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Abstract: As the most important city in China, Beijing has experienced an economic soar, large-
scale population growth and eco-environment changes in the last 20 years. Evaluating climate-
and human-induced vegetation changes could reveal the relationship of vegetation-climate-human
activities and provide important insights for the coordination of economic growth and environmental
protection. Based on a long-term MODIS vegetation index dataset, meteorological data (temperature,
precipitation) and impervious surface data, the Theil-Sen regression and the Mann-Kendall method
are used to estimate vegetation change trends in this study and the residual analysis is utilized
to distinguish the impacts of climate factors and human activities on vegetation restoration and
degradation from 2000 to 2019 in Beijing. Our results show that the increasing vegetation areas
account for 80.2% of Beijing. The restoration of vegetation is concentrated in the urban core area and
mountainous area, while the degradation of vegetation is mainly concentrated in the suburbs. In
recent years, the vegetation in most mountainous areas has changed from restoration to significant
restoration, indicating that the growth of mountain vegetation has continued to restore. We also found
that in the process of urban expansion, vegetation browning occurred in 53.1% of the urban built-up
area, while vegetation greening occurred in the remaining area. We concluded that precipitation is
the main climatic factor affecting the growth of vegetation in Beijing’s mountainous areas through
correlation analysis. Human activities have significantly promoted the vegetation growth in the
northern mountainous area thanks to the establishment of environmental protection areas. The
negative correlation between vegetation and the impervious surface tends to gradually expand
outwards, which is consistent with the trend of urban expansion. The positive correlation region
remains stable, but the positive correlation is gradually enhanced. The response of vegetation to
urbanization demonstrated a high degree of spatial heterogeneity. These findings indicated that
human activities played an increasingly important role in influencing vegetation changes in Beijing.

Keywords: vegetation variation; MODIS; climate factors; human activities; Beijing

1. Introduction

Terrestrial vegetation is an important part of the earth’s ecosystem. It releases oxygen
through photosynthesis, which is an important source of oxygen on earth. Moreover, terres-
trial vegetation also has a positive impact and feedback on the carbon cycle, nitrogen cycle
and water cycle [1–3]. There are many factors affecting vegetation variations, among which
climate changes and human activities are the two most important categories [4–7]. Firstly,
it is generally believed that climate is an important factor in vegetation change. Rainfall
and temperature are the main climate variables as claimed in many previous studies [6,8,9].
Secondly, with the growth of the economy and population, more and more studies demon-
strate that human activities are the key factors causing vegetation changes [10–12]. One
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of the most representative human activities is the rapid expansion of urbanization. The
population in urban areas has increased rapidly from 14% in 1900 to 50% in 2000 of the
total population, in particular, it has reached 70% in developed countries [13,14]. From
regional to global scales, the urbanization process and related suburban development not
only have a significant impact on our living environment but also inevitably bring changes
to the ecological environment of vegetation.

Remote sensing technology has emerged as an efficient substitute for the traditional,
labor-intensive field experiments, providing rapid data acquisition and broad-scale de-
tection capabilities. This advancement is particularly beneficial for extensive vegetation
monitoring [15]. Among the various tools at our disposal, the vegetation index stands out
as a vital measure for assessing vegetation health and ecosystem dynamics. Vegetation is
distinctively characterized by its spectral signature; it absorbs more light in the red wave-
length and reflects more in the near-infrared. Leveraging this property, multiple vegetation
indices have been developed, the most notable being the Normalized Difference Vegetation
Index (NDVI) [16] and the Enhanced Vegetation Index (EVI) [17]. NDVI, in particular, has
proven instrumental in detecting shifts in vegetation dynamics, including patterns of green-
ing and browning [18]. As research progresses, there is a growing emphasis on Fractional
Vegetation Cover (FVC), a parameter that sensitively delineates vegetation biomes and
responds promptly to environmental changes on regional and global scales [19]. Pioneering
studies, such as those by Zhang et al. [20], who relied on the Moderate-resolution Imaging
Spectroradiometer (MODIS) NDVI dataset, have unveiled a significant greening trend
worldwide between 2000 and 2015. Chen et al. [21] and Wu et al. [22] confirmed this trend
by observing increased global vegetation leaf area and estimating global vegetation trends
through GIMMS NDVI data, respectively.

Climate change, with its manifold impacts such as shifts in temperature, rainfall,
atmospheric CO2, and nitrogen deposition, is often intertwined with vegetation dynam-
ics [21]. Studies by Sun et al. [23] and Huang et al. [24] have underscored the consequential
impact of climate on vegetation, with notable spatial-temporal complexity. For instance,
in the Qinghai-Tibet Plateau, their work delineated the nuanced interplay of these factors,
wherein precipitation bolstered vegetation vitality, counterbalancing the suppressive effects
of rising temperatures. This dynamic is particularly salient in northern China, where a
pronounced warming trend over the last five decades has synchronized with substantial
precipitation shifts [25–27]. Notably, Lucht et al. [28] have ascribed the greening observed
in boreal regions mostly to increasing temperatures. Extending the scope, numerous stud-
ies have meticulously dissected the influence of climate [29,30], topography [31], land
use [21], and anthropogenic activity [32] on vegetation growth, contributing to a nuanced
understanding of these complex relationships.

