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Abstract: The estimation of depth in optically shallow waters using satellite imagery can be efficient 
and cost-effective. Active sensors measure the distance traveled by an emitted laser pulse propagat-
ing through the water with high precision and accuracy if the bottom peak intensity of the waveform 
is greater than the noise level. However, passive optical imaging of optically shallow water involves 
measuring the radiance after the sunlight undergoes downward attenuation on the way to the sea 
floor, and the reflected light is then attenuated while moving back upward to the water surface. The 
difficulty of satellite-derived bathymetry (SDB) arises from the fact that the measured radiance is a 
result of a complex association of physical elements, mainly the optical properties of the water, bot-
tom reflectance, and depth. In this research, we attempt to apply physics-based algorithms to solve 
this complex problem as accurately as possible to overcome the limitation of having only a few 
known values from a multispectral sensor. Major analysis components are atmospheric correction, 
the estimation of water optical properties from optically deep water, and the optimization of bottom 
reflectance as well as the water depth. Specular reflection of the sky radiance from the water surface 
is modeled in addition to the typical atmospheric correction. The physical modeling of optically 
dominant components such as dissolved organic matter, phytoplankton, and suspended particu-
lates allows the inversion of water attenuation coefficients from optically deep pixels. The atmos-
pheric correction and water attenuation results are used in the ocean optical reflectance equation to 
solve for the bottom reflectance and water depth. At each stage of the solution, physics-based mod-
els and a physically valid, constrained Levenberg–Marquardt numerical optimization technique are 
used. The physics-based algorithm is applied to Landsat Operational Land Imager (OLI) imagery 
over the shallow coastal zone of Guam, Key West, and Puerto Rico. The SDB depths are compared 
to airborne lidar depths, and the root mean squared error (RMSE) is mostly less than 2 m over water 
as deep as 30 m. As the initial choice of bottom reflectance is critical, along with the bottom reflec-
tance library, we describe a pure bottom unmixing method based on eigenvector analysis to esti-
mate unknown site-specific bottom reflectance. 
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1. Introduction 
Accurate, quantitative measurements of nearshore bathymetry (water depths 0–30 

m) are important for the assessment of hazards to and management of coastal communi-
ties, infrastructure, agriculture, and ecosystems associated with storm events and sea-
level rise. Measurements of coastal waters are typically acquired by active sensors such as 
lidar or sonar. Bathymetric lidar uses a green laser pulse because this wavelength has 
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minimal attenuation by coastal water in most cases. The operating depth range of bathy-
metric lidar is mainly determined by the attenuation coefficient: a high-powered, state-of-
the-art bathymetric lidar can pick up a return pulse from a sea floor as deep as 70 m when 
the water is very clear, with a diffuse attenuation coefficient around 0.6 m−1 at 532 nm. 
However, in most cases, a bathymetric lidar can detect bottom return peaks only over 
much shallower regions. 

The passive optical technique for mapping bathymetry can use airborne images or 
satellite images. The main drawback of lidar or sonar is the relatively high cost. In contrast, 
many no-cost globally available nearshore satellite images are available and make satel-
lite-derived bathymetry (SDB) an attractive alternative. Typically, airborne data require 
mosaicking data from flight lines or stitching thousands of individual images. Although 
airborne images can have very small pixels, a common drawback is radiometric imbalance 
between scanlines or frames due to variations in roll, pitch, and heading angle. When the 
sun is in the cross-track direction, this imbalance is worse than when the sun is closer to 
the along-track direction. However, satellite images are virtually free of the radiometric 
imbalance issue because the satellite sensor orientation is invariant during the overpass. 

Since Lyzenga suggested an SDB method [1,2], Stumpf et al. developed an SDB 
method for high-resolution satellite imagery [3], and there are many SDB variants and 
other types of coastal bathymetric techniques [4]. We propose a physics-based SDB tech-
nique for any multispectral satellite sensor that has 3–5 bands in the visible spectral range. 
This is the most prevalent satellite sensor type and includes the Landsat Operational Land 
Imager (OLI), the Sentinel-2 MultiSpectral Instrument (MSI), and the WorldView series. 
In this research, we use Landsat OLI data, which are freely available from U.S. Geological 
Survey (USGS) public data access points, such as USGS EarthExplorer [5], USGS GloVis 
[6], and LandsatLook Viewer [7]. 

2. Methods 
This section comprehensively explores the concepts, theories, and algorithms of 

physics-based SDB. Special emphasis is placed on the technique to guarantee that the non-
linear optimization algorithm we use converges to physically valid solutions. 

2.1. Sampling Optically Deep Water Pixels 
By definition, pixels from an area of optically deep water are free from bottom influ-

ence. The optical depth of the water is calculated by multiplying the geometrical depth 
and the attenuation coefficient and is thus dimensionless. Beyond a certain optical depth 
(for instance, 3.0), the bottom reflected signal is almost completely attenuated; thus, it is 
called “optically deep.” In optically deep water, the radiance is determined by the inherent 
optical properties (IOPs) of the water and the atmospheric contribution. After atmospheric 
correction, only the effect of the optical properties remains, and one can solve for the IOPs 
using the ocean optical model presented in Section 2.4.2. Therefore, the first step of phys-
ics-based SDB is sampling a pixel spectrum from optically deep water. The current 
method requires the existence of optically deep water in the scene. The top-of-the-atmos-
phere (TOA) reflectance is obtained as an irradiance ratio based on the Lambertian as-
sumption. After correction by solar zenith angle and earth–sun distance, it is given by the 
following equation: 𝜌 = ∙ ∙ ∙   (1)

The description of the variables is found in Table 1. The Landsat OLI level-1 precision 
and terrain correction image product (L1TP) provides 𝜌 ∙ cos 𝑆𝑍𝐴, which is the TOA 
reflectance without solar zenith angle (SZA) correction. Thus, the OLI L1TP image needs 
to be divided by the cosine of the accompanied SZA image before atmospheric correction. 
The radiance, irradiance, and reflectance are a function of wavelength. However, wave-
length dependency will be suppressed in most cases to make the notation more compact. 
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Table 1. List of variables. 

