight path and status. In the military domain, it identifies and tracks enemy
aircraft, performs aerial reconnaissance, gathers intelligence, and supports aerial strikes
and combat. In emergencies like aircraft disappearance or deviation from course, it assists
in search and rescue operations to locate the aircraft and passengers.

The breadth of application domains in remote sensing object detection corresponds
to the complexity of target data sources. Particularly for remote sensing targets, complet-
ing object detection tasks depends not only on the algorithm but also on the data source.
Factors affecting detection effectiveness include not only the reliability of artificial intelli-
gence algorithms but also that of remote sensing data sources. From acquiring raw data to
inputting them into the network, considerations extend beyond complex scenes to factors
like imaging conditions, resolution, and storage processes. During imaging, sensor size,
atmospheric conditions, observation time, and lighting affect results. For instance, adverse
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weather like rain and fog significantly degrade imaging quality, necessitating image dehaz-
ing during processing. Additionally, image denoising is crucial in preprocessing due to
signal transmission, dark current, and random noise effects.

For algorithms, considerations during training involve sample quantity, scene types,
target categories, and annotation quality to select high-quality datasets. Enhancing recogni-
tion involves designing new network structures, adjusting training strategies, and selecting
parameters. Since algorithms often deploy on hardware with low computing power and
memory, compressing network volume and parameter size is vital. Given these considera-
tions, selecting a suitable algorithm framework and dataset is paramount.

Currently, remote sensing object detection faces several challenges. Firstly, it suffers
from a single detection perspective, limiting the useful information gathered from an
overhead view. Secondly, remote sensing targets tend to be small in size with minimal dif-
ferences between types, making fine-grained identification challenging. Most significantly,
the vast range of object detection on remote sensing images leads to substantial comput-
ing power consumption and inefficient detection processes. To address these challenges,
various algorithms with exceptional performance have emerged in remote sensing object
detection, such as the R-CNN series [1–3], YOLO series [4–8], and DETR [9]. Nonetheless,
deploying these algorithms on mobile hardware platforms with constrained computing
and memory resources presents significant challenges due to their large network size and
complex structures. In high-altitude environments where real-time imaging and object
detection are crucial, available memory and computational resources are severely limited.
Addressing actual memory usage, after training these algorithms on the same dataset, the
resulting model files typically range from a few megabytes to hundreds of megabytes.
Some exceed even hundreds of megabytes, which is unacceptable to a certain extent. From
a computational perspective, existing remote sensing aircraft object detection networks
prioritize performance metrics, often leading to increased network depth and width. While
this may improve performance, it also substantially increases resource consumption in
terms of memory and computation. For instance, the actual FLOPs of YOLOv5n can reach
as high as 4.3 G, rendering existing algorithms impractical for deployment on some actual
mobile hardware platforms.

In response, several lightweight object detection networks have been proposed. Ex-
amples include the MobileNet series [10–12], Ghost-Net series [13], PP-LCNet series [14],
and Shufflenet series [15,16]. However, each of these algorithms has shortcomings in terms
of detection performance, network size, and resource consumption. They fail to strike a
balance between detection performance and memory and computational resource utiliza-
tion. For example, Ghost-Net and Mobile-Net have excessively large network parameter
sizes, while PP-LCNet exhibits slightly inferior detection performance. This makes it chal-
lenging to meet practical application requirements. Therefore, while ensuring detection
performance remains unchanged or slightly decreased, the focus should be on significantly
reducing network parameters and computational load to achieve a perfect balance between
detection performance and resource consumption.

To achieve real-time remote sensing object detection while ensuring the network re-
mains lightweight, we chose YOLOv5n as our baseline network. The You Only Look Once
(YOLO) series [4–8] of algorithms is a prominent representative of object detection algo-
rithms, with YOLOv5 being one of the most mature algorithms in this series, striking a good
balance between speed and accuracy. YOLOv5n, being the smallest model in the series, has
optimized detection speed to the fullest. However, despite these advancements, the increas-
ing real-time demands of remote sensing object detection systems pose challenges due to
the complexity and size of network models and parameters, making it challenging to run
on hardware with low power consumption and computing power. Hence, lightweighting
the network becomes imperative.

For lightweight processing of the YOLO series, two main technical approaches are
prevalent. One involves replacing the backbone network with a lightweight alternative,
while the other entails adjusting the convolution structure, such as modifying the size
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of convolution kernels and the total number of kernels, which determine the width of
the network.

