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Abstract: Superpixel segmentation has been widely used in the field of computer vision. The genera-
tions of PolSAR superpixels have also been widely studied for their feasibility and high efficiency.
The initial numbers of PolSAR superpixels are usually designed manually by experience, which has a
significant impact on the final performance of superpixel segmentation and the subsequent interpre-
tation tasks. Additionally, the effective information of PolSAR superpixels is not fully analyzed and
utilized in the generation process. Regarding these issues, a multiobjective evolutionary superpixel
segmentation for PolSAR image classification is proposed in this study. It contains two layers, an
automatic optimization layer and a fine segmentation layer. Fully considering the similarity informa-
tion within the superpixels and the difference information among the superpixels simultaneously, the
automatic optimization layer can determine the suitable number of superpixels automatically by the
multiobjective optimization for PolSAR superpixel segmentation. Considering the difficulty of the
search for accurate boundaries of complex ground objects in PolSAR images, the fine segmentation
layer can further improve the qualities of superpixels by fully using the boundary information of
good-quality superpixels in the evolution process for generating PolSAR superpixels. The experi-
ments on different PolSAR image datasets validate that the proposed approach can automatically
generate high-quality superpixels without any prior information.

Keywords: superpixel segmentation; multiobjective optimization; evolutionary algorithm; PolSAR
image classification

1. Introduction

Synthetic Aperture Radar (SAR) is not sensitive to atmospheric and lighting condi-
tions [1]. Polarimetric SAR (PolSAR) can enhance the performance of SAR in acquiring
targets and more specific information on targets, which plays an important role in national
defense, military reconnaissance, agricultural monitoring, and many other fields [2,3]. The
traditional pixel-based PolSAR image interpretation results may bring a huge amount
of computation and contain many misclassification regions resulting from speckle noise.
Addressing the above issues, superpixel generation becomes an important step in PolSAR
interpretation [4,5]. A superpixel is a set of continuous small regions composed of adja-
cent pixels with similar characteristics in the image, which can retain the spatial feature
information of the original image. The image processing based on superpixels can improve
efficiency greatly and reduce the influence of speckle noise in PolSAR images [6–8].

The superpixel generation approaches can be divided into two categories, cluster-
based methods and graph-based methods. The cluster-based methods group pixels into
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multiple clusters, and each cluster is a superpixel block. The current mainstream cluster-
based methods mainly include simple linear iterative clustering (SLIC) [9], energy-driven
sampling (SEEDS) [10], Turbopixel (TP) [11], linear spectral clustering (LSC) [12], mean
shift (MS) [13], quick shift (QS) [14], and depth-adaptive superpixel (DAS) [15]. SLIC
is a linear iterative clustering method that generates superpixels by assigning pixels to
the most relevant seeds within a fixed distance range. SLIC needs to set the number of
superpixels in advance and has linear time complexity, where linear time complexity refers
to the linear relationship between the execution time occupied by the algorithm and the
input image size. SEEDS utilizes the guidance of energy function to find the optimal
path on the image. Since only the pixels near the edge of the superpixel are considered,
the calculation efficiency is high. TP is a more commonly used morphological method,
which uses a geometric flow method to construct a set of regularly distributed seeds. The
generated superpixels have good uniformity and compactness while the edge fitting is
poor. Although TP has linear complexity, it is much slower than SLIC. LSC can improve the
superpixel segmentation performance by using the kernel function to achieve normalized
cutting, which retains the global properties of the image. MS is a non-parametric clustering
and density estimation method that finds the cluster centers of the data by finding the
regions with the highest probability densities in the data distribution. It does not need to
set the number of superpixels in advance. However, it is still sensitive to the initialization
and the noise, and the computational complexity is high. QS simply moves each pixel to
the nearest pixel where the probability density increases. It can generate relatively good
boundary compliance for superpixels without the need to specify the number of superpixels
in advance. With the depth information of the image, DAS can generate superpixels in
real-time by calculating the density of the superpixel cluster and updating the cluster center
using a multi-scale method. Graph-based methods include normalized Cut (N-cut) [16],
Graph-Based Segmentation (GS) [17], Pseudo-Boolean (PB) [18], and Lazy Random Walk
(LRW) [19]. N-cut minimizes the global segmentation error by normalizing the eigenvector
of the Laplacian graph matrix, but its operation efficiency is not good enough. GS is
an efficient graph-based segmentation algorithm that requires cohesive clustering and
minimum spanning tree construction. The superpixels generated by GS have good edge
fitting, but the shapes and sizes are irregular. PB transforms the superpixel segmentation
into the label assignment problem, which is the binary labeling problem of the Markov
random field. The number of superpixels does not affect the speed of PB, which breaks the
bottleneck of the traditional algorithms. LRW is derived from the Random Walk algorithm
(RW). After initialization, LRW moves seeds continuously through the guidance of energy
function to achieve seed thinning.