Variable Name Unit 𝜌  Top of the atmosphere (TOA) reflectance Unitless 𝐿  TOA radiance [W m−2 nm−1 sr−1] 𝐷  Earth to Sun distance AU 𝑆𝑍𝐴 Solar zenith angle Radian 𝐹  Exoatmospheric solar irradiance [W m−2 nm−1] 𝑉𝑍𝐴 View zenith angle Radian 𝜏  Aerosol optical depth at 550 nm Unitless 𝑈  Column ozone [DU] 𝑈  Column water vapor [cm] 𝑃 Surface pressure Millibars 𝜌  Atmospheric and water surface reflectance Unitless 𝐴  Atmospheric spherical albedo Unitless 𝑇  Transmission by absorption of other gases Unitless 𝑇  Transmission by absorption of ozone Unitless 𝑇  Transmission by absorption of water vapor Unitless 𝑡  Transmission by scattering (sun to surface) Unitless 𝑡  Transmission by scattering (surface to sensor) Unitless 𝜌  Bottom of the atmosphere (BOA) reflectance Unitless 𝑅  Above-water remote sensing reflectance [sr−1] 𝑟  Subsurface remote sensing reflectance [sr−1] 𝑔 , 𝑔  Coefficients of quadratic IOP’s model for 𝑟 ,  Unitless 𝑢 Backward scattering to total forward attenuation Unitless 𝑎 Total absorption coefficient [m−1] 𝑏  Total backward scattering coefficient [m−1] 𝑎  Absorption coefficient due to pure water [m−1] 𝑎  Absorption coefficient due to detritus and gelbstoff [m−1] 𝑆 Exponential coefficient of 𝑎  function [nm−1] 𝑎  Absorption coefficient due to phytoplankton [m−1] 𝐶 Chlorophyll-a concentration [mg m3] 𝑎 ∗ Normalized absorption by average phytoplankton [m−1] 𝑏  Backward scattering due to pure water [m−1] 𝑏  Scattering coefficient due to suspended particulate [m−1] 𝑛 Power coefficient of 𝑏  function Unitless 𝑒 Difference between measured and modeled N/A 𝑋 Physical parameter 𝑋 N/A 𝛷 Generic parameter for bounded solution of𝑋 N/A 𝑱 Jacobian for derivative-based optimization N/A 𝐾  Downward diffuse attenuation coefficient [m−1] 𝐾  Upward diffuse attenuation coefficient [m−1] 𝑆𝑍𝐴_𝑤 In-water refracted solar zenith angle (SZA) [radian] 𝑉𝑍𝐴_𝑤 In-water refracted view zenith angle (VZA) [radian] 𝑛  Refractive index of coastal water Unitless 𝑟 ,  𝑟  from optically deep water [sr−1] 𝑧 Geometrical depth of optically shallow water [m] 𝜌  Bottom albedo Unitless 𝐶 , 𝐶  Proportion of sand-like and grass-like bottom Unitless 𝜌 , 𝜌  Bottom albedo of sand-like and grass-like bottom Unitless 𝒘 Weight vector for all bands, 𝑤(𝜆 ) ∶ 𝑖 = 1, … , 𝑁  Unitless 𝑁  Number of wave bands Unitless 
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2.2. Atmospheric Correction 
The water-leaving radiance is modified by the presence of air molecules and aerosols 

detected by the sensor as TOA radiance. Roughly speaking, a majority (about 80% or 
more) of the at-sensor radiance is due to atmospheric scattering, which needs to be re-
moved to apply the SDB technique. Because the radiance originating from the water body 
is relatively small, minor errors in atmospheric correction will result in larger errors in the 
estimated depth, making accurate atmospheric correction critical. A commonly used and 
well-established method based on atmospheric radiative transfer modeling is used in this 
research. Look-up-tables (LUTs) of the pre-computed atmospheric radiative transfer solu-
tion, such as MODTRAN [8,9] or 6SV [10,11], are commonly used for atmospheric correc-
tion. 

In addition to the generic LUT approach, a specific emphasis in this SDB research is 
the effect of the water surface. The radiance from the water surface, unlike the terrestrial 
surface, has an additional contribution from the reflected sky radiance. Taking this com-
ponent into account is important for accurately estimating depth via the SDB method. 

2.2.1. Atmospheric Radiative Transfer over Coastal Zone 
The sky area that gives extra radiance to a pixel due to specular reflection at the water 

surface is determined by several factors. A specular reflection of a sky to the image occurs 
on a three-dimensional plane that includes the view direction vector and the surface nor-
mal vector (Figure 1). 

 
Figure 1. Diagram of a water surface reflected sky radiance (blue arrow) and intrinsic atmospheric 
volume backscattered reflectance (black arrow). 

Although the Ahmad LUT [12] provides background reflected sky reflectance, the 
nature of the sky area is not known due to the complex and random nature of the sky. For 
example, if a puffy white cloud is present, then the downward sky radiance will be high, 
which requires more correction than the Ahmad LUT would estimate. If the cloud is dark, 
the downward sky radiance will be lower than for a typical cloud-free blue background 
sky. Thus, once the background reflected sky reflectance is applied, a subsequent dark-
pixel algorithm needs to be applied to fix the pixel-by-pixel variation of the sky condition 
[13,14]. 

2.2.2. Aerosol Optical Depth Inversion Based on Dark Water Concept 
Because OLI lacks the bands to estimate pressure, column ozone, and column water 

vapor, constant values are used in creating the LUT. Only red and green bands are affected 
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by ozone, and the effect of varying ozone amount is not substantial; a global average of 
300 DU 𝑈  is used in LUT generation. OLI bands are chosen to avoid water vapor ab-
sorption. Although any value should work, a typical value of 3 cm 𝑈  is used in LUT 
generation. Because SDB applies to the coastal zone near the mean sea level, the pressure 
value of 1013 mb is used in LUT generation. A “coastal” aerosol type is the most appro-
priate for SDB. As the effect of the atmospheric model is minimal, a “mid-latitude sum-
mer” model is used. The 𝜌  LUT is generated by varying 𝜏  along with all feasible 
angular combinations of SZA, view zenith angle (VZA), and relative azimuth angles, 
where the angle notations are dropped for a simpler notation as follows: (𝜏 ; 𝑈 , 𝑈 , 𝑃) → 𝐿𝑈𝑇: 𝜌 (𝜆; 𝜏 ). 

The major component of the LUT is 𝜌 , but it also creates auxiliary tables for at-
mospheric scattering transmittances for downward 𝑡   and upward 𝑡  ; atmospheric 
spherical albedo 𝐴 ; and molecular gas transmittance 𝑇 , 𝑇 , 𝑇  for other gases, ozone, 
and water vapor, respectively. The primary goal of atmospheric correction is to determine 𝜏  based on a dark water concept, which makes 𝜌 (𝜆 ) zero after correction. Thus, 
the atmospheric correction involves finding 𝜏   that satisfies  𝜌 (𝜆 ; 𝜏 ) =𝜌 (𝜆 ). 