Beijing is located in the transition zone between the mountain and the plain. The plain
area is surrounded by mountains on three sides, forming a natural arc barrier, resulting in
two distinct climates in front of and behind the mountains. In the past decades, the pop-
ulation and economy have developed rapidly and the process of urbanization has been
accelerated. With the rapid urban expansion in Beijing plain area, the mountainous area
of Beijing is ecological conservation, an important biodiversity center, a water source pro-
tection area, as well as the main natural vegetation distribution area. According to the
ecological situation and the current needs of urban development, the government has for-
mulated several development “Five-Year” plans to ensure that the eco-environment is fully
protected and improved while Beijing’s economy continues to rapidly develop. Therefore,
it becomes more and more important to explore the relative role of climate variables and
human activities in vegetation changes and the correlation between urbanization expansion
and vegetation growth trends in Beijing.

Under the influence of global climate change, Beijing has also experienced rapid eco-
nomic development and is facing complex ecological problems. In recent years, a growing
body of research has focused on investigating the patterns and determinants of vegetation
change in the Beijing region. For instance, Zhao Y et al. [33] found that the vegetation in
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Beijing had an overall increasing trend and the NDVI fluctuations in several particular
years were greatly related to temperature or precipitation anomalies based on geographi-
cally weighted regression and ordinary least squares during 2000–2015. Jiang M et al. [34]
calculated the fractional vegetation coverage by the method of dimidiate pixel model based
on NDVI, which suggests that human activities are very significant factors to influence and
explain the changes in Beijing and they are highly spatially heterogeneous from 2000 to
2015. Chang Y et al. [35] considered that the response of vegetation to urbanization showed
obvious differences and geographical heterogeneity in the urbanization gradient based on
the nighttime light data. Nevertheless, these works do not continue into the latest year
and quantify the role of human activities and climate factors in the process of vegetation
restoration and degradation in Beijing. Moreover, few studies integrate impervious surface
data and NDVI data to explore how vegetation changes during rapid urbanization.

For a fast-developing city, quantitative and continuous research about the influence
of climate variability and rapid urbanization on vegetation change is of great significance.
Based on the NDVI dataset, meteorological data, and impervious surface data from the
last 20 years, we aim to: (1) investigate the spatiotemporal patterns of vegetation change
trends by using Theil–Sen and Mann–Kendall methods excluding the influence of water;
(2) evaluate the dominant factors affecting vegetation change in the mountains by using
residual trend analysis approach; (3) explore the trend of vegetation growth in different
stages of urban development. The results help to form an understanding of the current
vegetation driving mechanism and provide a scientific basis for formulating reasonable
vegetation construction, land use, and ecological environment protection strategies in
Beijing. The rest of the paper is organized as follows. Section 2, “Materials and Methods”,
describes our methodology, study region, remote sensing tools, and statistical tests for
evaluating vegetation shifts. Section 3, “Results”, presents our findings on vegetation
dynamics, spatiotemporal trends, and the impacts of natural and human factors. Section 4,
“Discussion”, explores the implications, driving forces, and study limitations, proposing
avenues for future inquiry. Finally, Section 5, “Conclusions”, summarizes the significant
insights into vegetation change and their relevance to ecological monitoring through
remote sensing.

2. Materials and Methods
2.1. Study Area

Surrounded by Taihang Mountains and Yanshan Mountains, Beijing (115.7–117.4°E,
39.4–41.6°N) lies to the north of the North China Plain (Figure 1). The total area of Bei-
jing is 16,410.54 km2, of which the plain area is 6200 km2, accounting for 38%, and the
mountainous area is 10,200 km2, accounting for 62%. The average altitude of the whole
city is 43.5 m with a plain elevation of 20–60 m and a mountain elevation of 1000–1500 m
generally. The city has a typical North Temperate semi-humid continental monsoon climate
which is hot and rainy in summer, cold and dry in winter, and short in spring and autumn.
The annual average precipitation is about 450 mm with 80% of the annual precipitation
occurring in June, July, and August. The temperature in July is the highest, and that in
January is the lowest. Although it is cold and dry in winter, there is more sunshine, with the
average sunshine being more than 6 h per day. Beijing is divided into 16 districts (counties),
including a high-intensive building area, a low-intensive building area and a mountain
area. The area within the Fourth-Ring Road is referred to as the high-intensive building
area. The area with slopes greater than 8 degrees is the mountain area. And the remaining
area is the low-intensive building area.

2.2. Data
2.2.1. MODIS-NDVI Dataset and Preprocessing

We used a Moderate-resolution Imaging Spectroradiometer (MODIS) Terra 16-day
vegetation index product–250 m NDVI (MOD13Q1) in the manuscript from Land Processes
Distributed Active Archive Center. The product has minimized the effect of cloud, cloud
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shadows, and noise through 16 days of synthetic data. This study used a total of 240 images
of three MODIS tiles (h26v04, h26v05, and h27v05) from July and August from 2000 to 2019.