Although the traditional superpixel generation approaches can achieve excellent per-
formance on optical images, it is not feasible to apply these methods to PolSAR images
directly to achieve enough segmentation performance. They do not consider the polar-
ization information in PolSAR images at all. The traditional distance measurements are
also not suitable for PolSAR images. Due to the different properties of ground targets, the
search for the accurate boundaries of the superpixels becomes more complex and more
difficult. Addressing the above issues, many improved superpixel segmentation techniques
have been proposed in recent years. Qin et al. [20] improved the initialization and post-
processing steps of SLIC to overcome the influence of speckle noise. Ersahin et al. [21]
applied a spectral graph partitioning algorithm for PolSAR image superpixel segmentation
and classification, which improved the performance of automated analysis through spatial
proximity and graph segmentation. Xiang et al. [22] introduced polarization uniformity
measurement from adaptive polarization and spatial information to control superpixels’
shapes and compactness. However, these approaches need to determine the number of
superpixels manually in advance, which requires the designer’s rich prior knowledge. The
number of superpixels has a significant impact on the final segmentation performance and
the subsequent tasks. In addition, the objectives of traditional superpixel segmentation
algorithms are defined as the weighted sum of different indexes to ensure the superpixel
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quality. These weights have a significant impact on the final segmentation performance,
and are usually set as constants manually in advance. Obviously, it is not easy to deter-
mine the universal weights for all situations. Furthermore, most of the existing superpixel
segmentation algorithms generate superpixels with uneven distribution and do not make
full use of excellent superpixel information in the generation process. To deal with the
above issues, this study proposes a multiobjective evolutionary superpixel segmentation
(MOES) for PolSAR image classification. The superpixel generation for PolSAR images is
defined as a multiobjective optimization without any weights set before, where the similar-
ity information within the superpixels and the different information among the superpixels
can be fully considered. The boundary information of excellent superpixels is introduced
into the evolutionary operator to generate new superpixels with more accurate boundaries
of complex ground targets in PolSAR images. With the optimal solutions obtained by
multiobjective optimization for superpixel segmentation, the most suitable number of
superpixels can be determined automatically, and high-quality superpixel segmentation
can be achieved. MOES consists of two layers, an automatic optimization layer and a fine
segmentation layer. The main contributions can be summarized as follows:

1. The superpixel generation for PolSAR images is defined as a multiobjective optimization
problem. the automatic optimization layer can optimize the similarity within the super-
pixels and the difference among the superpixels simultaneously. The suitable number of
superpixels can be determined for the observed PolSAR image automatically.

2. The fine segmentation layer can further improve the segmentation performance by
fully using boundary information, where the boundary information of the good-
quality superpixels is incorporated into the specific evolutionary operator to generate
better superpixel segmentation results. It is helpful to search for the accurate bound-
aries of complex ground targets.

The rest of this study is organized as follows. The related works of PolSAR superpixel
segmentation and multiobjective evolutionary algorithms are introduced first. Then, MOES
is described in detail. In Section 4, the studies on MOES and the comparison experiments
are analyzed. The conclusion and future work are provided last.

2. Related Works
2.1. Superpixel Segmentation for PolSAR Images

In recent years, a variety of superpixel segmentation techniques for PolSAR images
have been proposed by introducing scattering information to ensure segmentation perfor-
mance. The existing PolSAR superpixel segmentation methods can be divided into five
categories: the density-based method [13], the graph-based method [16], the contour evolu-
tion method [11], the energy optimization method [23], and the cluster-based method [9].
For the density-based method, Lang et al. [24] proposed a generalized mean shift algorithm
for PolSAR images. Through adaptive bandwidth and advanced processing strategies, the
segmentation performance could be improved effectively. It is difficult for density-based
algorithms to control the number of superpixels. As one of the graph-based approaches, Liu
et al. [25] modified the N-cut algorithm by combining modified Wishart distance and edge
graphs. Wang et al. [26] realized effective segmentation of homogenous and heterogeneous
regions in PolSAR images by integrating different distance measures and introducing an
entropy rate method. The graph-based methods are relatively complex and have high
computational requirements. For the contour evolution method, Liu et al. [27] used a TP
algorithm to segment PolSAR images into several superpixels and residual pixels for final
classification. For the energy optimization method, Yang et al. [23] proposed a novel layered
energy-driven PolSAR image segmentation method that used the histogram intersection
of the coherence matrix and Wishart energy to generate coarse and fine-level superpixels,
respectively. The computation of the energy optimization method is relatively high. Com-
pared with other approaches, the cluster-based methods can obtain dense regions with
controllable numbers and regular shapes. Most of the cluster-based methods utilize the
principles of clustering algorithms and distance measurements based on both polarization
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and spatial information. Qin et al. [20] proposed a local iterative clustering superpixel
generation algorithm that used Wishart distance to calculate the similarity between pixel
points and then used the clustering method to generate superpixels. Hou et al. [28] pro-
posed a decomposition feature iterative clustering method that used the decomposition
of pixel features and spatial positions to cluster. It introduced a new pixel similarity and
reduced the influence of speckle noise. Li et al. [29] proposed a new cross-iterative strategy
for PolSAR superpixel segmentation that combined an improved Wishart distance and
geodesic distance to generate stable superpixels with a high boundary recall rate (BR). Guo
et al. [30] proposed an adaptive fuzzy super-pixel segmentation method that introduced the
correlation of polarization scattering information into pixels and adjusted the proportion
of undetermined pixels adaptively. Although these superpixel segmentation techniques
can achieve good performance for PolSAR images, most of them need to determine the
number of superpixels manually in advance. The number of superpixels has a significant
impact on the final segmentation performance and even the subsequent tasks. Additionally,
the effective information of PolSAR superpixels is not fully mined and utilized in the
generation process.

2.2. Multiobjective Evolutionary Algorithm

When it is necessary to weigh the importance of multiple objective functions of an
optimization problem, multiobjective optimization [31] is one of the most popular strategies.
A multiobjective optimization problem (MOP) is usually converted to a minimization
optimization problem, which is expressed mathematically by:

min F(x) = ( f1(x), f2(x), . . . , fk(x))T

subject to x = (x1, x2, . . . , xn)
T ∈ Ω

, (1)

The objective function F(x) contains k subproblems to be optimized simultaneously.
x ∈ Ω represents a feasible solution of F(x), and n represents the dimension of x. Ω
represents a solution space containing all possible solutions. If and only if the condition
formula in Equation (2) is satisfied, it is said that xA ∈ Ω dominates xB ∈ Ω with the
writing of xA ≻ xB. For x∗ ∈ Ω, if no vector x ∈ Ω satisfies the condition x ≻ x∗, x∗ ∈ Ω is
called a Pareto solution [32].