Once the optimized solution of 𝜏  is obtained, the following formula solves for the 
surface reflectance at the bottom of the atmosphere: 𝜌 = ⋅ , 𝜌 = ( )⋅ ⋅ ⋅ ( )⋅ ( )  (2)

2.3. Conversion to Subsurface Remote Sensing Reflectance 
The above-surface, remote-sensing reflectance 𝑅   is obtained from surface reflec-

tance divided by 𝜋 based on the Lambertian radiance distribution assumption. The con-
version of subsurface remote sensing reflectance 𝑟  from the above surface remote sens-
ing reflectance 𝑅  is derived from the following formula [15]: 𝑟 = . . , 𝑅 =   (3)

Equation (3) is valid for VZAs around 20° or smaller. For a greater view angle, a dif-
ferent ocean optical radiative transfer simulation and modeling is needed to determine a 
proper set of coefficients in Equation (3). However, most satellites collect imagery within 
a narrow range of angles around the nadir. For Landsat OLI imagery, for example, the 
maximum VZA is 7.5°, which is well within the range of validity for Equation (3). 

2.4. Ocean Optical Inversion of Inherent Optical Properties 
2.4.1. Subsurface Reflectance Model of IOPs 

The optically deep subsurface remote sensing reflectance 𝑟 ,  is modeled as a quad-
ratic function of an IOP’s model quantity 𝑢, which is the ratio of backward scattering to 
total forward beam attenuation [16]: 𝑟 , = 𝑔 ∙ 𝑢 + 𝑔 ∙ 𝑢 , 𝑔 = 0.0949, 𝑔 = 0.0794, 𝑢 ≡ .  (4)

The backward scattering determines the number of photons that are scattered back-
ward by water molecules and other particulates and that travel back through the air and 
eventually to the sensor. The total forward attenuation determines how many photons are 
removed from the photon pool that is potentially available for backward scattering. Thus, 
the ratio of backward scattering to forward beam attenuation is related to the remote sens-
ing radiance. The more backward scattering, the higher the remote sensing radiance. The 
higher the forward beam attenuation, the lower the remote sensing radiance. This ratio is 
related to the subsurface remote sensing reflectance in a quadratic manner. This relation-
ship is derived using the simulated radiance for given IOPs by running an ocean optical 
radiative transfer model, such as Hydrolight [17]. 
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2.4.2. Ocean Optical Models of Inherent Optical Properties 
The absorption model for detritus and gelbstoff (also called carbonaceous dissolved 

organic matter) is given by 𝑎 (𝜆) = 𝑎 (𝜆 ) ∙ exp [−𝑆 ∙ (𝜆 − 𝜆 )],  (5)

where 𝑆 is the coefficient that describes exponentially decreasing absorption with wave-
length, and 𝜆  is a reference wavelength with a typical value of 440 nm. Example 𝑎  
spectra, which were measured via in situ ground truth optical data collection from various 
locations with different optical conditions during the Coastal Zone Mapping and Imaging 
Lidar (CZMIL) validation campaign at Thunder Bay, Alpena, Michigan, USA, in 2007 [18], 
are presented in Figure 2. They show an excellent match with the analytical exponential 
model. 𝑎 (𝜆) = 0.06 ∙ 𝐶 . ∙ 𝑎 ∗(𝜆),  (6)

where 𝐶 is the chlorophyll-a concentration in [mg/m3], and 𝑎 ∗ is the normalized spec-
tral absorption by the phytoplankton in global average. The total absorption combines 
water absorption 𝑎  and the two components. 𝑎(𝜆) = 𝑎 (𝜆) + 𝑎 (𝜆) + 𝑎 (𝜆)  (7)

Backward scattering due to suspended particulates was also measured along with 𝑎  spectra (Figure 2b), and it is modeled as a power function with a typical reference 
wavelength of 550 nm. 𝑏 (𝜆) = 𝑏 (𝜆 ) ∙   (8)

The total backward scattering is the sum of water and particulate components. 𝑏 (𝜆) = 𝑏 (𝜆) + 𝑏 (𝜆)  (9)

 
Figure 2. Example IOP measurements from various optical conditions: (a) absorption spectra due to 
detritus and gelbstoff; (b) backward scattering spectra due to suspended particulates. 

2.4.3. Nonlinear Optimization for Inherent Optical Properties 
The solution of the IOP’s model parameter vector 𝑷 using nonlinear optimization 

[15,18] is formulated as follows: 𝑒(𝜆; 𝑷) = [𝑢 (𝜆) − 𝑢(𝜆; 𝑷)]  (10)

The full parameter vector is 𝑷 = [𝑎 (𝜆 ), 𝑆, 𝐶, 𝑏 (𝜆 ), 𝑛] , and 𝑢 (𝜆)  is obtained 
from the quadratic solution of Equation (4), and 𝑢(𝜆; 𝑷) is an IOP’s ratio model using 
Equations (4), (7), and (9). Because the number of available bands for a typical multispec-
tral satellite sensor is limited (for example, four visible bands for Landsat OLI), one needs 
to make reasonable assumptions to reduce the number of unknown parameters. Using the 
typical value of moderately clear coastal water (𝑆 = 0.02   nm-1, n=1.0), the unknown 
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parameter vector for nonlinear optimization reduces to a 3-element vector, 𝑷 =[𝑎 (𝜆 ), 𝐶, 𝑏 (𝜆 )]. Thus, the nonlinear optimization problem is as follows: 𝐹𝑖𝑛𝑑 𝑷 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 ‖𝑒‖  

2.4.4. Bounded Nonnegative Solution 
To guarantee a physically meaningful, bounded, nonnegative solution, a generic pa-

rameter 𝑋 is converted to nonnegative 𝛷: 𝑋 = 0.5 ∙ (𝑋 + 𝑋 ) + 0.5 ∙ cos𝛷 ∙ (𝑋 − 𝑋 )  (11)

The upper and lower bounds of a parameter 𝑋 are given by 𝑋 , 𝑋 . The generic 
parameter means that it can be any real number with an arbitrary magnitude and sign. 
The new converted parameter 𝛷 is expressed as follows: 𝛷 = 𝑐𝑜𝑠 [(2 ∙ 𝑋 − 𝑋 − 𝑋 ) / (𝑋 − 𝑋 )]  (12)

Calling the parameters 𝑷 = [𝐴, 𝐵, 𝐶] ≡ [𝑎 (𝜆 ),  𝑏 (𝜆 ), 𝐶]  for notational simplic-
ity, the corresponding converted parameters can be called [𝛷 , 𝛷 , 𝛷 ] . This converted 
parameter will be used in the optimization process. The physically bounded parameter 𝑋 
is solved from non-constrained nonlinear optimization solution 𝛷 by using the conver-
sion Equation (12). 