In our pursuit of maintaining detection accuracy akin to the original network, we
conducted numerous hypotheses and experiments aimed at minimizing the volumetric
dimensions of the network model. The Backbone, a critical and parameter-intensive
component of YOLO series algorithms, is primarily responsible for extracting features
from input remote sensing images and conveying them to the Neck. To enhance cost-
effectiveness in terms of both parameter quantity and performance, we drew inspiration
from the Shufflenet v2 paradigm. Utilizing group convolution and channel shuffling
principles, we adopted the ShuffleUnit as the fundamental unit in constructing the feature
extraction network. The ShuffleUnit facilitates deep convolution operations, achieving
group convolution through the connection of two branches and channel reordering, thereby
enhancing the network’s non-linear expressive capability while reducing computational
costs. Additionally, we introduced the forward module to implement forward propagation,
involving channel splitting, branch computation, and channel reordering. Unlike many
similar lightweight networks, we departed from the alternating connection pattern of
the C3 module and lightweight module in the original YOLOv5 network. Instead, we
arranged six ShuffleUnits in a serial fashion to achieve the utmost lightweight design.
To further enhance network performance, we embedded the Coordinate Attention (CA)
mechanism at the end of the backbone. Moreover, we replaced the original Complete
Intersection over Union (CIoU) loss function with the more advanced Efficient Intersection
over Union (EIoU). Finally, to better handle deformations in irregular regions and targets in
remote sensing images, we optimized a portion of traditional convolutions into deformable
convolutions, resulting in a reduction in the overall parameter count.

The subsequent sections of this paper are organized as follows: Section 1 provides
an extensive overview of remote sensing object detection algorithms and attention mecha-
nisms, particularly organizing algorithms based on YOLOv5. Section 2 outlines the overall
framework of our proposed network and elaborates on the improvements made. In
Section 3, we utilize YOLOv5 as the baseline network and employ various popular
lightweight networks as replacements for the backbone, conducting comprehensive experi-
mental comparisons across detection accuracy, parameter count, model size, and floating-
point operations. These experiments convincingly demonstrate the superiority of our
network. Furthermore, Section 4 includes ablation experiments to validate the feasibility
of our design modules. Finally, in Section 5, we offer a comprehensive summary of the
research and articulate future prospects.

2. Related Works
2.1. Remote Sensing Object Detection Based on Deep Learning

Around 2014, deep learning-based approaches began to dominate the field of object
detection, subsequently extending their influence to the entire domain of remote sensing
object detection. Object detection algorithms based on deep learning are typically cat-
egorized into two types: single-stage object detection algorithms and two-stage object
detection algorithms. [17] Two-stage algorithms mainly include Region-CNN (R-CNN) [1],
Fast R-CNN [2], Faster R-CNN [3], and others. They typically start by using a Region
Proposal Network (RPN) [3] to generate candidate boxes based on the texture, color, and
size features associated with the objects. These candidate boxes undergo a filtering process
to reduce their number before being sent to a deep learning network, typically utilizing
a Convolutional Neural Network (CNN) [18] for feature extraction. The obtained feature
vectors are compared with predefined target categories to confirm the presence of a target
and perform target classification. Simultaneously, each candidate box undergoes position
regression to obtain corresponding position coordinate information. Due to its excellent
detection speed and relatively small resource consumption, single-stage networks have
gained dominance in recent years. The most prevalent network among single-stage net-
works is the YOLO series algorithm, known for its fast detection speed and high accuracy,
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particularly suitable for real-time scenarios. The single-stage algorithm mainly includes
the YOLO series and the Single Shot MultiBox Detector (SSD) [19] series. They generally
pass the entire image as input to the CNN, skipping the step of generating candidate boxes.
The CNN directly outputs category and location information of the target. Single-stage
networks typically use-predefined anchor boxes with different scale sizes and aspect ratios
to process targets, judging the presence of a target in each anchor box and predicting its
location and category for object detection. With ongoing research, the detection accuracy
of single-stage networks continues to improve. With superior detection speed, they have
gradually replaced two-stage algorithms in many engineering practices, becoming the
mainstream in practical applications.

Traditional methods for object detection in remote sensing images have limited rep-
resentation power. Recently, many deep learning-based networks specifically for remote
sensing images have emerged. Reference [20] proposed a method that redesigns the feature
extractor, utilizes a multi-scale object proposal network (MS-OPN) for object-like region
generation, and employs an accurate object detection network (AODN) for object detection
based on fused feature maps. [21] Reference [22] introduced the CSand-Glass module
to replace the residual module in the backbone feature extraction network of YOLOv5,
achieving higher accuracy and speed in remote sensing images. Liu et al. proposed the
YOLO-extract algorithm [23], which optimizes the model structure of YOLOv5 in two main
ways. Firstly, it integrates a new feature extractor with stronger feature extraction ability.
Secondly, it incorporates Coordinate Attention into the network.

In recent years, the Transformer [24] has had a profound impact on deep learning. In
the field of object detection, Facebook introduced the end-to-end object detection network
called DEtection Transformer (DETR) [9], which is based on the Transformer architecture.
DETR can be viewed as a transformation process from an image sequence to a set sequence.
This is due to the inherent nature of the Transformer as a sequence-to-sequence transformer.
The approach taken by DETR involves unfolding the pixels of the output feature map
from the backbone into a one-dimensional sequence, treating it as the sequence length,
while maintaining the definitions of batch and channel. Consequently, DETR is capable
of computing the correlations between each pixel of the feature map and all other pixels,
unlike in CNNs, where this is achieved through the receptive field. The Transformer
demonstrates the ability to capture a larger perceptual range than CNNs.