∀i = 1, 2, . . . , k fi(xA) ≤ fi(xB)
∧∃ j = 1, 2, . . . , k fi(xA) < fi(xB)

, (2)

With multiobjective optimization, a set of Pareto solutions is obtained. All Pareto
solutions are deconstructed into Pareto sets (PS). Pareto front (PF) is formed by mapping
all Pareto solutions to the objective space according to the objective function F(x). It is the
solution set of PS in the objective space defined by:

PF∗ =
{

F(x∗) = ( f1(x∗), f2(x∗), . . . , fk(x∗))T
∣∣∣x∗ ∈ PS∗

}
, (3)

According to the definitions of PS and PF, a MOP is transformed into searching for
Pareto solutions that are close to the real PF. Evolutionary algorithms (EA) [33] can solve
complex optimization problems by simulating the biological evolution process, which
is one of the most popular techniques for MOPs. The EA-based algorithms for MOPs
are collectively referred to as multiobjective evolutionary algorithms (MOEAs) [34,35].
MOEAs can be divided into three types according to their evolution strategies [36]. The
first type is based on Pareto dominance, and Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [37] is one of the most representative algorithms. The second type is based
on decomposition, which decomposes the original MOP into multiple single-objective
optimization subproblems through the aggregation function [38]. MOEA/D [39] is one
of the most classic algorithms. The third type is based on the index-based method. They
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take the measurement index as the objective function directly, which is suitable for high-
dimensional MOPs [40], but they always have high computation complexities.

In recent years, a variety of image-processing techniques via MOEAs have been pro-
posed. Zhang et al. [41] proposed a multiobjective evolutionary fuzzy clustering via
MOEA/D for noisy image segmentation, which could preserve image details while re-
moving noise. In Ref. [42], an unsupervised fuzzy clustering based on NSGAII for image
segmentation was proposed, where local and nonlocal spatial information derived from
observed images were incorporated into the clustering process. Zhong et al. [43] proposed a
multiobjective adaptive differential evolution for fuzzy clustering of remote sensing images
by optimizing two cluster indexes simultaneously. Hinojosa et al. [44] proposed a multiob-
jective color threshold segmentation method to weigh the color channels of images, preserve
the channel relationship, and reduce the influence of overlap. Tahir et al. [45] proposed a
multiobjective optimization based on an improved bee swarm to segment color images by
optimizing intra-domain compactness and inter-domain separation simultaneously.

3. Methodology
3.1. Overall Framework

As shown in Figure 1, MOES contains two layers, an automatic optimization layer
and a fine segmentation layer. The automatic optimization layer aims to determine the
number of superpixels automatically by optimizing the compactness within superpixels
and the separation among superpixels simultaneously. On the basis of the output of
the automatic optimization layer, the fine segmentation layer pursues high-performance
superpixel segmentation by using the boundary information of excellent superpixels in the
exploration of evolution.
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3.2. Automatic Optimization Layer

As shown in Figure 1, the automatic optimization layer is defined on a multiobjective
evolutionary fuzzy clustering for superpixel segmentation. The compactness with superpix-
els and the separation among superpixels are optimized simultaneously. To determine the
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superpixel number adaptively, a special individual encoding method is designed, where
each superpixel center is controlled by a corresponding activation index.

3.2.1. Fitness Functions

The observed PolSAR image can be represented by I = {I1, I2, . . . , Ii, . . . , IN}, where
Ii represents the ith element in the pixel set, and N represents the total number of pixels in
the PolSAR image. The fitness functions can be defined by:

min F(z) = min{Jm(z), XB(z)} (4)

Jm(z) =
N

∑
i=1

∑
j∈Ni

µ2
ijD(Ii, zj) (5)

XB(z) =

N
∑

i=1
∑

j∈Ni

µ2
ijD(Ii, zj)

N · min
p ̸=q

(D(zp, zq))
(6)

µij =


[

∑
zk∈Ni

( D(Ii ,zj)

D(Ii ,zk)

)2
]−1

i f j ∈ Ni

0 otherwise

(7)

The first objective function Jm represents the sum of weighted distances from the
pixels to the superpixel centers, which can maximize the compactness of the superpixels.
The second objective function XB aims to maximize the degrees of separation between
the superpixels. cmax represents the maximum number of superpixels. z = (z1, z2, . . . , zc)

T

represents a set of superpixel centers, and c is the current superpixel number. Ni represents
the 2S × 2S neighborhood range of pixel Ii. S is the initial grid width of each region
obtained by dividing the observed PolSAR image into cmax square regions. µij represents
the fuzzy membership degree of the ith pixel Ii to the jth superpixel center zj. D represents
the distance measurements between the pixels and the superpixel centers, which can be
calculated by:

D(Ii, zj) =

√(dw(Ii, zj)

mpol

)2

+

(dxy(Ii, zj)

S

)2

(8)

dw(Ii, zj) = ln(

∣∣∣Tzj

∣∣∣∣∣TIi

∣∣ ) + Tr(Tzj
−1TIi )− 3 (9)

dxy(Ii, zj) =
√
(xIi − xzj)

2 + (yIi − yzj)
2 (10)

In Equation (8), dw(Ii, zj) represents the Wishart distance between pixel Ii and the
superpixel center zj. dxy(Ii, zj) represents the Euclidean spatial distance between pixel Ii

and superpixel center zj.
(
xIi , yIi

)
and

(
xzj , yzj

)
are the coordinates of the pixel Ii and the

superpixel center zj in the PolSAR image. xIi and yIi are the coordinates of the pixel Ii. xzj

and yzj are the coordinates of the superpixel center zj on the PolSAR image, respectively.
mpol is a compact parameter. In Equation (9), TIi and Tzj represent the feature vector of
pixel Ii and the superpixel center zj, respectively. Tr(Tzj

−1TIi ) shows the trace of the matrix
Tzj

−1TIi , and | · | represents the determinant of the matrix. In the PolSAR images, each
pixel can be represented by a scattering matrix Sc as follows:

Sc =
[

ScHH ScHV
ScVH ScVV

]
(11)
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T =
〈

kPk∗P
T
〉
=

T11 T12 T13
T21 T22 T23
T31 T32 T33

 (12)

where the subscripts H and V represent the horizontal and vertical polarization, respec-
tively. ScHH and ScVV represent the energy of the co-polarization. ScHV and ScVH repre-
sent the energy of the cross-polarization. All of them are complexed values. Accord-
ing to the reciprocity theorem, the above equation satisfies the condition of ScHV =

ScVH . With the scattering vector kP = [SHH + SVV , SHH − SVV , 2SHV ]
T/

√
2, a coher-

ent matrix can be obtained in Equation (12). Then, each pixel can be represented by
[T11, T12, T13, T21, T22, T23, T31, T32, T33]

T .