Figure 1. Schematic diagram of the study area.

The three tiles are spliced together, and the NDVI data of Beijing is cut out using the
Beijing boundary map as a mask. According to the previous research [36], the vegetation in
Beijing reached the peak growth stage in July and August. The Maximum Value Composites
(MVC) [37] was utilized to process the data. The maximum value of the data was taken in
July and August, respectively. The mean value of July and August is calculated to represent
the vegetation growth in that year and further used in the subsequent time series analysis.

2.2.2. Landsat Imagery and Preprocessing

Water bodies have a great influence on NDVI time series; even sub-pixel water bodies
have a great influence on NDVI. In order to avoid the influence of water bodies as much
as possible, the water bodies are extracted by the Landsat images in Beijing. Beijing is
covered by two (123/032 and 123/033) WRS2 paths/rows of Landsat images. A total
of 717 Landsat surface reflectance images from 2000 to 2019 are collected in this study
(http://earthexplorer.usgs.gov/ (accessed on 10 January 2024)). All the data details are
listed in Table 1. The CFMask algorithm was used to detect and remove snow, cloud,
and cloud shadow for Landsat Image [38–40]. NDVI [41] and Enhanced Vegetation Index
(EVI) [42,43] respond rapidly to canopy structure changes and are sensitive to high biomass
areas [43]. The Modified Normalized Differences Water Index (MNDWI) is widely used to
evaluate surface water information [44].

Table 1. Summary of vegetation monitoring data in Beijing.

Data Name Spatial Resolution The Number of Data Data Organization

MODIS 250 m 240 USGS
Landsat 30 m 717 USGS

Climate 1 km 20
Resource and

Environment Science
Data Center

Impervious surface 30 m 19 Tsinghua University
SRTM3 90 m 1 USGS

According to refs. [45,46], if the conditions satisfied ((MNDWI > NDVI or MNDWI > EVI)
and (EVI < 0.1)), the observation results could be determined as open surface water. The

http://earthexplorer.usgs.gov/
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interannual frequency of open surface water was calculated for each pixel and the pixels
were classified as open surface water if the interannual frequency was greater than or
equal to 0.75 [45,46]. Therefore, we generate 20 water body maps from 2000 to 2019 and
select the map with the largest open surface water area as the water mask. The nearest
neighbor method is implemented to resample to 250 m in order to match MODIS vegetation
index data.

2.2.3. Climate Data

The climate data from 2000 to 2019 come from the National Earth System Science Data
Center, National Science and Technology Infrastructure of China (http://www.geodata.cn
(accessed on 10 January 2024)). Based on the global 0.5° climate data released by Climatic
Research Unit (CRU) and the global high-resolution climate data released by WorldClim,
the dataset was downscaled in China through the Delta spatial downscaling scheme [47].
To ensure the reliability of the data, Peng et al. [47] validated it against observations from
496 independent meteorological stations across China. The results from this rigorous
validation process support the credibility of the dataset and underpin the subsequent
analysis of vegetation change presented in this paper. To match MODIS data, these datasets
were bilinear interpolated from 1 km to 250 m resolution.

2.2.4. Impervious Surface Data

The long-term impervious surface data is used to quantify city expansion and investi-
gate the response of vegetation change trends to urbanization in this study. Impervious sur-
face is an important part of the urban foundation surface, revealing the changes in the conur-
bation area better [48]. Based on Landsat images, Gong et al. [49] developed impervious
surface data of Chinese provinces with 30 m resolution spatially, covering the period from
1985 to 2018 (Impervious surface data download website: http://data.ess.tsinghua.edu.cn
(accessed on 10 January 2024)). The impervious surface data of Beijing from 2000 through
2018 were selected to keep consistent time with the MODIS-NDVI product in this study.
We aggregated the impervious surface data into 250 m resolution to match MODIS data
spatially and calculated the impervious surface ratio (ISR) in each pixel. The impervious
surface ratio (ISR) of conurbation demonstrates the complicacy of the city eco-environment
and the extent of urban development [50,51].

2.2.5. SRTM DEM Data

InSAR technology was applied in the SRTM mission to obtain elevation information of
surface features for its efficiency and economical characteristics. The SRTM data used the
WGS84 coordinate system as the horizontal reference and the EGM96 geoid as the vertical
reference. It is by far the best global digital elevation data comprehensively evaluated
in terms of coverage, elevation accuracy, and publicity. Since 2003, SRTM3 data with a
ground resolution of 90 m has been released. We also resample it to 250 m using the
bilinear interpolation method, calculate the slope, and select the slope threshold value as 8
to distinguish mountainous areas [52].

2.3. Methods

As shown in Figure 2, the study first calculates the slope and Student’s t test value of
the NDVI variable for each pixel during 2000–2019 to obtain change trends of vegetation
with the Theil-Sen and Mann-Kendall methods. In the mountain area, the meteorological
data is utilized to analyze the influence of climate factors on vegetation variations by
correlation analysis method. And residual analysis is used to distinguish the impact of
climate factors and human activities on vegetation. In high- and low-intensive building
areas, the impervious surface data is leveraged to study the response of vegetation to
urbanization by correlation analysis.

http://www.geodata.cn
http://data.ess.tsinghua.edu.cn
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Figure 2. Schematic diagram of this study.