2.4.5. Levenberg–Marquardt Nonlinear Optimization 
The Jacobian formulation for the Levenberg–Marquardt optimization method [19] is 

based on the converted parameter 𝛷, not 𝑋. The Jacobian 𝑱 is a two-dimensional matrix 
with the number of wave bands (𝑁 ) as the rows and the number of parameters (𝑁 ) as 
the columns. Three columns of the Jacobian matrix for each parameter are expressed as: 𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑢𝜕𝛷 = 𝜕𝑢𝜕𝑎 ∙ 𝜕𝑎𝜕𝐴 ∙ 𝜕𝐴𝜕𝛷   =  exp[−𝑆 ∙ (𝜆 − 𝜆 )] ∙  𝑏 (𝜆)𝑎(𝜆) + 𝑏 (𝜆) ∙ 𝐴 − 𝐴2 ∙ sin𝛷 , (13) 

𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑢𝜕𝛷 = 𝜕𝑢𝜕𝑏 ∙ 𝜕𝑏𝜕𝐵 ∙ 𝜕𝐵𝜕𝛷   = ∙  ( )( ) ( ) ∙ ∙ sin𝛷 ,  
(14) 

 𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑢𝜕𝛷 = 𝜕𝑢𝜕𝑎 ∙ 𝜕𝑎𝜕𝐶 ∙ 𝜕𝐶𝜕𝛷   = 0.06 ∙ 0.65 ∙ 𝐶 . ∙ 𝑎 ∗(𝜆) ∙  ( )( ) ( ) ∙ ∙ sin𝛷   
(15) 

The amount of parameter adjustment in the Levenberg–Marquardt optimization is 
determined using damped pseudo-Hessian (𝑱 𝑱 + 𝜆𝑰) with damping factor 𝜆, an iden-
tity matrix 𝑰, the Jacobian matrix, and error vector 𝒆. Thus, the updated parameter for the 
decreasing error in the next iteration is given by the following: [𝛷 , 𝛷 , 𝛷 ]  ⟸  [𝛷 , 𝛷 , 𝛷 ] − (𝑱 𝑱 + 𝜆𝑰) ∙ 𝑱 ∙ 𝒆.  (16)

2.4.6. Diffuse Attenuation Coefficient from Inherent Optical Properties 
Once the final optimized converted parameters [𝛷 , 𝛷 , 𝛷 ] are obtained, Equation 

(11) is used to obtain the physical parameters [𝑎 (𝜆 ),  𝑏 (𝜆 ), 𝐶]. The next step is to use 
Equations (5)–(9) to calculate total absorption 𝑎  and total backward scattering 𝑏  . In 
physics-based SDB, water optical properties have the form of a diffuse attenuation coeffi-
cient 𝐾 , 𝐾  in the reflectance equation of the optically shallow water, which is given in 
Equation (19). The diffuse attenuation for the downward propagation 𝐾  of solar photons 
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is defined by total forward beam attenuation corrected by the in-water slant increased 
optical pathlength using the cosine of the in-water SZA: 𝐾 = ( _ ) , 𝑆𝑍𝐴 =  𝑠𝑖𝑛 ( )   (17)

The refractive index of water 𝑛  to compute the in-water refraction angle can be se-
lected as any value within 1.32~1.34, depending on the salinity and temperature, but it 
will cause negligible difference to the SDB result. The diffuse attenuation for upward 
propagation 𝐾  of bottom reflected photons is defined by total forward beam attenuation 
corrected by the in-water slant increased optical pathlength using the cosine of the in-
water VZA: 𝐾 = ( _ ) , 𝑉𝑍𝐴 =  𝑠𝑖𝑛 ( )   (18)

2.5. Satellite Derived Bathymetry 
Using a pixel spectrum from optically deep water, atmospheric and surface reflec-

tance correction is applied first to obtain the pure water-leaving reflectance and then the 
inversion of IOPs from the water-leaving reflectance. Due to the small number of bands, 
one cannot solve for the IOPs, bottom reflectance, and depth simultaneously. Thus, the 
first assumption is that the IOPs estimated from optically deep water can also be applied 
to optically shallow water. Then, the remaining unknowns are bottom reflectance and the 
depth. This reduced number of unknowns makes the optimization possible. 

2.5.1. Reflectance Model of Optically Shallow Coastal Water 
The ocean optical reflectance equation is given by [1]: 𝑟 (𝑧) = 𝑟 , ∙ 1 − exp[−( 𝐾 + 𝐾 ) ∙ 𝑧] + (𝜌 /𝜋) ∙ exp[−( 𝐾 + 𝐾 ) ∙ 𝑧],  (19)

The first term represents the subsurface reflectance due to the volume backward scat-
tering portion, and the second term represents the bottom reflected portion. The term 𝑟 ,  
represents the reflectance from optically deep water, where all the reflectance comes from 
the optical interaction of sunlight with the water volume. The 𝜌 /𝜋 term represents the 
bottom reflection. When the water depth 𝑧 varies from very shallow to deep, the expo-
nential term “exp[]” varies from unity to zero. Accordingly, the term “1 − exp[]” varies 
from zero to unity. Thus, in shallow water, the first term is negligibly small, and the sec-
ond term dominates. In deep water, the first term dominates, and the second term be-
comes negligible. The change in magnitude of the first term (cyan-colored curves in Figure 
3) and second term (yellow-colored curves) happens in exponential fashion, and the sum 
of two terms (black-colored curves) also shows exponential decrease, which is demon-
strated in Figure 3. 
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Figure 3. Simulated reflectance of optically shallow water over varying depths (0.2, 1, 2, 4, 6, 12 m). 
The cyan-colored curves represent the first term of Equation (19), where the depths increase from 
the bottom to the top curves. The yellow-colored curves represent the second term of Equation (19), 
where the depths increase from the top to the bottom curves. The black-colored curves are the sum 
of the two terms, where the depths increase from the top to the bottom curves. 

2.5.2. Bottom Reflectance Modeling 
The unknown bottom reflectance of a pixel is a vector with 𝑁  elements. The depth 

of the water is another unknown parameter. Thus, even after reduced unknowns using 
assumptions, the number of known values, which is the 𝑁 -element reflectance spectrum, 
is always smaller than the number of unknown parameters. Thus, one must handle the 
bottom reflectance in a different manner to make the optimization solution possible. Most 
bottom types are sand-like or grass-like. The sand-like bottom includes bright ooid sand, 
quartz sand, mixed muddy sand, and even muds. Each type of sand and mud also has a 
wide variety of brightness. The grass-like bottom is also a broad category that includes 
bottom algae coating, seagrass, and macrophytes. It also could be green algae, red algae, 
and even various kinds of coral because the multispectral band data usually do not relia-
bly differentiate them. Several bottom spectra measured from various inland and coastal 
zones, including the bottom spectra collected at Lee Stocking Island, Bahamas [20], are 
presented in Figure 4. 
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Figure 4. Bottom spectral library with selected example of sand bottom in yellow and grass bottom 
in green collected at Lee Stocking Island, Bahamas [20]. The yellow and green curves are the initially 
selected bottom library for SDB. 