3.2.2. Encoding and Initialization

(1) Individual encoding

In the automatic optimization layer, each individual in the population is one solution
of superpixel segmentation for the observed PolSAR image. Figure 2 shows the individual
encoding in the automatic optimization layer. Each individual consists of two parts, the su-
perpixel centers and the activation indexes. The number of superpixel centers is cmax. Each
superpixel center is represented by 11 genes, coordinates, and nine-dimensional features.
The value range of the activation indexes is [0, 1]. There is a one-to-one correspondence
between the superpixel center and the activation index. Only when the activation index is
not less than 0.5 is the corresponding superpixel center effective, which is regarded as one
candidate superpixel center. Thus, the individuals with the same length in the population
have a different number of superpixels.
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(2) Population initialization

The population initialization includes the initializations of the activation indexes and
the superpixel centers. The activation indexes are initialized randomly within the range
of [0, 1]. In the initialization of the superpixel centers, we generate one individual by the
centers of cmax square regions of the observed PolSAR image. The superpixel centers of
other individuals are initialized by a random pixel within these cmax square regions. Then,
all the superpixel centers in each individual are replaced by the pixels with the lowest
gradient value in the 3 × 3 neighborhood of the current superpixel centers. It is helpful to
avoid selecting the pixels in the edges as the superpixel centers.

3.2.3. Evolutionary Operators

(1) Differential evolution strategy

After population initialization, the evolution of the automatic optimization layer starts.
The evolutionary operations on the superpixel centers are defined in a differential evolution
strategy, as shown in Figure 3. The detailed evolution formulas can be shown as follows:

vi = pi + F · (pr1 − pr2), where i ̸= r1 ̸= r2 (13)
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uj
i =

{
vj

i i f randj
i < CR or j = jmd

pj
i otherwise

(14)

where pi represents the ith individual in the population. pr1 and pr2 are two individuals
selected randomly from the population. F is the mutation coefficient. CR is the crossover
probability. To determine the values of F and CR adaptively, these two parameters can be
encoded into individuals, where the values of F and CR are initialized within the range
of [0.5, 0.9]. Then, these two values can be updated by the evolutionary operators. vi
is the candidate individual generated by three parent individuals in Equation (13). In
Equation (14), jmd represents a dimension number selected randomly in advance, which is
to ensure the effectiveness of the evolutionary operator. When the random value within
[0, 1] is smaller than CR or the current dimension number j equals jmd, the jth gene of
the new offspring ui is defined by the jth gene of the candidate individual vi. Then, the
corresponding activation index corresponding to the superpixel center uj

i also changes by:

α
j
i =

 (2randj)
1

η+1 − 1 i f randj < 0.5

1 − [2(1 − randj)]
1

η+1 otherwise
(15)

where α
j
i represents the jth activation index in the offspring ui. randj is a random value

between 0 and 1. η is a distribution index, which is usually set to 1. If uj
i = pj

i , it means that
the superpixel center of the offspring ui is inherited by the parent individual pi completely.
Then, the corresponding activation index of the offspring ui is also the same as that of the
parent individual pi.
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Figure 3. Differential evolution strategy.

(2) Individual selection and stop criteria

After the generation of new offspring, the parent individuals and the new offspring
are sorted by the non-dominant sorting and the crowding distance in NSGA-II. The better
half of all the individuals is selected as the new population. When the generation number of
the evolution equals the maximum generation number, the evolution in the automatic opti-
mization layer stops. The individual with the best function Jm is output. With the activation
indexes, we can obtain a set of superpixel centers and the exact number of superpixels.

3.3. Fine Segmentation Layer

With the exact number of superpixels, the fine segmentation layer pursues better
performance on the basis of the superpixels obtained by the automatic optimization layer.
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The objective functions in Equations (4)–(7) are still used as the fitness functions in the fine
segmentation layer. The encoding strategy and the evolutionary operators are designed to
further improve the qualities of superpixels.

3.3.1. Encoding for Fine-Tuning

(1) Individual encoding of fine segmentation layer

Based on the superpixels obtained by the automatic optimization layer, the search
of the fine segmentation layer aims to further improve the qualities of the superpixels.
Thus, the encoding strategy is the offset of the coordinates of superpixel centers in the fine
segmentation layer. The values of the offset are selected with the range of [−S′/2, S′/2]
randomly, where S′ is the grid width of each region obtained by dividing the observed
PolSAR image into c square regions. As shown in Figure 4, the individual is encoded as a
set of coordinates for the superpixel centers, where c is the number of superpixels. Let a set
of superpixel centers be elite. Combining the offsets of the individual and the coordinates
of superpixel centers of the elite, a candidate of superpixel centers can be obtained, which
is composed of the new coordinates of superpixel centers and the corresponding features
in the PolSAR image. Then, a new set of superpixel centers can be obtained by fine-tuning
the elite with the candidate, which can be computed by:

V j = (1 − q) · zj
e ⊕ q · zj

ĉ (16)
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V j is the jth superpixel center by fine-tuning. zj
e and zj

ĉ are the jth superpixel centers
of elite e and candidate ĉ. q is the fine-tuning weight, which is set to 0.1.