2.3.1. Variation Trend Judgement

In this study, the Theil-Sen slope is acquired to obtain the trend of greenness and me-
teorological variables (temperature and precipitation). Compared to the least square linear
fitting method, TS trend analysis is not affected by noise and outliers in the data [53–55],
and it is a widespread method in time series trend analysis of climate variables [56,57]. The
Theil-Sen slope is estimated based on the median value of the observations Xj and Xi at all
pairwise time steps j and i. The formula is as follows:

slope = Median(
xj − xi

j − i
) (1)

where xi and xj represent the value of NDVI, annual accumulated precipitation or annual
average temperature in the i-th and j-th year, respectively. For NDVI variation, slope > 0
means greenness restoration and slope < 0 means greenness degradation. For meteoro-
logical variables, slope > 0 represents precipitation or temperature increase , and slope < 0
represents precipitation or temperature decrease.

As a common method, we calculate the value of the Mann-Kendall method to test
significance because the method has no requirement on the distribution [58]. The inspection
process is as follows:

For the sequence, the test statistic S is:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (2)

sgn(xj − xi) =


+1, xj − xi > 0

0, xj − xi = 0
−1, xj − xi < 0

(3)

where n is the length of the sequence, xi and xj are the observations at i and j time, respec-
tively. When the data value exhibits an independent identical distribution, S is approxi-
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mately normally distributed, and the variance is given by the following formula [59,60]:

VAR(S) = n(n − 1)(2n + 5) (4)

n(n − 1)(2n + 5) = σ2 (5)

where σ is the standard deviation. The significance of the test method is given by the
statistical value Z:

Z =


S−1√
VAR(S)

, S > 0

0 , S = 0
S+1√
VAR(S)

, S < 0

(6)

where |Z| ≥ 1.96 (equivalent to p ≤ 0.05) is considered of significance.
According to the vegetation greenness changes and the significance analysis, vege-

tation change results are classified into four groups: significant restoration, restoration,
degradation and significant degradation. The Mann-Kendall tau (τ) coefficient is adopted
to investigate the correlations between two random variables, also known as the Kendall
rank correlation coefficient.

2.3.2. Residual Analysis

Residual analysis is utilized to separate human-induced vegetation trends from the
vegetation changes caused by climate through “NDVI-Climate” model. Considering the
correlations between NDVI and meteorological variables, the “NDVI-Climate” model is
established by multiple linear regression in every pixel [61].

NDVI(n) = a × T(n) + b × P(n) + C (7)

where n is year; C is a constant; a and b are correlation coefficients of annual average
temperature (T) and accumulated precipitation (P) of that year, respectively. a, b and C are
calculated by the least square method.

The NDVI of climate-driven vegetation change is predicted by the “NDVI-Climate”
model. And the residual represents the NDVI of human-driven vegetation trend [62–64].

NDVIclimate(m, n) = a × T(m, n) + b × P(m, n) (8)

NDVIhuman(m, n) = NDVI(m, n)− NDVIclimate(m, n) (9)

where m is pixel, NDVIclimate is the predicted value of the model in a specific year with
temperature and precipitation impacts, and NDVIhuman is the value of anthropogenic NDVI
variation during 2000–2019.

According to the Theil-Sen method, we calculate the slopes of NDVIhuman and
NDVIclimate as Shuman and Sclimate, respectively. We also calculate the slope of actual
NDVI as SNDVI. Therefore, the six types of impact factors on vegetation dynamics were
determined (Table 2). Specifically, SNDVI > 0 indicates vegetation increases and SNDVI < 0
indicates vegetation decreases. Sclimate > 0 represents that climate factors have a positive
impact on vegetation, while Sclimate < 0 represents that climate factors have a negative
impact on vegetation; Shuman > 0 represents that human activities have a positive impact
on vegetation, and Shuman < 0 represents that human activities have a negative impact on
vegetation [65].

2.3.3. Correlation Analysis

Considering the spatial distribution of vegetation change trend results, Mann-Kendall
coefficient correlation analysis is adopted to study the correlation between NDVI and ISR
in high and low-intensive building areas and the correlation between NDVI and climate
variables in the mountain area. The τ coefficient of the Mann-Kendall method is also called
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the Kendall rank correlation coefficient, which is used to test the statistical correlation of
the observation values of two random variables, especially for a small sample size.

Table 2. The different dominant factors on vegetation change.