To make the optimized solution possible, one assumes that the bottom reflectance is 
a linear mixture of two types of bottoms: sand-like and grass-like. 𝜌 = 𝐶 ∙ 𝜌 + 𝐶 ∙ 𝜌   (20)

Ideally, the bottom reflectance coefficients should satisfy the unity condition, 𝐶 +𝐶 = 1. However, when an unknown bottom is modeled using a certain preselected and 
predefined library, the unity condition is not realistic. Thus, it is reasonable to relax the 
condition so that more flexible 𝐶 , 𝐶  parameters fit the total reflectance better. Regardless 
of the specifics of bottom modeling, the essence is that the number of unknowns is reduced 
from 𝑁  to just two, which allows for numerical optimization. 

2.5.3. Nonlinear Optimization for SDB Solution 
The parameter vector for SDB is renamed for notational simplicity. 𝑷 = [𝑆, 𝐺, 𝑧] ≡ 𝐶 , 𝐶 , 𝑧  (21)

The optimization to minimize the error for the numerical equation is defined as fol-
lows: 𝐹𝑖𝑛𝑑 𝑷 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 ‖𝒘 ∙ 𝒆‖, 𝑒(𝜆; 𝑷) = 𝑟 , (𝜆) − 𝑟 (𝜆; 𝑷) (22)

Three columns of the Jacobian matrix for each parameter are expressed as: 𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑟𝜕𝛷 = 𝜕𝑟𝜕𝐶 ∙ 𝜕𝐶𝜕𝛷  = ∙  exp[−( 𝐾 + 𝐾 ) ∙ 𝑧] ∙ ∙ sin𝛷 ,  
(23)

𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑟𝜕𝛷 = 𝜕𝑟𝜕𝐶 ∙ 𝜕𝐶𝜕𝛷  = 𝜌𝜋 ∙  exp[−( 𝐾 + 𝐾 ) ∙ 𝑧] ∙ 𝐺 − 𝐺2 ∙ sin𝛷  , (24)

𝑱(𝛷 ; 𝜆) ≡ 𝜕𝑟𝜕𝛷 = 𝜕𝑟𝜕𝑧 ∙ 𝜕𝑧𝜕𝛷  

= ( 𝐾 + 𝐾 ) ∙  𝑟 , − 𝜌𝜋 ∙  exp[−( 𝐾 + 𝐾 ) ∙ 𝑧] ∙ 𝑧 − 𝑧2 ∙ sin𝛷  
(25)

When the bottom reflectance unity condition, 𝐶 + 𝐶 = 1, is applied, it becomes a 2-
parameter problem. Accordingly, the two Jacobian columns are combined to a single col-
umn: 𝑱(𝛷 ; 𝜆) = 𝜌 − 𝜌𝜋 ∙  exp[−( 𝐾 + 𝐾 ) ∙ 𝑧] ∙ 𝑆 − 𝑆2 ∙ sin𝛷 . (26)

Using the Jacobian column, the update of the parameter for the next iteration in the 
Levenberg–Marquardt nonlinear optimization scheme is made in the same manner as 
Equation (16). 

3. Results and Discussion 
In this section, the detailed procedure of SDB production is demonstrated step by 

step. Several Landsat OLI coastal zone images are used, and the available bathymetric 
lidar data are used as a reference for accuracy assessment. Special attention is paid to the 
local specific bottom reflectance derived from the combination of the image and lidar data. 
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3.1. Study Sites and Validation Data 
The study sites are Guam, Key West, and Puerto Rico. The first site, Puerto Rico 

(LC09_L1TP_005048_20230129_20230129_02_T1), is the cloud-free Landsat OLI scene pre-
sented in Figure 5a. Bathymetric lidar data are used as validation data (National Oceanic 
and Atmospheric Administration National Geodetic Survey). The first step is to sample a 
spectrum from an optically deep-water area (yellow cross in Figure 5a). 

 
Figure 5. (a) An example Landsat 8 OLI scene, southwest corner of Puerto Rico. (b) Optically deep-
water spectrum sampled from the yellow cross. The mean TOA reflectance 𝜌  from the yellow 
cross-marked optically deep area is shown as a yellow curve. After atmospheric correction, the sur-
face reflectance 𝜌  is shown as a gray curve. For an optimized 𝜏 , the dotted gray curve is the 𝜌  result using 6SV LUT [10], and the solid gray curve is the 𝜌  result using Ahmad LUT [12]. 
In similar manner, the red-colored curves represent above-surface remote sensing reflectance, and 
the cyan-colored curves represent subsurface remote sensing reflectance. 

3.2. Atmospheric Correction of Optically Deep Water 
The optimal 𝜏  is determined to satisfy the dark pixel assumption based on Ahmad 

LUT [12] that considers both atmospheric and surface reflection, as presented in Figure 
5b. The dark pixel assumption is that the reflectance of longer wavelengths (red and near-
infrared bands) is near zero. On the contrary, reflectance using 6SV LUT [10] does not 
suppress the longer wavelength bands to zero because the Ahmad model includes a water 
surface boundary but the 6SV model does not. 𝜌  is converted to 𝑅  (red curve) and 
subsequently to 𝑟  (cyan diamond symbol curve) using Equation (3). The atmospheric 
correction result of Figure 5b was transferred from Figure 6c. The detailed component of 
atmospheric correction using 6SV LUT are presented in Figure 6a and the detailed com-
ponent of atmospheric correction using Ahmad LUT in Figure 6b. Various transmission 
spectra found in Equation (2) are shown in Figure 6d. 
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Figure 6. Atmospheric correction. (a) 6SV LUT [10], (b) Ahmad LUT [12], (c) reflectance, and (d) 
transmission. For (a,b), the gray curve is TOA reflectance, the blue curve is the reflectance due to 
Rayleigh scattering, the yellow curve is the reflectance due to aerosol, and the cyan curve is com-
bined atmospheric reflectance. The cyan curve in (b) by Ahmad LUT includes water surface reflec-
tion component; that is why the spectrum is higher than 6SV LUT. The magenta curve is the 𝜌  
component in Equation (2), and the green curve is the final 𝜌 . For (c), a set of solid lines are using 
Ahmad LUT and a ser of dashed lines are using 6SV LUT. The gray curves are 𝜌 , the red curves 
are the water-leaving reflectances, and the cyan curves are the subsurface remote sensing reflec-
tances. For (d), the green curve is 𝑇 , the magenta curve is 𝑇 ⋅ 𝑇 , and the gray curve represents 𝑡 (𝜏 ) ⋅ 𝑡 (𝜏 ). 