(2) Population initialization of fine segmentation layer

With the above encoding strategy, we can further perform a search based on the
existing superpixels. The initial population is generated randomly in the fine segmentation
layer. The initialization of the elite is based on the output individual of the automatic
optimization layer. Let the set of the superpixel centers decoded by the output individual
of the automatic optimization layer be zA. The neighbor pixels of the centers of zA with the
lowest gradient values in 3 × 3 square regions compose a new set of superpixel centers. We
can also obtain a new set of superpixel centers by performing fuzzy c-means (FCM) on zA,
where each pixel may only belong to the superpixel centers in the 2S′ × 2S′ region around
itself. The initial elite is selected as the one with the lowest Jm from the above three sets of
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superpixel centers. Then, the elite is updated by the individual with the lowest Jm in the
evolution of the fine segmentation layer.

3.3.2. Evolutionary Operators of Fine Segmentation Layer

(1) Evolutionary operators with boundary information

As shown in Figure 5, the evolutionary operator uses the boundary information of
superpixels with good qualities in the fine segmentation layer. The detailed evolution
formulas are shown as follows:

v′i =
{

p′i + F · (p′r1 − p′b) i f rand < CR
p′i + F · (p′r2 − p′r3) otherwise

(17)

u′
i,j =

{
v′i,j i f randi,j < CR or j = j′md
p′i,j otherwise

(18)

where p′i represents the ith individual in the current population. p′r1, p′r2, and p′r3 are three
individuals selected randomly from the population, and i ̸= r1 ̸= r2 ̸= r3. F and CR are
changed adaptively by the same strategy in the automatic optimization layer.
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In Equation (18), the evolutionary operation between the candidate individual v′i
and the parent individual p′i to generate the offspring u′

i is similar to Equation (14) in the
automatic optimization layer. p′b is the individual with the best boundary quality in the
population. The boundary quality of each individual can be measured by:

fb =

N
∑

m=1
∆Im · B(m)

N
∑

m=1
B(m)

, where B(m) = H

(
8

∑
n=1

H
(

L(m) ̸= L(n)(m)
)
> 2

)
(19)

∆Im is the gradient value of the mth pixel in the observed PolSAR image. H represents
the real indicator function, where H(true) = 1 and H( f alse) = 0. L(m) indicates the
superpixel where the mth pixel belongs, and L(n)(m) indicates the superpixel where the
nth neighbor pixel in 3× 3 neighborhood of the mth pixel belongs. When the number of the
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neighbor pixels that belongs to different superpixels is more than two, we set B(m) = 1. It
indicates that the mth pixel may be near or at the boundaries of the superpixels. When the
value of fb is bigger, the boundaries of the superpixels generated by the current individual
are closer to the edges of the ground objects in the observed PolSAR images. Thus, we
incorporate the individual with the best fb in the evolutionary operators to improve the
boundary quality of the population.

(2) Individual selection and final output

The selection strategy in the fine segmentation layer is the same as the one in the
automatic optimization layer. The better individuals are selected from both parent individ-
uals and the new offspring to update the population. When the generation number of the
evolution equals the maximum generation number, the evolution stops. The individual
with the best function Jm is decoded to obtain the final superpixels.

3.4. Complexity Analysis

In the automatic optimization layer, the population size is pop1, the maximum num-
ber of superpixels is cmax, and the total number of pixels in the PolSAR image is N. The
time complexity of initialization is O(pop1 × cmax), and the time complexity of the fitness
function calculation is O(pop1 × cmax × N). With the maximum generation number G1, the
time complexity of the automatic optimization layer is O(pop1 × cmax × N × G1). Similarly,
the time complexity of the fine segmentation layer is O(pop2 × c × N × G2), where c is
the suitable superpixel number, and pop2 and G2 are the population size and the maxi-
mum generation number in the fine segmentation layer, respectively. Thus, considering
the relationship between the number of pixels and the complexity of the method, the
computational complexity of MOES is linear.

4. Experiments Study
4.1. Experiment Settings
4.1.1. PolSAR Datasets

In order to verify the superpixel segmentation performance of MOES, we perform it on
three PolSAR datasets, which are Flevoland, Wei River in Xi’an, and San Francisco, respectively.

The Flevoland dataset [46] was an L-band multi-view PolSAR image obtained by the
AIRSAR airborne platform in 1989, with an image size of 210 × 330 and a resolution of
12 × 6 m. As shown in Figure 6, the scene is Flevoland in the Netherlands, which has
recognized ground authenticity to test natural vegetation and land cover. It includes nine
crop categories, which are Wheat1, Bare soil, Grasses, Wheat2, Beet, Rapeseed, Potatoes,
Stembeans, and Lucerne.
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The Wei River in Xi’an dataset [46] was generated in January 2010 under the fine
quad-polarization model of a RADARSAT-2 sensor. The image size is 512 × 512 and the
resolution is 10 × 5 m, as shown in Figure 7. There are three types of features in this area,
Grass, City, and Water.
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Figure 7. Wei River in Xi’an dataset. (a) Wei River in Xi’an image (PauliRGB); (b) ground truth.

The San Francisco dataset [47] was collected by a RADARSAT-2 platform in April
2008 with a resolution of 10 × 5 m and a C-band. As shown in Figure 8, the image size
is 1300 × 1300. There are five categories in this region, Ocean, Forest, low-density urban,
high-density urban, and Grassland.
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4.1.2. Metrics

In order to better measure the effectiveness of superpixel segmentation, undersegmen-
tation error (UE) and boundary recall (BR) are used as the metrics in this experiment [48].
UE can measure the extent of the areas of the superpixels beyond true ground objects by:

UE =
1

∑L
j=1
∣∣sj
∣∣
 M

∑
i=1

∑
sj |sj∩gi>0

∣∣sj
∣∣− L

∑
j=1

∣∣sj
∣∣ (20)

where sj is the jth superpixels,
∣∣sj
∣∣ indicates the number of pixels in sj, and the total number

of superpixels is L. gi is the ith segment of the ground truth, and the number of segments
is M. If a superpixel overlaps with more than one segment in ground truth, the value of
UE increases. The smaller UE is, the better the quality of the superpixels.