SNDVI Sclimate Shuman The Dominant Factors on Vegetation Change

SNDVI > 0 Sclimate > 0 Shuman < 0 Vegetation increases dominated by climate factors
Sclimate < 0 Shuman > 0 Vegetation increases dominated by human activities

Sclimate > 0 Shuman > 0 Vegetation increases dominated by climate factors and
human activities

SNDVI < 0 Sclimate < 0 Shuman > 0 Vegetation decreases dominated by climate factors
Sclimate > 0 Shuman < 0 Vegetation decreases dominated by human activities

Sclimate < 0 Shuman < 0 Vegetation decreases dominated by climate factors and
human activities

3. Results
3.1. Spatial-Temporal Characteristics of Vegetation Change Trend

The change trends of vegetation in Beijing during four periods are shown in Figure 3
including 2000–2010, 2000–2013, 2000–2016, 2000–2019. The corresponding statistical results
of vegetation trends are shown in Figure 4. It can be seen that the vegetation in Beijing is
totally improved. The vegetation increase is mainly concentrated in mountainous areas and
high-intensive building areas. Vegetation degradation, especially the significantly degraded
vegetation, is mainly concentrated in low-intensive urban areas. The significant restoration
area changes from 27.8% in 2010 to 52.8% in 2019, and the restoration area changes from
55.5% in 2010 to 27.4% in 2019, which indicates that a large area of vegetation restoration
has changed into significant restoration in recent years. The increase of vegetation in some
urban forest parks (Figure 3e–g) shows that the construction of urban parks plays a positive
role in vegetation growth. At the same time,the significant degradation area changes from
2.4% in 2010 to 5.6% in 2019, and the degraded area changes from 13% in 2010 to 12.9% in
2019, which is because that the vegetation growth situation in low-intensive urban areas of
Beijing is not optimistic.

We counted the vegetation changes in high-intensive building areas, mountainous
areas and low-intensive building areas, respectively, from 2000 to 2010, 2000 to 2013, 2000
to 2016 and 2000 to 2019. In the high-intensive building area, significant restoration is
increasing continuously with 57.4% in 2010, 67.3% in 2013, 84.5% in 2016, and 90.2% in
2019 (Figure 5). The mountainous area is similar to the high-intensive building area, where
significant restoration is increasing continuously with 34.2% in 2010, 57.9% in 2013, 64.8% in
2016, and 79.5% in 2019 (Figure 6). Unlike mountainous areas and high-intensive built-up
areas, there has been a gradual increase in the degradation of vegetation in low-intensive
built-up areas of Beijing (Figure 7), especially significantly degraded vegetation.

3.2. Driving Factors of Vegetation Change in Mountainous Area

The precipitation and temperature data are used to obtain the driving factors of
vegetation change in mountain area. The trend of precipitation and temperature change
in Beijing is shown in Figure 8. Temperature trends show a more pronounced east-west
variation. Precipitation shows an upward trend, but with clear north-south variability. The
regions with significant consistency between NDVI and temperature (p < 0.05) accounted
for 2.8%, while the regions with significant consistency between NDVI and precipitation
(p < 0.05) accounted for 23.6%, indicating that vegetation in Beijing responded more
strongly to precipitation than to temperature. The correlation between NDVI and climate
change in mountain area is shown in Figure 9. Precipitation shows a positive correlation
with vegetation in most of the mountainous area (97.7%), while temperature shows a
negative correlation in most of the mountainous area, reaching 78.8%. Temperature and
precipitation showed significant differences in response to vegetation, especially in the
northern mountainous areas.
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Figure 3. The change trend of vegetation in Beijing during: (a) 2000–2010; (b) 2000–2013; (c) 2000–2016;
(d) 2000–2019. The increase of vegetation in some urban forest parks (e–g) shows that the construction
of urban parks plays a positive role in vegetation growth.

Figure 4. Statistical results of vegetation trends in Beijing.
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Figure 5. Statistical results of vegetation trends in high-intensive building area of Beijing.

Figure 6. Statistical results of vegetation trends in mountain area of Beijing.

Figure 7. Statistical results of vegetation trends in low-intensive building area of Beijing.
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Figure 8. The change trend of temperature and precipitation during 2000–2019 in Beijing.

Figure 9. Correlation coefficients between NDVI and meteorological changes during 2000–2019.

The trend analysis of NDVI residuals is shown in Figure 10a. The NDVI residuals in
the northern mountainous areas of Beijing show an obvious upward trend, while those in
the southern mountainous areas and areas closer to human activities show a downward
trend, which indicates that the trend of NDVI residuals has obvious regional characteristics.
The TS slope results of NDVI, NDVIclimate and NDVI residuals are superimposed to obtain
the NDVI dominant factor results, as shown in Figure 10b, and the NDVI driving factor
statistical results are shown in Table 3. The results show that vegetation restoration accounts
for the majority of the areas in the non-impervious surface area, reaching 92.9%, of which
41.5% is caused by human factors, 45.3% is caused by a combination of climatic and human
activity factors, and rest is caused by climatic factors. The areas with significant increases
in NDVI residuals and vegetation are mainly located in the northern mountainous areas,
where human activities dominate the vegetation growth. The increasing trend of residuals
in the southern mountainous area is not significant, but the increasing trend of vegetation
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is significant. Human activities and climate factors jointly dominate the vegetation change
in this area.

Figure 10. Residual trend and classification results: (a) trend; (b) classification results.

Table 3. Statistical results of driving factors of NDVI change trends.