In addition to the previously mentioned methods for remote sensing object detection,
there is a particular significance in introducing arbitrary-oriented remote sensing object
detection methods. From a training perspective, the primary distinction between arbitrary-
oriented object detection and regular object detection is in how object bounding boxes are
represented in the dataset. Convolutional neural networks struggle to capture variations
in scale and orientation of objects in remote sensing images. This struggle arises from
the limited generalization ability of convolutional operations to target rotation and scale
changes. As a result, the detection performance of convolutional neural networks tends
to decrease, especially when dealing with dense objects and remote sensing targets with
centrally symmetric features.

Optimizing the loss function for representing object bounding boxes is currently a
focus of research. The early work of DRBox [25] has significantly advanced arbitrary-
oriented remote sensing object detection. DRBox identified various challenges in this field
and introduced three different models along with their parameters tailored for cars, ships,
and aircraft, encompassing a wide range of differently sized targets and distinguishing
their heads and tails. R3det [26] adopts single-stage object detection and suggests re-
encoding the position information of refined bounding boxes into corresponding feature
points. This process reconstructs the entire feature map to achieve feature alignment. The
ROI-Transformer [27] introduces a module named RoI Transformer, which detects directed
and dense objects using supervised RRoI learning and position-sensitive alignment-based
feature extraction within a two-stage framework. The innovative application of polar
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coordinates in the P-RSDet [28] reduces parameter volume and introduces a novel loss
function, Polar Ring Area Loss, leading to enhanced detection performance.

2.2. Lightweight Methods for Object Detection Networks Based on Deep Learning

Deep learning methods have demonstrated significant advancements in remote sens-
ing object detection in recent years. As previously mentioned, the wide scope of object
detection in remote sensing images leads to substantial computational overhead and sig-
nificantly lowers detector efficiency. Consequently, lightweighting network models has
become a focal point in current research. The primary goal of lightweighting network
models is to reduce model complexity and decrease the number of model parameters. Four
primary technical approaches exist for lightweighting network models: compressing pre-
trained large models, redesigning lightweight models, accelerating numerical operations,
and hardware acceleration.

In current practice, the first three technical approaches are widely employed. Knowl-
edge distillation and model pruning are both well-established methods for compressing
models. Knowledge distillation, a common method for model compression, reduces model
volume and parameter count by transferring the knowledge of a complex model to a
lightweight one. The literature points out that this method extracts the knowledge con-
tained in the complex “teacher” model that has been trained into another lightweight model,
the “student” model. In addition, model pruning is also a common method. Model pruning
reduces model size by removing unimportant weights or neurons. It can be categorized into
structured pruning and unstructured pruning based on different methods. Furthermore,
adjusting the number and size of the network’s convolution kernels can achieve model
lightweighting. Generally, a larger convolution kernel size can enhance feature extraction.
However, the literature indicates that large convolution kernels increase computational
requirements and the number of parameters, leading to unstable gradients. Therefore,
scholars often employ multiple small convolution kernels instead of a single large one to
compress models, as seen in the Visual Geometry Group (VGG) network proposed in [29].

Lightweight networks find extensive applications in remote sensing image process-
ing. The design of lightweight network architecture originated with SqueezeNet [30] in
2016 and MobileNet [10–12] in 2017. Subsequently, new and improved networks, such
as SqueezeNext [31] and MobileNetV2 [11], have emerged. MobileNetV1 can essentially
be viewed as replacing the standard convolutional layer in VGG with depthwise sepa-
rable convolution [32]. MobileNetV2 [11] introduces shortcut connections and replaces
part of ReLU with a linear activation function. They employ pointwise convolution to
increase the dimension prior to depth convolution, extract features through depth convolu-
tion, reduce the dimension, and add the input and output to form the residual structure.
SqueezeNet proposed the Fire module, which replaces the 3 × 3 convolution kernel with
a 1 × 1 convolution kernel. By adjusting the number of 1 × 1 convolutions, the number
of channels in each layer in the convolution operation can be flexibly controlled, thereby
reducing the amount of model calculations. The Shufflenet v1 [15] network, proposed at
the same time, is one of the relatively mature lightweight networks. This article uses the
improved Shufflenet v2 [16] to initially achieve network lightweighting. In addition to
network simplification, numerical calculations have also become a new focus area, with
numerical quantification being a typical representative. Quantization is the process of
converting a model’s weights and activations from floating-point numbers to lower bit-
width integers or fixed-point numbers. Quantization can reduce the memory footprint and
computational requirements of a model. The literature indicates that model parameters
are the primary memory access objects in CNNs; thus, parameter quantization is an effec-
tive means of reducing memory access and power consumption. Hardware acceleration
involves utilizing specialized hardware accelerators to expedite the inference process of
deep learning models, consequently alleviating the computational load on the model.

In summary, for remote sensing object detection, the most effective approach to
network lightweighting is to initiate redesign from the feature extraction segment, aiming
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to restructure the architecture into a lightweight framework. Consequently, we primarily
adopt this methodology, selecting YOLOv5n and Shufflenet v2 as the benchmark network
and lightweight architecture, respectively. With additional enhancements in various aspects,
we achieved further improvements in model compactness and network performance.