BR represents the degrees of the fits between the boundaries of superpixels and the
edges of true ground objects, which can be computed by:

BR =
1
Q

(
P

∑
p=1

Nlogical
(

min
nq

∥∥mp − nq
∥∥ < 2

))
(21)

where m and n are the boundary pixels obtained from the ground truth and the superpixels,
respectively. Q denotes the number of pixels in the boundaries of the ground truth. A
large value of BR indicates that the superpixels are not bad quality. In addition, the overall
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accuracy (OA), average accuracy (AA), and Kappa coefficient are utilized to quantify the
classification performance of the superpixels [49].

4.2. Studies on MOES
4.2.1. Parameter Settings

Considering the scales of different scenarios, the values of cmax are set as 800, 1100, and
2000 for the Flevoland dataset, the Wei River in Xi’an dataset, and the San Francisco dataset,
respectively. Considering the trade-off between the search ability and computation cost,
the population size and the maximum generation number are set as five and ten for both
layers in MOES, respectively. Figure 9 shows the sensitivity studies of the parameter mpol
in the Wishart distance on different PolSAR datasets. The horizontal coordinate represents
the values of mpol, and the vertical coordinate represents the values of UE and BR. The
values of mpol are set within the range of [1, 15], where the interval is five. In Figure 9a,
when mpol = 1, the maximum BR and the minimum UE can be obtained on the Flevoland
dataset. In Figure 9b,c, MOES performs best in the Wei River in Xi’an dataset and the San
Francisco dataset when mpol = 5. It can be seen that the suitable value of mpol changes
with different datasets. With the above observations, the values of mpol are set as one and
five for the Flevoland dataset and the other two PolSAR datasets, respectively.
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Figures 10 and 11 show the sensitivities of the population sizes and maximum genera-
tion numbers in the Flevoland dataset. In Figure 10, the best values of BR and UE obtained
by the different values of pop1 in the evolution process of the automatic optimization layer
are given. We set the population size pop1 to 5, 10, and 15, respectively. The maximum
generation number is set to 25. The curves of UE and BR are steeper because the automatic
optimization layer encodes the superpixel center as individuals directly, which has a rel-
atively significant randomness in the search. With the increase of the iteration number,
the UE shows an overall downward trend while BR shows an overall upward trend. It
indicates that better solutions appear in the evolution process. Moreover, the curves of
UE and BR of the evolution with different population sizes are not significantly different.
When the population size and the maximum generation number increase, the computation
complexity and the cost time also increase gradually. Considering both the performance
and the efficiency, we set the population size pop1 and the maximum generation number
G1 to five and ten, respectively.

Figure 11 shows the sensitivities of parameters pop2 and G2 in the fine segmentation
layer. With the increase of the iteration number, the curves of UE present an overall
downward trend, while BR presents an overall upward trend. The curves of both UE and
BR obtained by three population sizes essentially converge after 10 iterations. The fine
segmentation layer is evolved on the basis of the output of the automatic optimization
layer, so the convergence speed is faster. When pop2 equals 15, UE and BR are the best.
Although UE and BR are relatively worse when pop2 equals 5, the values of UE and BR are
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still not bad. In order to ensure the efficiency of MOES, we set the population size pop2
and the maximum generation number G2 to five and ten, respectively.
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4.2.2. PFs of MOES

MOES consists of an automatic optimization layer and a fine segmentation layer. Both
of these layers feature multiobjective evolution for superpixel segmentation and obtain
PFs. In the automatic optimization layer, PF is composed of superpixel segmentations with
different superpixel numbers. In the fine segmentation layer, the number of superpixels
is fixed, and PF is composed of superpixel segmentations with different performances.
Figures 12–14 show the PFs obtained by two layers of MOES in three PolSAR datasets.

In Figure 12, the left PF is obtained by the automatic optimization layer in the Flevoland
dataset, which is relatively uniform and has good convergence. Additionally, we select
three solutions of PF and compare their performances. Obviously, different numbers
of superpixels correspond to very different performances. Compared with the other
two solutions (b) and (c), solution (a) has the lowest Jm and better performance in both
numerical results and visual results. Based on solution (a), the fine segmentation layer
obtains the right PF. Compared with solutions (e) and (f), solution (d), with the lowest Jm,
achieves better performance in both numerical results and visual results. It validates the
effectiveness of selecting the final solution from PF by the lowest value of Jm. Furthermore,
it is obvious that the metrics of solutions obtained by the fine segmentation layer are
better than the ones obtained by the automatic optimization layer. It indicates that the
fine segmentation layer can further improve the qualities of superpixels obtained by the
automatic optimization layer.
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Figure 13 shows the PFs obtained by MOES in the Wei River in Xi’an dataset. The PF
of the automatic optimization layer is not smooth enough. It is a common situation in MOP
for practical applications due to the difficulty and complexity of practical problems. Among
the three solutions, solution (a), with the lowest Jm, performs best on most of the metrics
except for BR. The PF of the fine segmentation layer is uniform and smooth. The solutions
make a great improvement in all five metrics on the basis of solution (a), especially solution
(d), which has the lowest Jm. Moreover, compared with the visual results obtained by the
automatic optimization layer, the superpixels are more regular and uniform in the visual
results obtained by the fine segmentation layer.
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As shown in Figure 14, the PF of the automatic optimization layer in the San Francisco
dataset is relatively uniform, where the convergence is good. Among the three solutions,
solution (a), with the lowest Jm, has the best performance. Then, the fine segmentation
layer obtains more uniform superpixels and better performance, especially solution (d),
which has the lowest Jm.