3.3. Inversion of Optical Properties of Water 
The conversion of subsurface remote sensing 𝑟  to 𝑢 and successive optimization via 

the optical model of the dominant ocean optical components uses Equations (4)–(16). The 
optimized results associated with 𝑢_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 in Figure 7b are as follows: 𝑏 (𝜆 ) = 0.00166 m , 𝑎 (𝜆 ) = 0.01645 m , 𝐶 = 0.07505 mg/m   
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Figure 7. Analysis of optically deep water. (a) Subsurface remote sensing reflectance analysis. (b) 
Analysis of inherent optical properties after optimization. The curves in (a) are described in Figure 
6c. The subsurface remote sensing 𝑟 , which is the cyan-colored curve in (a), is converted to 𝑢, 
which is the thick gray dot in (b). The optimized result is the cyan curve in (b). The phytoplankton 
absorption is the dotted green line, detritus and gelbstoff absorption are the dotted yellow lines, 
total absorption including pure water is the dashed red line, particulate backward scattering is the 
dotted gray line, total backward scattering including pure water is the dashed red line, and 𝐾 , 𝐾 —
using Equations (17) and (18)—are the solid gray and solid yellow lines, where the solar zenith angle 
of the pixel location is SZA = 44.9° and VZA = 3.1°. Frequently used variables 𝐾 , 𝐾  at 532 nm are 
also marked, which is the case of typical relatively clear coastal water. 

3.4. Effect of Physical Parameters 
To demonstrate the effect of various bottom surface types from the bottom reflectance 

library, the diffuse attenuation coefficients (𝐾 , 𝐾 ) are fixed, and the simulated 𝑟  spectra 
at varying depths (2 m, 5 m, and 15 m) are derived. The SDB algorithm solves for depth 
and bottom weights for sand-type and grass-type. The effect of water depth leads to the 
greatest variance, as demonstrated in Figure 8a. We assume the diffuse attenuation coeffi-
cient is estimated from the nearby optically deep water, and the optically shallow region 
is assumed to have the same optical properties. However, the assumption is generally not 
valid because the different attenuation makes substantial differences, as demonstrated in 
Figure 8b. Along with depth, the bottom reflectance spectrum is the other apparent factor 
that results in a wide dynamic range of reflectance, as demonstrated in Figure 8c. 
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Figure 8. Simulated reflectance spectra (a) for varying depths, (b) for varying attenuation coefficients 
K with increment of 0.01 at 3 depths, and (c) for all bottom library spectra at 3 depths. For (b,c), gray 
lines are 2 m, green lines are 5 m, and red lines are 15 m depth. 

Because the effect of major parameters on the subsurface remote sensing reflectance 
is substantial and only five OLI bands are available (including the NIR band), reasonable 
assumptions for atmospheric correction and IOPs were made. At the last step, one still 
needs to choose the two bottom spectra (sand-like and grass-like) from the library. 

3.5. Initial Result 
The initial SDB analysis uses the area shown in the box of Figure 9a. Also shown is 

the bathymetric lidar point cloud in Figure 9b. 
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Figure 9. SDB area of interest in Puerto Rico. (a) Satellite image. (b) Bathymetric lidar point cloud in 
grayscale. 

The difference between lidar water depth and SDB depth has a mean absolute error 
(MAE) value of 1.515 m and root mean squared error (RMSE) value of 4.028 m in Figure 
10. This result is using the initial choice of the two spectra. The improvement of the bottom 
spectra is discussed in the next section. 

 
Figure 10. Initial depth scatterplot between lidar water depth and SDB depth. The color of the dots 
represents the local density in the depth scatterplot: a rainbow color scheme with high density to-
ward red and low density toward purple. The black line represents the one-to-one line, and the red 
line is the linear regression line. 

The bathymetric lidar digital elevation model (DEM) (refer to Data Availability State-
ment at the end) is processed so that it is converted to the lidar water depth as follows. An 
example OLI image is displayed, and a high spatial resolution topographic–bathymetric 
digital elevation model (TBDEM) is overlaid as a grayscale image (Figure 11). A TBDEM 
is defined under a specific datum, whereas SDB estimates water depth where the reference 
water surface is variable depending on the time of the day. Thus, it is necessary to find an 
offset to the water surface level at the time of satellite overpass. Over the overlapping 
region between the image and DEM, each pixel is evaluated as to whether the pixel spec-
trum has a spectral property of a typical water pixel. The boundary line between the two 
different pixel types gives a proper DEM offset to water depth. In this example, −0.35 m 
was the offset. Thus, we subtract −0.35 m from the raw DEM so that −0.35 m becomes the 
zero water level, and then the sign is changed to be the physical depth. This is the lidar 
water depth that is compared to the SDB depth. 



Remote Sens. 2024, 16, 843 16 of 34 
 

 

 
Figure 11. Estimation of DEM offset to convert to lidar DEM water depth. (a) Lidar DEM overlaid 
to satellite image in Key West. (b) Estimated water surface level in red line using land–water inter-
face derived from satellite image, where green diamonds have spectral properties of water. 

3.6. Estimation of Scene-Derived Bottom Reflectance 
The objective of this phase of the workflow is to reduce the effect of uninformed 

choice of bottom reflectance library on the SDB result. When a reference lidar depth is 
available, it is possible to estimate scene-derived bottom reflectance. When the scene-de-
rived sand-like and grass-like library is used, the SDB optimization would be more accu-
rate because the reduced uncertainty of linear mixture bottom modeling would increase 
the accuracy of depth optimization. The subsurface reflectance is related to the bottom 
reflectance multiplied by an exponential term, so increasing depth results in exponentially 
decreasing bottom reflected signal. Thus, it is desirable to limit the sampling region to 
very shallow water. In this research, we sample the shallow water spectrum from less than 
2 m in depth (Figure 12). 
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Figure 12. Scene-derived bottom reflectance for Puerto Rico. (a) SDB scene. (b) Shallow water sam-
pling area for scene-derived bottom reflectance. The sampling depth ranges are displayed in white 
pixels (0–0.5 m), green pixels (0.5–1.0 m), red pixels (1.0–1.5 m), and yellow pixels (1.5–2.0 m). 