2.3. Attention Mechanism

The attention mechanism, originating from the study of human visual cognition
characteristics, represents a significant breakthrough in neural network development. In
human visual information processing, due to input information characteristics and human
brain processing limitations, it is essential to selectively focus on certain information while
ignoring redundant data. For example, in images, focus is on vibrant colors and distinct
textures, while in text, attention is on sentence beginnings, endings, and specific keywords.
In remote sensing, the attention mechanism adjusts the network’s focus on different targets.
Moreover, addressing the scarcity of remote sensing datasets, the attention mechanism
enriches data, aiding the network in learning more valuable information. Additionally, for
multi-source remote sensing images, it integrates diverse information efficiently, enhancing
network performance. Therefore, attention mechanisms prioritize which input information
to focus on and optimize resource allocation for information processing.

In existing object detection algorithms, the Squeeze-and-Excitation (SE) [33] attention
mechanism is widely used in mobile networks. By employing SE modules, the network
evaluates relationships between feature channels, determining the importance of each chan-
nel through the learning process. It then enhances crucial features for the current task while
suppressing less important ones. However, this approach only considers inter-channel
information and disregards positional information. Subsequent efforts, like BAM BAM [34]
and CBAM [35], aim to incorporate positional information, but convolutional operations
capture only local relationships, failing to model crucial long-distance dependencies for
visual tasks. To address these limitations and achieve multidimensional information in-
tegration, attention mechanisms like Coordinate Attention (CA) and Efficient Channel
Attention (ECA) [36] have emerged. Besides focusing on channel and positional informa-
tion, researchers have explored new approaches, such as evaluating neuron weights and
subsequently suppressing or focusing on them based on evaluation results, thus achieving
more efficient computations. Representative examples include NAM Attention [37] and
SimAM [38]. Furthermore, numerous efficient attention algorithms continue to emerge,
including Sequential Attention [39], which emphasizes logical attention, Co-attention [40],
which focuses on spatial attention, and the prevalent Transformer based on self-attention.

3. Methods
3.1. The Original YOLOv5n Network

The latest YOLOv5 series includes versions like YOLOv5x, YOLOv5l, YOLOv5m,
YOLOv5s, and YOLOv5n. While the model structures of these versions are essentially
identical, they are based on YOLOv5l with varying parameter scaling ratios, resulting in
differences in model width and depth. Consequently, their network performance varies.
Notably, the YOLOv5n network, with the smallest model width and depth, is particularly
suitable for devices with stringent real-time performance requirements.

YOLOv5 primarily consists of four parts: Input, Backbone, Neck, and Head. These
parts perform functions such as input image preprocessing, feature extraction, feature map
fusion, target classification, position regression, and output, as depicted in Figure 1. Each
part will be detailed below.
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Figure 1. The network structure of YOLOv5.

After inputting the image into the YOLOv5 network, the first step is Mosaic data
augmentation. Data augmentation steps typically include random affine transformation,
mixing, HSV enhancement, random horizontal flipping, etc., to improve the model’s
ability to learn and extract target characteristics. The Backbone, responsible for feature
extraction, comprises three main modules: Conv, C3, and SPPF. The Conv module consists
of convolution, BN, and SiLU activation functions, similar to the previous CBL version, also
known as the CBS module in some of the literature. The C3 module architecture resembles
the old CSP module, with 3 standard convolutional layers and multiple Bottleneck modules,
crucial for learning residual features. The SPPF module, an improvement over the old SPP
module, adopts the spatial pyramid concept from the YOLO series. By merging feature
maps of different resolutions, it enhances the feature map’s expressive ability, particularly
beneficial for detecting targets with significant size differences in the image. The Neck
module in YOLOv5 combines PAN [41] and FPN [42], positioned centrally within the
YOLO network. It serves to bridge the backbone feature extraction segment with the
detection head, enhancing the feature map for improved detection accuracy. The Head
component primarily receives feature maps generated by the Neck module and processes
them to produce category and position information for the detection frame, thus fulfilling
the task of target detection.

3.2. Proposed Methods

In this section, we will detail our improvements to the original YOLOv5 network,
including Shufflenet, CA, EIoU, and deformable convolution. Figure 2 is the complete
structure of our improved network.
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3.2.1. The Redesign of the Backbone

Extensive efforts have been dedicated to optimizing both unit components and the
network structure to strike a balance between network volume and detection performance.
The Backbone, being pivotal and parameter-intensive in YOLO series algorithms, bears the
primary responsibility of extracting features from input images and transmitting them to
the neck [41]. Therefore, the design of the Backbone significantly influences the detection
accuracy and speed of the entire network. In the original YOLOv5 network, the Backbone
typically comprises alternating serial connections of Conv and C3 components. However,
our investigation revealed that in the Backbone section, C3 components nearly monopolize
all parameters, significantly contributing to the large volume of the original network.
Optimizing these modules is essential to achieve network lightweighting. Initially, we
defined a new module, CBRM, which sequentially incorporates a convolutional layer
followed by batch normalization, ReLU activation, and a max-pooling layer. To achieve
a higher cost-effectiveness ratio between network parameters and performance, we drew
inspiration from Shufflenet v2, whose structure as below.