Vegetation Trend
Change Area Percentage Driven Factor Area Percentage

Increase 92.9% Climate factors 6.1%
Human activities 41.5%

Climate factors and
human activities 45.3%

Decrease 7.1% Climate factor 5.1%
Human activities 0.8%

Climate factors and
human activities 1.2%

3.3. Driving Factors of Vegetation Change in High and Low-Intensive Building Area

Impervious surface data from 2000 to 2018 is utilized to illustrate the spatial-temporal
characteristics of urbanization expansion in Beijing over this period (Figure 11a). The
ISA in Beijing has increased by 138.2% from 1501.6 km2 in 2000 to 3577.4 km2 in 2018
(Figure 11b). In light of interannual dynamic changes of the newly increased ISA shown in
Figure 11a,b, the ISA increases rapidly during 2000–2016. In the early period of 2000–2016,
the expansion of impervious surface was mainly distributed in peri-urban areas centered
on high-intensive urban areas. And in the later period, it was mainly distributed in the
distant suburban areas of Beijing, covering more rural areas. After 2016, the expansion of
impervious surfaces tended to be almost stable.
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Figure 11. Change trend of impervious surface in Beijing during 2000–2018: (a) expansion, 30 m
resolution; (b) annual dynamics.

In the impervious surface area, the correlation results between NDVI and ISR are
shown in Figure 12. The positive correlation indicates the growth of vegetation restoration
in the process of urban expansion, while the negative correlation indicates the growth of
vegetation degradation. The proportion of negative correlation increased each year from
37.5% during 2000–2010 to 53.7% during 2000–2016 (Table 4) due to the continuous urban
expansion of Beijing, while the positive correlation continued to decrease, indicating a
gradual increase in vegetation degradation area caused by urban expansion during this pe-
riod. After 2016, the urban expansion tends to be stable, the negative correlation decreases,
and the vegetation restores. The spatial distribution of correlation results shows an obvious
spatial heterogeneity in vegetation growth in different regions. The negative correlation
is mainly concentrated in low-intensive building areas and tends to gradually expand
outwards. The positive correlation is concentrated in high-intensive building areas of the
city, where the region remains stable, but the positive correlation is gradually enhanced.

Table 4. Proportion of positive and negative correlation.

Years 2000–2010 2000–2013 2000–2016 2000–2019

Negative 37.5% 42.9% 53.7% 46.9%
Positive 62.5% 57.1% 46.3% 53.1%
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Figure 12. Correlation between NDVI and ISR in impervious surface area in Beijing during.

4. Discussion
4.1. The Relative Role of Driving Forces in the Process of Vegetation Restoration

Our analysis has revealed an encouraging trend of increased vegetation cover in
Beijing, with 80.2% of the area experiencing restoration. This recovery exhibits spatial
variability in its driving factors. In the mountainous regions, climatic conditions are key
to vegetation changes, with rainfall being a significant driver of vegetation growth. This
finding resonates with the wider body of research that underscores the importance of
meteorological elements in vegetative trends [66]. For instance, Kulesza and Hościło [67]
have concluded that rainfall is the most significant natural factor influencing forest health
across Poland. Moreover, Pravalie et al. [68] found that in mountain regions such as the
Carpathians, the greening trend is more closely associated with temperature increases,
while in our study area, precipitation has a more pronounced effect. This highlights the
regional specificity of climatic influences on vegetation dynamics.

The northernmost mountainous area of Beijing is the Beijing-Tianjin Sandstorm Source
Control Project (BTSSCP), where vegetation restoration is predominantly caused by human
activities. This shows that the effect of the BTSSCP project is notable. Under adverse climate
conditions, human activities play a positive role and significantly improve the vegetation
growth situation here, which is also consistent with previous research [69,70]. The NDVI
is positively correlated with precipitation in the south of the mountain area, and the joint
determinations of precipitation and human activities dominate the vegetation increases
in the south of Beijing. The policy of closing hillsides for afforestation and returning
farmland to forest has been implemented in the southern mountainous area. Meanwhile,
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some protected areas have been established. The construction of these protected areas
and the implementation of the policy, together with the positive effect of precipitation, are
conducive to vegetation restoration and ecological construction.

In addition to the mountainous areas, vegetation restoration is also concentrated in the
high-intensive impervious surface area in Beijing. In the advanced stage of urbanization,
the speed of urban expansion slows down. Due to the demand for greening, the vegetation
growth trend presents a phenomenon of recovery [71,72]. This phenomenon can also be
observed in developed countries such as Japan, the United Kingdom, and America [73].
The greening work in the area is getting better and better in the regions, which benefited
from the urban park construction policy that Beijing has long persisted in [35,74]. In a word,
proactive human activities play an important role in vegetation restoration [24,75].

4.2. The Relative Role of Driving Forces in the Process of Vegetation Degradation

Vegetation degradation in Beijing is mainly distributed in the low-intensive buildings
of Beijing. The area is in the early stage of urbanization, where urban expansion has a
negative role in vegetation growth. The ISA has expanded rapidly in the low-intensive
building area, where the rapid transformation of cities from non-urban areas to urban areas
leads to vegetation degradation [76]. In developing countries such as Bangladesh [77],
and South Africa [78], this feature of urbanization to vegetation dynamics is common.
Under the large-scale urban expansion, the ecological environment of vegetation is very
fragile [79,80] with significant degradation. Therefore, vegetation degradation in Beijing is
mainly caused by human activities [81,82].