4.2.3. Number of Superpixels in MOES

Unlike the traditional superpixel segmentation techniques, MOES can determine the
number of superpixels automatically. Table 1 shows the number of superpixels obtained by
MOES over five independent runs in different PolSAR datasets. The number of superpixels
in the Flevoland dataset is within the range of 533 to 562. The number of superpixels
in the Wei River in Xi’an dataset are within the range of 620 to 668. The maximum and
minimum values of the number of superpixels are 1287 and 1217 in the San Francisco
dataset, respectively. Obviously, the number of superpixels searched by MOES over
different independent runs is stable for each PolSAR dataset.

Table 1. The numbers of superpixels obtained by running MOES five times in three datasets.

Independent Run Flevoland Wei River in Xi’an San Francisco

1 533 642 1271
2 554 659 1253
3 544 620 1273
4 561 662 1217
5 562 668 1287

4.3. Comparison Experiments on PolSAR Datasets

To further study the performance of MOES, we compare it with six popular superpixel
segmentation approaches, which are SLIC [9], SEEDS [10], TP [11], QS [14], POL-HLT [50],
and HCI [51]. Among them, POL-HLT is a PolSAR superpixel segmentation method
with improved SLIC, where an improved initialization and a modified distance metric to
Hotelling–Lawley trace distance are introduced. HCI is a PolSAR superpixel segmentation
method with modified Wishart distance and geodesic distance for cross-iteration. Due to
the randomness of EAs, the mean and standard deviation of numerical results obtained
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by MOES are reported in the following experiments. Other comparison approaches are
performed over five independent runs with five different values of superpixel numbers
obtained by MOES, and the best performances are reported as their results. To analyze
the relationship between the number of image pixels N and the complexity of superpixel
segmentation approaches, the computational complexities of all the comparison superpixel
algorithms are shown in Table 2.

Table 2. Computational complexity of superpixel segmentation algorithms.

SLIC SEEDS TP QS POL-HLT HCI MOES

O (N) O (N) O
(

N
3
2

)
O
(

N2) O (N) O (N) O (N)

4.3.1. Comparison Results in Flevoland Dataset

Tables 3 and 4 give the statistical results of superpixel metrics and classification
metrics of all algorithms in the Flevoland dataset. The best metrics in the tables have been
bolded. Obviously, MOES has the highest BR and the lowest UE among all the comparison
approaches. In Table 4, MOES achieves the best values of AA and Kappa. QS achieves the
best OA, but its performance on AA and Kappa is not good enough. The index OA obtained
by MOES was 1.73% and 0.09% higher than POL-HLT and HCI, respectively. HCI achieves
the best AA, but its OA and Kappa are not good enough. Its UE and BR are also not as
good as MOES. MOES performs almost the best in both superpixel segmentation metrics
and classification metrics among the comparison approaches in the Flevoland dataset.

Table 3. Statistical results of superpixel metrics of all algorithms in Flevoland dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

UE (%) 39.26 40.88 36.85 42.83 37.86 37.02 36.72 ± 0.81
BR (%) 86.81 88.10 86.18 83.62 87.13 88.45 89.04 ± 0.99

Table 4. Statistical results of classification metrics of all algorithms in Flevoland dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

OA (%) 93.72 93.05 92.98 94.66 91.25 92.89 92.98 ± 0.57
AA (%) 90.87 91.14 91.95 89.05 92.09 93.13 92.49 ± 0.17
Kappa 0.9063 0.9015 0.9025 0.8831 0.8960 0.9069 0.9258 ± 0.03

Figure 15 shows the visual results of all algorithms in the Flevoland dataset. In the
QS results, the superpixels are very uneven, and the dividing lines are rather tortuous.
The match between superpixels and ground objects is not very good. The superpixels
generated by SLIC, SEEDS, TP, POL-HLT, and HCI are regular in shape and fit well into
each category of ground objects. The dividing lines are also smooth and continuous.
Although the shapes of the superpixels generated by MOES are not as regular as those of
the previous comparison algorithms, the boundary adhesion is very good, and the dividing
line is also very smooth. In order to further observe the qualities of the superpixels, the
blue box regions in Figure 11 are enlarged in Figure 16. In the results of SEEDS, TP, and
QS, the boundary adhesion is poor, and discontinuity appears. These lead to reduced
segmentation performance. The dividing lines obtained by SLIC, POL-HLT, and HCI are
relatively smooth, but the boundary adhesion in some regions is still not good enough.
In the result of MOES, both the boundary adhesion and the classification performance of
MOES are impressive. The dividing lines are also smooth and continuous.
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Figure 16. The enlarged images of the selected regions in visual results in Flevoland dataset. (a) SLIC;
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4.3.2. Comparison Results in Wei River in Xi’an Dataset

The statistical results of the superpixel segmentation metrics and classification metrics
of all algorithms in the Wei River in Xi’an dataset are shown in Tables 5 and 6. Both the
UE and the BR of MOES are the best. In Table 6, MOES also achieves the best values of
OA and Kappa. Although QS has the largest AA, it does not perform well enough in the
other two classification metrics, especially Kappa. Furthermore, MOES has the second-best
AA. In other words, MOES performs almost the best in both the superpixel segmentation
metrics and classification metrics among the comparison approaches in the Wei River in
Xi’an dataset.