We used ShuffleUnit as the constitutive unit for the feature extraction network. Shuf-
fleUnit is a channel shuffle unit designed to enhance the network’s learning ability for
inter-channel information. This unit operates through two branches, where one branch
involves depthwise separable convolution and dimension reduction, while the other branch
conducts dimension reduction. When the stride is greater than 1, the outputs of the two
branches are concatenated along the channel dimension and then reshuffled through a
channel shuffle operation. This reshuffling aids the network in better learning inter-channel
feature representations, thereby enhancing overall performance. In summary, ShuffleUnit,
through its channel shuffle mechanism, strengthens the network’s utilization of diverse
channel information, optimizing feature learning and representation. Additionally, we
achieve forward propagation by applying a convolutional layer followed by max-pooling
to return results from the input tensor. Unlike many similar lightweight networks, for the
utmost lightweight design, we abandon the alternating connection of C3 modules and
lightweight modules in the original YOLOv5 network and boldly serialize six ShuffleUnits.
Extensive research has been conducted on the SPPF in the YOLOv5 network. SPPF, a
pyramid-based approach, merges feature maps of different resolutions to enhance the
expressive power of the feature map, which proves beneficial when detecting images with
significant size differences among objects. However, this approach’s drawback lies in
its increase in parameters and a significant rise in floating-point operations. Therefore,
at the end of the Backbone section, we also abandon the widely used SPPF. While this
inevitably leads to some performance loss, we deem it acceptable to achieve our goal of
extreme lightweighting.

Overall, the design of ShuffleUnit enables the utilization of more channels at lower
computational complexity, thereby enhancing the model’s capacity. The feature reuse mode
reduces redundancy between feature maps, enhancing accuracy, while its meticulously
crafted structure enables ShuffleUnit to strike a balance between speed and accuracy.

3.2.2. Coordinate Attention (CA) Mechanism

The Squeeze-and-Excitation (SE) attention mechanism is widely adopted in mobile
networks among existing object detection algorithms. The SE module enables the network
to assess the relationship between feature channels, determining the importance of each
channel through a learning process. It then enhances significant features relevant to the
task while suppressing less critical ones. However, this method solely focuses on inter-
channel information and neglects positional information. Subsequent works like BAM and
CBAM aimed to incorporate positional information, yet convolution operations could only
capture local relationships, failing to model essential long-range dependencies crucial for
vision tasks.

CA is an attention mechanism capable of efficiently acquiring inter-channel and
positional information simultaneously. It encodes channel relationships and long-range
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dependencies using precise positional information. Similar to the SE module, CA consists
of two steps: coordinate information embedding and coordinate attention generation [42].

The structure of the CA mechanism is depicted in Figure 3.
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Global pooling is typically employed in channel attention to encode spatial information
globally. However, it compresses global spatial information into one channel descriptor,
making it challenging to retain positional information crucial for capturing spatial structure
in vision tasks. To address this limitation, CA decomposes the global pooling specified in
Equation (1) into two 1D feature encoding operations [43].

zc =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

Specifically, given an input X, we utilized two pooling kernels (H, 1) or (1, W) to
encode the coordinates of each channel along the horizontal and vertical directions [44].
Aggregating features along two spatial directions separately yielded a pair of feature maps
with direction-aware features (see Equations (2) and (3)).

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (2)

zw
c (w) =

1
H ∑

0≤i≤H
xc(j, w) (3)

Decomposing channel attention into two parallel vertical and horizontal 1D feature en-
codings alleviates the loss of position information caused by 2D global pooling, effectively
incorporating spatial coordinate information into the generated attention map. Embed-
ding positional information into channel attention offers the advantage of emphasizing
large-scale regions without significant computational cost. The algorithm’s flexibility and
lightweight nature make it easy to port and deploy, significantly enhancing the performance
of downstream tasks.

To enable global receptive fields and encode precise position information, CA proposes
a coordinate attention generation, guided by three key criteria. First, new transformations
should be as simple and economical as possible to be suitable for mobile environments.
Second, they should fully utilize captured location information to accurately highlight
areas of interest. Finally, they should effectively capture relationships between channels, as
demonstrated to be crucial in previous studies. Specifically, given the aggregated feature
maps generated by Equations (4) and (5), we first concatenated them and then sent them to
the shared 1 × 1 convolution transformation function F1, as shown in Equation (4):

f = δ(F1([zh, zw])) (4)

This resulted in intermediate feature maps, as shown in Equation (5):

f ∈ RC/r×(H+W) (5)
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This intermediate feature map encodes horizontal and vertical spatial information.
Here, r is the reduction ratio used to control the block size. We then split f into two
independent tensors in the spatial dimension (see Equation (6)).

fh ∈ RC/r×H (6)

fw ∈ RC/r×W (7)

In addition, two 1 × 1 convolution transformations Fh and Fw were used to transform
f h and f w respectively, and we obtained Equations (8) and (9):

gh = σ
(

Fh

(
fh
))

(8)

gw = σ(Fw(fw)) (9)

Then, the outputs gh and gw were expanded and used as attention weights. Finally,
the output y of our coordinate attention block can be written as Equation (10):

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (10)