The negative correlation between vegetation and the impervious surface has been
spreading outwards, which is consistent with the trend of urbanization expansion, in-
dicating that human factors are more important in explaining the trend of vegetation
change [11,83,84]. The development of economic and social production may be conducive
to ecological restoration and vegetation growth [11,85,86]. However, these areas lack eco-
logical protection, restoration projects and policies related to vegetation protection. Under
the effects of adversely climatic conditions and unreasonable human activities, vegetation
degeneration has occurred in the region, which is opposite to the situation in the core
urban areas. Beijing’s urban expansion tends to be stable after 2016 and gradually attaches
importance to the protection of suburban vegetation, such as the implementation of a
large-scale plain afforestation project (2012–2015). Moreover, given the fragile ecological
environment of vegetation in these areas, the government should comprehensively consider
the socio-economic development and ecological protection, and formulate more scientific
and reasonable policies.

4.3. Limitations and Future Directions

Despite the considerable insights gained from our research, we must acknowledge
several limitations inherent to the methodologies employed. The MODIS13Q1 vegetation
index product served as the primary data source for our analysis. This product, which offers
16-day composite data, can be susceptible to atmospheric distortions such as cloud cover.
These distortions occasionally result in anomalies in the observed values, either overesti-
mating or underestimating vegetation vigor. To mitigate such discrepancies, future studies
should incorporate a multi-sensor approach, leveraging data from advanced remote sensing
platforms and integrating in situ field measurements to refine the NDVI assessments.

Furthermore, this study prioritized the examination of urbanization as a singular
anthropogenic factor influencing vegetation dynamics. While urbanization is undoubtedly
a significant driver, the scope of human activities extends beyond the realms of urban ex-
pansion. Subsequent research endeavors could adopt a more holistic view by incorporating
varied datasets that encapsulate the broader spectrum of human influence. For instance,
the inclusion of human footprint datasets, which quantify the cumulative pressure ex-
erted by humans on the natural environment, could offer nuanced insights into the spatial
patterns of vegetation change. Similarly, the analysis of nocturnal illumination captured
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through night light data could reveal the spatial extent and intensity of anthropogenic
activities, providing a proxy for urban growth and associated environmental impacts.

In pursuit of a more scientific and comprehensive evaluation of anthropogenic effects
on vegetation dynamics, it is imperative to synthesize these diverse data layers. Such an
integrative approach will enable researchers to delineate the complex interplay between
natural vegetation processes and the ever-expanding footprint of human development.
The insights garnered from these multifaceted analyses will not only enhance our under-
standing of vegetation responses to anthropogenic pressures but also inform sustainable
land management practices and urban planning strategies aimed at preserving ecological
integrity in the face of rapid environmental change.

5. Conclusions

In this manuscript, we utilize MODIS NDVI data to analyze the pattern of vegetation
growth trend temporally and spatially in Beijing. By leveraging climate data, Landsat
images, DEM data, and impervious surface data, we evaluate the relative effects of human
activities and climate changes on vegetation restoration and degradation in Beijing. Since
2000, vegetation increase has accounted for 80.2% of the total area in Beijing, mainly located
in the high-intensive building and mountainous areas of Beijing. Human activities play
a positive role in vegetation growth. Moreover, some large-scale ecological restoration
projects have achieved good results. Beijing’s core area is located in the advanced stage
of urbanization, and vegetation growth is promoted by urban greening projects in this
area. The vegetation degradation area in Beijing accounts for 18.5%, mainly distributed in
the low-intensive building areas of Beijing. The combined effects of these two factors and
climate change dominate the degradation of vegetation. The current vegetation ecological
environment is very fragile. Beijing suburbs are still in the early stage of urbanization,
with considerable amounts of land converted into impervious surfaces which led to the
reduction of vegetation. Therefore, we suggest that policymakers should formulate different
ecological restoration policies for different ecologically vulnerable areas and areas with
different urbanization gradients, and establish sustainable development strategies to ensure
coordinated economic and ecological development.
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et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018.
Ecol. Indic. 2022, 136, 108629. [CrossRef]

69. Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change
and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563, 210–220. [CrossRef]
[PubMed]

70. Xu, W.; Gu, S.; Zhao, X.; Xiao, J.; Tang, Y.; Fang, J.; Zhang, J.; Jiang, S. High positive correlation between soil temperature and
NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth
Obs. Geoinf. 2011, 13, 528–535. [CrossRef]

71. Liu, Q.; Yang, Y.; Tian, H.; Zhang, B.; Gu, L. Assessment of human impacts on vegetation in built-up areas in China based on
AVHRR, MODIS and DMSP_OLS nighttime light data, 1992–2010. Chin. Geogr. Sci. 2014, 24, 231–244. [CrossRef]

72. Luck, G.W.; Smallbone, L.T.; O’Brien, R. Socio-economics and vegetation change in urban ecosystems: Patterns in space and time.
Ecosystems 2009, 12, 604–620. [CrossRef]

73. Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between urbanization and vegetation degradation across
the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 2067–2088. [CrossRef]

74. Sun, X.P.; Wang, T.M.; Wu, J.G.; Ge, J.P. Change trend of vegetation cover in Beijing metropolitan region before and after the 2008
Olympics. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2012, 23, 3133–3140.