Table 5. Statistical results of superpixel metrics of all algorithms in Wei River in Xi’an dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

UE (%) 58.53 55.59 55.05 62.86 59.01 57.68 55.04 ± 0.87
BR (%) 74.94 66.37 64.46 75.68 64.19 73.57 76.95 ± 0.65

Table 6. Statistical results of classification metrics of all algorithms in Wei River in Xi’an dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

OA (%) 89.75 88.85 89.99 89.71 88.02 89.03 90.30 ± 0.10
AA (%) 89.04 87.94 89.28 89.66 87.15 87.94 89.37 ± 0.21
Kappa 0.8311 0.8288 0.8309 0.8224 0.8096 0.8194 0.8941 ± 0.02

Figure 17 shows the visual superpixel segmentation results of all algorithms in the
Wei River in Xi’an dataset. The dividing lines of QS and SLIC are rather tortuous, which
results in many discontinuous situations. The generated superpixels of SEEDS and QS are
irregular and uneven. The shapes of the superpixels generated by TP and POL-HLT are
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relatively regular. Their superpixels fit well to each type of ground object, and the dividing
lines are also relatively smooth. Although the shapes of superpixels generated by HCI are
relatively regular, some small, disconnected regions still exist. The superpixels of MOES
are relatively uniform and regular, which fit well with the edges of ground objects. The
dividing lines are also relatively smooth. Observing the enlarged regions in Figure 18, the
boundary adhesions of SLIC, QS, and POL-HLT are still not good. In the enlarged regions
of SEEDS, TP, and HCI, the dividing lines are smooth, and the boundary adhesions are
normal. Compared with the above approaches, MOES has better boundary adhesion, more
accurate segmentations, and smoother dividing lines. The generated superpixels are also
more regular and uniform.
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4.3.3. Comparison Results in San Francisco Dataset

As shown in Tables 7 and 8, the statistical results of superpixel segmentation metrics
and classification metrics of all algorithms in the San Francisco dataset are given. MOES has
the highest BR, reaching 45.62%, which is 1.42% higher than the second-best comparison
algorithm. MOES achieves the second-best UE, which is 0.64% higher than the lowest UE
obtained by SLIC. Moreover, the value of BR of MOES is 1.77% higher than the one of SLIC.
In Table 8, QS performs the best in OA and AA, while MOES performs the best in Kappa.

Table 7. Statistical results of superpixel metrics of all algorithms in San Francisc dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

UE (%) 47.10 49.28 47.74 51.91 48.19 47.22 47.74 ± 0.86
BR (%) 43.85 37.21 32.62 42.10 44.20 35.56 45.62 ± 0.92
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Table 8. Statistical results of classification metrics of all algorithms in San Francisco dataset.

Index SLIC SEEDS TP QS POL-HLT HCI MOES

OA (%) 94.84 94.92 94.46 95.76 94.31 94.84 94.56 ± 0.07
AA (%) 92.62 92.72 92.03 94.02 91.64 92.21 91.91 ± 0.17
Kappa 0.8622 0.8680 0.8591 0.8548 0.8573 0.8598 0.8718 ± 0.01

Figure 19 shows the visual superpixel segmentation results of all algorithms in the
San Francisco dataset. The division lines of SEEDS and QS are rather tortuous, and the
generated superpixels are irregular. Their fittings with the edges of ground objects are
not good. The superpixels generated by SLIC, TP, POL-HLT, and HCI are more regular in
shape and have smoother dividing lines, but their boundary adhesions are still not good.
The superpixels generated by MOES are relatively regular, and the dividing lines are also
the smoothest. The boundary adhesion of MOES is similar to those of SLIC, POL-HLT,
and HCI. With the observation of the enlarged regions in Figure 20, the dividing lines of
SLIC, QS, and POL-HLT are discontinuous. Their boundary adhesions are not good for
most ground objects, and the segmentation performances are not good. The boundaries of
superpixels of HCI are continuous; its BR index is very low, as seen in Table 7. Although
MOES does not fit the edges of the ground objects accurately enough in the boundaries of
superpixels, its boundary adhesion is relatively better than the compared algorithms. In
addition, the superpixels generated by MOES are relatively uniform, and the dividing lines
are relatively smooth.
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4.4. Discussion

With the observations of the above experimental results, it can be seen that MOES
shows excellent performance on different PolSAR datasets. It can achieve well and balanced
performance for different metrics, including the metrics of both superpixel segmentation
and classification. The boundaries of superpixels obtained by MOES in the visual results
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also fit the edges of ground objects relatively well. In the automatic optimization layer of
MOES, the number of superpixels can be determined automatically by maximizing the
similarities within the superpixels and minimizing the differences among the superpixels
simultaneously. It can greatly avoid performance degradation resulting from the manual
setting of the unsuitable superpixel number. In the fine segmentation layer of MOES, a fine
search is performed for the rough segmentation output by the automatic optimization layer.
It makes full use of the boundary information of high-quality superpixels in the evolution
to improve the boundary adhesion and segmentation performance. Most of the existing
advanced methods are implemented by clustering and adding different mechanisms to
improve performances. MOES is also a cluster-based method in essence. However, its
unique two-layer optimization structure can not only determine the superpixel number
automatically but also further improve the segmentation performance. Moreover, the
specific evolutionary operators in MOES can fully search the solution space and generate
high-quality individuals.

5. Conclusions

This study proposes a multiobjective evolutionary superpixel segmentation for Pol-
SAR image classification. MOES consists of two layers, an automatic optimization layer and
a fine segmentation layer. In the automatic optimization layer, the superpixel segmentation
is converted into a multiobjective optimization to take the similarity within superpixels
and the difference among superpixels into consideration simultaneously. The number of
superpixels can be determined automatically for the observed PolSAR image. In the fine
segmentation layer, the segmentation performance can be further improved by the specific
evolutionary operators with the boundary information of good-quality superpixels. To
validate the performance of MOES, we compare it with several popular superpixel segmen-
tation techniques in different PolSAR datasets. The results show that MOES can determine
the suitable number of superpixels automatically and generate high-quality superpixels
uniformly for PolSAR images. Although MOES can achieve impressive performance of
superpixel segmentation, it is a population-based optimization method and relatively
time-consuming. In our future work, we will try to design a specific divide-and-conquer
strategy to improve efficiency while maintaining accuracy and extending the applications
for large scenes of PolSAR images. Furthermore, MOES can obtain a set of Pareto solutions,
but we just select one as our result. Future work will also investigate making full use of the
Pareto solutions to further improve the qualities of PolSAR superpixels.
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