3.2.3. EIoU

To address special cases like inclusion and overlap, scholars have introduced Gener-
alized Intersection over Union (GIoU) [45], Distance Intersection over Union (DIoU) and
CIoU losses. However, CIoU has limitations due to varying aspect ratios. Our network
introduces EIoU (see Equations (11) and (12)):

LEIoU& = LIoU + Ldis + Lasp = 1 − IoU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

C2
w

+
ρ2(h,hgt)

C2
h

(11)

LFocal−EIoU = IoUγLEIoU (12)

EIOU extends CIoU by incorporating the difference between the prediction and the
minimum bounding box size to enhance aspect ratio loss. EIoU takes into account various
geometric properties between two bounding boxes, such as width, height, center point
distance, and their correlation with the convex hull. EIoU aims to offer a more precise
measure of bounding box similarity, particularly in cases of incomplete overlap or signif-
icant shape differences. It is employed in object detection tasks to enhance the accuracy
of measuring the similarity between object bounding boxes, thereby improving object
detection performance. This leads to quicker convergence, enhanced regression accuracy,
and the application of focal loss to address sample imbalance and prioritize high-quality
anchor boxes during regression.

3.2.4. Deformable Convolutional Network

The Deformable Convolutional Network (DCN) is a CNN variant characterized by the
integration of a deformable mechanism into the convolution and Region of Interest (RoI)
pooling modules. This mechanism enables the network to learn the sampling position offset
to accommodate various task requirements. Unlike traditional fixed convolution, which
maintains a static convolution kernel, the deformable convolution dynamically adjusts
the position and shape of the kernel at each pixel to match the feature distribution in the
input image. This convolution operation is often used in computer vision tasks such as
object detection and segmentation because it is better able to capture the characteristics of
irregular objects.

Traditional convolution operations employ fixed convolution kernels. In convolution
operations, the weights of the convolution kernels remain fixed and cannot adapt to features
at various locations and scales. In some cases, the feature distribution may vary greatly
in the image, which requires a convolution operation that can be adaptively adjusted
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according to the location and shape of the feature. Deformable convolution introduces
two key concepts: offset and modulation. The offset vector of each pixel indicates the
sampling location in the input image for the convolution kernel. Modulation information
dynamically adjusts the shape of the convolution kernel to match various feature shapes.
The specific operation of variable convolution is to use offset information to adjust the
position of the convolution kernel for each pixel so that it corresponds to a specific position
in the input image. Next, the modulation information is used to adjust the shape of the
convolution kernel to adapt to the scale and shape of the feature. Finally, a convolution
operation is applied at this location to generate the output feature map. Deformable con-
volution is particularly beneficial in object detection as it can adapt to object shape and
position without being constrained by a fixed kernel size and shape. It is also applicable
in segmentation tasks to more accurately capture object boundaries and positions. A key
feature of Deformable Convolutional Networks is that their inputs and outputs are identical
to those of regular convolution and RoI pooling modules. Therefore, they can directly
replace traditional modules without altering the existing CNN architecture. Implementing
deformable convolution typically involves calculating offset and modulation information.
This information can be learned by the network, often through additional convolutional
layers that generate offset and modulation information. Additionally, implementing de-
formable convolution may necessitate custom convolution layers to adjust the convolution
kernel based on offset and modulation information.

4. Experimental Design
4.1. Dataset and Evaluation Metrics

To further validate the object detection performance of the proposed network, we
selected the publicly available remote sensing image military aircraft target recognition
dataset MAR20, which is currently the largest dataset for aircraft target recognition [46].
MAR20 consists of 3842 images, covering 20 aircraft models with 22,341 instances, mak-
ing it the largest dataset for aircraft target recognition in remote sensing images. The
selected aircraft models in this dataset include common types such as SU-35 fighter jets,
TU-160 bombers, and TU-22 bombers, resulting in relatively small inter-class differences
(see Figure 4).
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Additionally, due to factors such as illumination, atmospheric scattering, and weather
conditions, aircrafts of the same category may exhibit different shapes in the dataset,
posing challenges for object detection. Furthermore, most images in this dataset are
640 × 640 pixels, with highly diverse target sizes ranging from less than 100 pixels to more
than 200 pixels, which further complicates the task of object detection.

To objectively assess the performance of the network model, we evaluated it from two
perspectives: model size and detection rate. We defined five parameters for the training
process, including model parameter count, model size, detection rate, recall rate, and
mAP@0.5. Simultaneously, to assess the object detection speed of the network, we defined
four parameters for the detection process: Pre-processing time, inference time, NMS time,
and Frames Per Second (FPS).

4.2. Experimental Setup

Table 1 is some information about software, hardware and parameter settings.

Table 1. Information about software, hardware and parameter settings.

GPU NVIDIA A16 GPU 15 GB RAM

CPU Intel Xeon Gold 5318Y

deep learning framework PyTorch 1.12.0

training iterations 300

batch size 128

initial learning rate 0.01

Final OneCycleLR learning rate 0.1

weight decay 0.01

momentum 0.937

4.3. Performance Comparison of Baseline Models and Enhanced Models
4.3.1. Training Results

To comprehensively compare the performance of this lightweight network, we selected
GhostNet [13], PP-LCNet [14], MobileNetV3, and MobileNetV3s as benchmark models.
The experiments were conducted by replacing the backbone network of YOLOv5n with
each of these models. The experimental results are presented in Table 2.