75. Li, S.; Yang, S.; Liu, X.; Liu, Y.; Shi, M. NDVI-based analysis on the influence of climate change and human activities on vegetation
restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [CrossRef]

76. Chang, S.; Wang, J.; Zhang, F.; Niu, L.; Wang, Y. A study of the impacts of urban expansion on vegetation primary productivity
levels in the Jing-Jin-Ji region, based on nighttime light data. J. Clean. Prod. 2020, 263, 121490. [CrossRef]

77. Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote
sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [CrossRef]

78. Burgoyne, C.; Kelso, C.; Ahmed, F. Human activity and vegetation change around mkuze game reserve, South Africa. S. Afr.
Geogr. J. Suid-Afr. Geogr. Tydskr. 2016, 98, 217–234. [CrossRef]

79. Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an
urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [CrossRef] [PubMed]

80. Shan, N.; Shi, Z.; Yang, X.; Gao, J.; Cai, D. Spatiotemporal trends of reference evapotranspiration and its driving factors in the
Beijing–Tianjin Sand Source Control Project Region, China. Agric. For. Meteorol. 2015, 200, 322–333. [CrossRef]

81. Anzhou, Z.; Anbing, Z.; Chunyan, L.; Dongli, W.; Haixin, L. Spatiotemporal variation of vegetation coverage before and after
implementation of Grain for Green Project in the Loess Plateau. Ecol. Eng 2017, 104, 13–22.

82. Tian, H.; Cao, C.; Chen, W.; Bao, S.; Yang, B.; Myneni, R.B. Response of vegetation activity dynamic to climatic change and
ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [CrossRef]

83. Li, J.; Feng, L.; Pang, X.; Gong, W.; Zhao, X. Radiometric cross calibration of gaofen-1 wfv cameras using landsat-8 oli images:
A simple image-based method. Remote Sens. 2016, 8, 411. [CrossRef]

84. Tian, H.; Cao, C.; Dai, C.; Zheng, S.; Lu, S.; Xu, M.; Chen, W.; Zhao, J.; Liu, D.; Zhu, H. Analysis of vegetation fractional cover in
jungar banner based on time-series remote sensing data. Geo-Inf. Sci. 2014, 16, 126–133.

85. Salvati, L.; Zitti, M. Natural resource depletion and the economic performance of local districts: Suggestions from a within-country
analysis. Int. J. Sustain. Dev. World Ecol. 2008, 15, 518–523. [CrossRef]

86. Madu, I.A. The impacts of anthropogenic factors on the environment in Nigeria. J. Environ. Manag. 2009, 90, 1422–1426.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.scitotenv.2017.05.012
http://www.ncbi.nlm.nih.gov/pubmed/28505889
http://dx.doi.org/10.3390/f10040317
http://dx.doi.org/10.3390/f10030243
http://dx.doi.org/10.1002/met.2156
http://dx.doi.org/10.1016/j.ecolind.2022.108629
http://dx.doi.org/10.1016/j.scitotenv.2016.03.223
http://www.ncbi.nlm.nih.gov/pubmed/27135584
http://dx.doi.org/10.1016/j.jag.2011.02.001
http://dx.doi.org/10.1007/s11769-013-0645-2
http://dx.doi.org/10.1007/s10021-009-9244-6
http://dx.doi.org/10.3390/rs70202067
http://dx.doi.org/10.3390/rs70911163
http://dx.doi.org/10.1016/j.jclepro.2020.121490
http://dx.doi.org/10.1016/j.apgeog.2008.12.005
http://dx.doi.org/10.1080/03736245.2015.1028978
http://dx.doi.org/10.1016/j.scitotenv.2019.01.260
http://www.ncbi.nlm.nih.gov/pubmed/30708298
http://dx.doi.org/10.1016/j.agrformet.2014.10.008
http://dx.doi.org/10.1016/j.ecoleng.2015.04.098
http://dx.doi.org/10.3390/rs8050411
http://dx.doi.org/10.1080/13504500809469847
http://dx.doi.org/10.1016/j.jenvman.2008.08.009

	Introduction
	Materials and Methods
	Study Area
	Data
	MODIS-NDVI Dataset and Preprocessing
	Landsat Imagery and Preprocessing
	Climate Data
	Impervious Surface Data
	SRTM DEM Data

	Methods
	Variation Trend Judgement
	Residual Analysis
	Correlation Analysis


	Results
	Spatial-Temporal Characteristics of Vegetation Change Trend
	Driving Factors of Vegetation Change in Mountainous Area
	Driving Factors of Vegetation Change in High and Low-Intensive Building Area

	Discussion
	The Relative Role of Driving Forces in the Process of Vegetation Restoration
	The Relative Role of Driving Forces in the Process of Vegetation Degradation
	Limitations and Future Directions

	Conclusions
	References