Assuming the water volume reflectance is negligible in shallow water, the first term 
of Equation (19) is negligible. The second term is dominated by the bottom reflectance as 
the exponential term is substantially larger because the small optical depth in the expo-
nent makes the exponential term comparable to unity. Equation (19) is simplified and is 
rearranged for total bottom reflectance: 𝜌 = 𝜋 ∙ 𝑟 (𝑧) ∙ exp[( 𝐾 + 𝐾 ) ∙ 𝑧]  (27)

Applying the shallow pixels to Equation (27), an 𝑁 × 𝑁  matrix [𝝆𝒃]  is created, 
where 𝑁 is the number of pixels. The 𝑁 inverted bottom spectra are provided in Figure 
12a. The lower inverted spectra are closer to pure grass-like spectra, while the upper spec-
tra are closer to sand-like spectra. Simply picking the minimum and maximum spectra 
would not work in general because an individual inverted spectrum is not likely to repre-
sent the endmembers. We suggest that the proper approach is to use eigenanalysis. For 
eigenanalysis, a covariance matrix needs to be calculated first. Using the 𝑁 × 1 bottom 
reflectance vector 𝜌 , a covariance matrix 𝜮 is computed: 𝜮 = (𝝆𝒃 − 𝜌 )  ∙ (𝝆𝒃 − 𝜌 )   (28)

The bottom reflectance estimated using Equation (27) is assumed to be a linear mix-
ture from sand-like and grass-like pure endmembers. The eigenanalysis of the covariance 
matrix provides a way to estimate the unknown endmember pixel spectra. The first eigen-
vector 𝒗  with the largest eigenvalue 𝜆  is computed from the covariance matrix 𝜮. The 
first eigenvector describes the greatest variance in the 𝑁  dimensional space. Each mean-
shifted vector (𝜌 − 𝜌 ) can be projected to the first eigenvector 𝒗 . Mathematically, the 
result is computing the inner product: 𝑘 = (𝜌 − 𝜌 ) ∙ 𝒗   (29)

Because the number of 𝜌  is 𝑁, the number of scalar values 𝑘 is also 𝑁. The two 
end points along the first eigenvector in the multi-dimensional space are assumed to be 
the vector to the two pure endmember spectra. One needs to specify how to determine 
the end points. Because the data are mean shifted, the projection 𝑘 will have either posi-
tive or negative values. The 𝜌  spectra with positive 𝑘 values are mostly on the sand-
like bottom side, and 𝜌  spectra with negative 𝑘 values are mostly on the grass-like bot-
tom side. 

The way to specify the endmembers is to assign the proper 𝑘 value. Simply assign-
ing 𝑘  for sand-like endmembers and 𝑘  for grass-like endmembers is not a desira-
ble strategy because the distribution of 𝑘 values from a natural shallow bottom is likely 
to be biased, or there is a high chance that the pure endmember may not exist in the sam-
pled pixels. Thus, determining 𝑘   for sand-like endmembers and 𝑘   for grass-like 
endmembers always involves some level of ambiguity. We suggest using the lower 5% 
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and upper 95% of the 𝑘 value range as initial values of 𝑘  and 𝑘 , respectively, and cal-
culating the endmembers 𝜌  and 𝜌 : 𝜌 = 𝑘 𝒗 + 𝜌 , 𝜌 = 𝑘 𝒗 + 𝜌  (30)

The estimated 𝜌  and 𝜌  spectra may then be evaluated to see if they have desir-
able properties as endmembers: whether they have similarity with typical grass-like and 
sand-like spectra, whether they are located at the end region in the distribution, or 
whether they are not extreme outliers. There is no unique solution, but rather a user may 
use discretion based on experience in adjusting 𝑘  and 𝑘 . The 𝜌  and 𝜌  spectra fi-
nally estimated in this example are displayed in Figure 13a. Because the distribution of 
four-dimensional 𝜌  data is not possible to visualize, Figure 13b shows two-dimensional 
plots of three band pairs. 

 
Figure 13. Scene-derived bottom reflectance analysis. (a) Inverted bottom spectra. (b) Endmembers 
projected to a two-dimensional plot. In (a), the dashed green curve is 𝜌 , the dashed yellow curve 
is 𝜌 , and the dashed red line is the mean spectrum. In (b), the blue dots represent the distribution 
of 𝜌  that is projected to two dimensions: band 1 (coastal aerosol) on the x-axis and band 2 (blue) 
on the y-axis. The green diamond along the regression line of the blue points corresponds to the 𝑘  
value, and the yellow diamond corresponds to 𝑘 . The green dots represent the projection to two 
dimensions: band 2 (blue) on the x-axis and band 3 (green) on the y-axis. The red dots represent the 
projection to two dimensions: band 3 (green) on the x-axis and band 4 (red) on the y-axis. The bottom 
reflectance is dimensionless. 

3.7. SDB Result Using Scene-Derived Bottom Reflectance Endmember 
The same image region (Figure 9a) is used for SDB computation using scene-derived 

bottom reflectance endmembers. The depth scatterplot is provided in Figure 14. Noticea-
ble improvement is observed with a much lower RMSE value of 1.57 m. The three-dimen-
sional (3D) visualization of SDB is displayed in Figure 15a, and the 3D bathymetric lidar 
is shown in Figure 15b. 
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Figure 14. Depth scatterplot between lidar DEM versus SDB depth after using scene-derived 
endmember bottom library. 

 
Figure 15. Three-dimensional visualization of bathymetry for Puerto Rico. (a) SDB. (b) Bathymet-
ric lidar DEM. 

The SDB optimization result was evaluated at an individual pixel level. Four pixels 
were sampled, considering varying depths and bottom types. The optimization results for 
each sample are displayed in Figure 16. The first data (Figure 16a) are sampled from a very 
shallow area; thus, overall reflectance is highest, and even at the red band, reflectance is 
substantially higher. At about the 2 m depth region (Figure 16b), the reflectance at the red 
band is reduced substantially. In the shallow region, the bottom reflected component is 
dominant. Thus, the red curve explains almost all the total reflectance, and the cyan curve 
is virtually zero. In the deep-water area, the cyan curve contributes a relatively large amount 
to the total reflectance. The depth profiles along the three arbitrary lines are shown in Figure 
17. 
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Figure 16. Sampling location of pixels and SDB optimization results. (a) Blue-dot pixel, very shal-
low—less than 1 m water. (b) Yellow-dot pixel—about 2 m depth near Puerto Rico. (c) Red-dot 
pixel—about 15 m depth. (d) Green-dot pixel—about 20 m depth. The diamond dots are the 𝑟  4-
band spectrum from the OLI scene. The gray curve is the optimized model 𝑟 . The yellow curve 
represents (𝜌 /𝜋) ∙ 𝑒𝑥𝑝[−( 𝐾 + 𝐾 ) ∙ 𝑧], the green curve represents (𝜌 /𝜋) ∙ 𝑒𝑥𝑝[−( 𝐾 + 𝐾 ) ∙ 𝑧], 
and the red curve is the sum of the two. The cyan curve represents the water volume backscattered 
subsurface reflectance 𝑟 , ∙ 1 − 𝑒𝑥𝑝[−( 𝐾 + 𝐾 ) ∙ 𝑧] , which is the first term in Equation (19). All 
four figures show the fraction of sand-like and grass-like bottom fraction, optimized SDB depth, and 
the corresponding bathymetric lidar DEM depth. 