Table 2. Experimental results of replacing the backbone network of YOLOv5n with each of these models.

Parameters Weights P R mAP@0.5

YOLOv5n 1,790,977 3.78 M 0.968 0.950 0.979
Ghost-Net 2,413,849 19.3 M 0.924 0.925 0.952
PP-LCNet 248,597 0.9 M 0.768 0.795 0.844

Mobile-NetV3 2,507,231 19.9 M 0.936 0.925 0.967
MobileNetV3s 816,591 2.0 M 0.916 0.869 0.936

Proposed 408,503 1.13 M 0.912 0.913 0.952

The results above demonstrate a notable reduction in parameter count, model size,
and floating-point computations compared to the original YOLOv5n network structure.
Compared to PP-LCNet and MobileNetV3s, which have similar model sizes, our model
exhibits advantages in both performance and model size. Despite being nearly 20 times
larger in model size than MobileNetV3 and Ghost-Net, our model achieves a size reduction
of almost 20 times while sacrificing only 1.5% of performance compared to MobileNetV3,
and even performing comparably to Ghost-Net.

It is important to note that, in striving for the optimal balance between detection
performance and resource consumption, we made the reluctant decision to sacrifice a
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2.7-percentage-point improvement in detection efficiency. The detection rate is evidently
a crucial evaluation metric in remote sensing object detection networks. Historically, we
have devoted considerable effort solely to improving the detection rate. We have also
made related attempts, such as using more sophisticated network structures to improve
the detection rate, with notable examples being the addition of the pyramid structure
ASPP (Atrous Spatial Pyramid Pooling). However, after extensive experimentation and
analysis, we discovered that, for remote sensing object detection networks, many of our
efforts are marginal once the detection rate reaches a certain high level (e.g., around 0.95).
In practical terms, the differences are not significant, but the increase in memory and
computational consumption due to more complex network structures is often rapid. Our
network resulted in a reduction in the number of parameters to approximately one-fifth
of the original YOLOv5n network and a decrease in model file size to approximately
one-third. This is highly advantageous for deployment on lightweight mobile platforms.
Therefore, we believe that the 2.7% loss in detection rate is worthwhile. In the following
experiments, we will further study how to narrow the gap in detection rate with the original
network as much as possible while maintaining the current memory and computing
power consumption.

Consequently, our network attains an excellent balance between model size
and performance.

4.3.2. Detecting Results

To further evaluate the network’s detection speed, we tested it using the MAR20
dataset on an embedded NVIDIA Jetson Xavier NX device, comparing it with the afore-
mentioned networks. The platform configuration can be found in Table 3.

Table 3. Information of embedded device.

CPU Carmel ARM®v8.2 8 GB

GPU NVIDIA Volta™ GPU 8 GB

Computing Power 21TOPS

For experimental results, refer to Table 4.

Table 4. Detecting results of replacing the backbone network of YOLOv5n with each of these models.

Pre-Process Inference NMS FPS

YOLOv5n 1.6 ms 41.0 ms 4.1 ms 21.4
GhostNet 1.5 ms 51.8 ms 3.5 ms 17.6
PP-LCNet 2.1 ms 30.0 ms 4.0 ms 27.7
MobileNetV3 1.5 ms 64.5 ms 4.1 ms 14.3
MobileNetV3s 1.7 ms 40.1 ms 3.6 ms 22.0
Proposed 2.5 ms 37.6 ms 4.1 ms 22.6

Figure 5 provides examples of testing the same image in MAR20 using both our
network and YOLOv5n. Our network can identify the position and categories of the aircraft
target even when it is occluded or overlapped, relying on its local characteristics. To verify
our detection results, we also display the detection results of YOLOv5n on the same images
in Figure 5. The comparison results show that the position and category information of the
aircraft target identified by the local features at the edge of the image are all correct.
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Figure 6 demonstrates that our network can effectively separate dense small aircraft
targets and accurately perform position and classification regression.
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In certain scenarios, YOLOv5n exhibits excessive sensitivity to local target char-
acteristics, resulting in false detections where areas with similar features at the image
edge are misclassified as aircraft targets. Our network mitigates this issue, as shown in
Example Figure 7.
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For certain aircraft categories with small target sizes and less distinct features in certain
remote sensing images, such as A20, YOLOv5n is prone to missed detections, whereas our
network has addressed this issue, as depicted in Figure 8.
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Although there are discrepancies between our network and the original YOLOv5n in
metrics such as mAP@0.5, the image test results demonstrate that our network accurately
captures the position of each aircraft target in object detection. For the fine-grained classifi-
cation of aircraft with similar characteristics, such as A11, A18 and A20, the probability of
being misjudged will increase, which will be among the main focal points for our future
improvement endeavors.

4.4. Results of Ablation Experiments

To further validate the effectiveness of our innovations, we also conducted ablation
experiments on the proposed network. Table 5 provides the specific ablation experiment
comparison network settings.

Table 5. Detailed settings of ablation experiment.

YOLOv5n CA ShuffleUnit EIoU Deformable Conv

4.4-a ✔

4.4-b ✔ ✔

4.4-c ✔ ✔

4.4-d ✔ ✔ ✔

4.4-e ✔ ✔ ✔ ✔

Proposed ✔ ✔ ✔ ✔ ✔

Also, using Mar20 as the experimental dataset, we have listed the experimental results
in Table 6.

Table 6. Results of ablation experiment.

Parameters Weights P R mAP@0.5

4.4-a 1,790,977 3.78 M 0.968 0.950 0.979
4.4-b 1,799,335 3.80 M 0.967 0.957 0.982
4.4-c 229,889 0.80 M 0.689 0.732 0.784
4.4-d 278,625 0.88 M 0.896 0.866 0.927
4.4-e 279,621 0.90 M 0.909 0.881 0.936

Proposed 408,503 1.13 M 0.912 0.913 0.952

The experimental results in the table above clearly indicate that each innovation we
introduced has had a certain impact compared to the original network. However, for the
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fine-grained classification of aircrafts with similar features, such as A11, A18, and A20,
the probability of misclassification increases. This will be a primary focus of our future
improvement efforts.

4.5. Results of Generalization Experiments

We conducted a series of experiments to verify the generalization of the proposed
method and to evaluate its performance in detecting various remote sensing targets. Besides
aircraft targets, we detected three common remote sensing targets, oil tanks, cars, and trucks,
for remote sensing image target detection [47,48]. The experimental results demonstrate
the effectiveness of our method in detecting these targets, achieving a high detection rate.
Specifically, the detection rate for oil tank targets was 93.8%, and for car and truck targets,
it was 99.5% and 98.9%, respectively. Therefore, our network can train and detect small-
sized objects well in remote sensing images such as vehicles and aircraft. These results
further confirm the effectiveness and generalizability of our proposed method, indicating
its potential application in various remote sensing target detection tasks. Therefore, we are
confident in the scalability and applicability of the proposed method and anticipate further
exploration of its performance and application across a broader range of remote sensing
scenarios in future research.

The experimental results can be found in Figure 9.
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At the same time, we also list some detailed experimental data in Table 7. It can be
seen that whether it is Recall or Precision, our experimental results are very satisfactory.

Table 7. Detecting results of replacing the backbone network of YOLOv5n with each of these models.

Class P R mAP@0.5

Oil tanks 0.667 0.908 0.938
Cars 0.985 1 0.995
Trucks 1 0.815 0.989

5. Conclusions

This article introduces an ultra-lightweight remote sensing aircraft object detection
network based on YOLOv5n. To balance detection accuracy and speed, we draw inspiration
from Shufflenet v2. Utilizing grouped convolution and channel shuffling methods, we
constructed ShuffleUnit as the component unit of the feature extraction network. Shuffle-
Unit defines a deep convolution operation and implements group convolution through
the connection of two branches and the rearrangement of channels, thereby improving
the nonlinear expression ability of the network and reducing the amount of calculation.
Additionally, we implemented forward propagation to include channel splitting, branch
calculation, and channel rearrangement. In contrast to many similar lightweight networks,
we opted for an extreme lightweight approach by abandoning the alternate connection of
C3 modules and lightweight modules in the original YOLOv5 network, and instead, we
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boldly connected six shuffleblocks in series. Furthermore, to further enhance the network’s
performance, we embedded the CA attention mechanism at the end of the backbone. CA is
an attention mechanism that can efficiently obtain inter-channel information and position
information at the same time. The CA module encodes channel relationships and long-
range dependencies with precise location information [21], thereby helping the network
locate objects of interest more accurately. Additionally, we replaced the CIoU in the original
network with the more advanced EIoU for the loss function, enhancing the aspect ratio
loss by considering the difference between the prediction and the minimum bounding box
size. Finally, to better handle deformation for irregular areas and targets, we optimized
some traditional convolutions into deformable convolutions, resulting in a reduction in the
number of parameters.

Experimental results on the public dataset MAR20 demonstrate that our lightweight
network, compared to the original YOLOv5n network, has approximately one-fifth of
its parameter count, achieving a 6.5% increase in Frames Per Second (FPS) with only a
slight 2.7% decrease in mAP@0.5. Moreover, it has a compact model volume of only
1.13 MB. After deployment on the embedded device, the network achieved an FPS of
22.8 even with relatively limited computing power, enabling real-time object detection.
Finally, based on YOLOv5n, experiments were conducted on models with lightweight
networks such as Shufflenet v2, GhostNet, PP-LCNet, MobileNetV3, and MobileNetV3s
as the backbone network, comparing detection accuracy, model size, and detection speed.
The results achieved the optimal balance, confirming the feasibility and superiority of the
network. Furthermore, a series of ablation experiments were conducted on the proposed
network to further validate the effectiveness of our innovations. The results show that
each innovation point added produces a certain degree of effect compared to the original
network. According to the experimental results, our network accurately captured the
position of each aircraft target in the position regression problem of object detection. For
the fine-grained classification of aircraft with similar characteristics, such as A11, A18, and
A20, the probability of misjudgment increases, which will be a primary focus of our future
improvement efforts.
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