 
Figure 17. Comparison between SDB and DEM along transect lines near Puerto Rico. (a) Location 
of transect lines. (b) Depth profiles along the yellow line. (c) Depth profiles along the green line. (d) 
Depth profiles along the red line. Green dots are lidar-derived water depth, while white dots are 
SDB water depth. 

When the SDB calculation is made over a full area where the lidar TBDEM is availa-
ble, the result is presented in Figure 18. 
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Figure 18. SDB example at Puerto Rico. (a) Image, (b) DEM, and (c) depth scatterplot. 

3.8. SDB over Incomplete or Missing DEM Area 
Once it is confirmed that the scene-derived bottom works well, one may run SDB for 

any coastal zone in the image. An image area with incomplete or missing DEM is pre-
sented in Figure 19a. Bathymetric lidar failed to detect the bottom return peak from the 
waveform. The failure does not appear to be because the missing DEM area is too deep to 
detect the bottom. Regardless of the reason, SDB can invert any pixel to a depth if the area 
is optically shallow with the optical depth less than 3. The depth scatterplot after SDB 
shows a relatively low RMSE of 2.16 m (Figure 19b). The 3D visualization of the SDB result 
is presented in Figure 19c, and the 3D visualization of lidar DEM is shown in Figure 19d, 
which has a large area of missing lidar data. This result demonstrates that the SDB method 
presented here has a great advantage over lidar when generating a continuous full 3D 
view of the sea floor using subsurface reflectance images with the absence of cloud-cov-
ered pixels, although the lidar depth precision (about 20 cm) is superb compared to the 
SDB precision (about 2 m). The essence of the method is that once it is fine-tuned using 
partial lidar data, this method can produce the SDB of a much larger area. 
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Figure 19. SDB example of Puerto Rico. (a) Image, (b) error scatterplot, (c) 3D visualization of SDB 
depth, and (d) 3D visualization of lidar depth. 

3.9. Additional Examples of SDB 
The physics-based SDB algorithm was also applied to Key West, Florida, USA. The 

relatively cloud-free Landsat OLI scene “LC09_L1TP_016043_20221209_20221209_-
02_T1” is shown in Figure 20a. Also available are the topographic–bathymetric lidar data 
(Figure 20b). The bathymetric lidar data have substantial areas missing. The optically deep 
water where a pixel spectrum was sampled for atmospheric correction and IOP estimation 
is presented in Figure 18a. Following the steps of spectral processing explained above, 𝜌   is obtained after atmospheric correction of 𝜌  . Then, 𝜌   is converted to 𝑅  
and subsequently to 𝑟 . The next step is to convert 𝑟  to 𝑢 (Figure 21). After the optimi-
zation, the green line models the optimized 𝑢 curve and fits the 𝑢 derived from optically 
deep water with minimal error. The IOPs of Key West on this day are almost identical to 
the result from the Puerto Rico scene. The optimization results are as follows: 𝑏 (𝜆 ) = 0.00249 m , 𝑎 (𝜆 ) = 0.01176 m , 𝐶 = 0.19835 mg/m .  

The associated angles for computing 𝐾 , 𝐾  of the pixel location are SZA = 51.3° and 
VZA = 2.3°. The rectangular extent of SDB processing on the OLI image and lidar TBDEM 
is presented in Figure 22a,b. The SDB results have an MAE value of 0.72 m and an RMSE 
value of 0.98 m (Figure 22c). Most points are in the shallow region of Key West. 
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Figure 20. SDB example for Key West. (a) Satellite image. (b) Bathymetric lidar DEM drawn over the 
image. 

 
Figure 21. Analysis of inherent optical properties after optimization from Key West. 

 
Figure 22. SDB results from Key West. (a) OLI image. (b) Lidar DEM overlaid in grayscale image. 
(c) Depth scatterplot. 

Physics-based SDB was also applied to the island of Guam. The Landsat OLI scene 
“LC08_L1TP_100051_20211109_20211117_02_T1” is presented in Figure 23a. Also availa-
ble are the bathymetric lidar DEM data (Figure 23b). The bathymetric lidar data have sub-
stantial areas missing. Following the steps of spectral processing explained above, the 
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following sequence of conversion happens: 𝜌  → 𝜌  → 𝑅  →  𝑟  →  𝑢. The IOPs of 
Guam in this image (Figure 24) are much clearer (𝐾 (532) = 0.062 m  ) than those of 
Puerto Rico or Key West (𝐾 (532) = 0.072 m ) because Guam is an isolated island at 
northern Mariana, Pacific Ocean, and the water depth drops off considerably much faster. 
The optimization results are as follows: 𝑏 (𝜆 ) = 0.00236 𝑚 , 𝑎 (𝜆 ) = 0.00470 𝑚 , 𝐶 = 0.06541 𝑚𝑔/𝑚 . 

The associated angles for computing 𝐾 , 𝐾  of the pixel location are SZA = 37.1° and 
VZA = 2.8°. The SDB scatterplot shows an RMSE value of 7.87 m (Figure 25a). The 3D 
visualization of SDB, which is a full 3D continuous sea floor view, is presented in Figure 
25b, whereas the lidar DEM indicates some missing areas in Figure 25c. The result in the 
error plot (Figure 25a) shows a failure region that is rather flat and away from the one-to-
one line. A polygon is selected (Figure 26a), and we visualize where the problematic re-
gion is in the image (Figure 26b). The failure region is clearly within the deep bay area. 
The rest of the coastal region seems better. We believe the bottom type is likely to be a dark 
volcanic rock, but it seems the deep inner harbor has a peculiar bottom type that causes 
failure in SDB using generic bottom endmembers. In this exceptional case, SDB needs 
more fine-tuning using local data. 

 

Figure 23. SDB example for Guam. (a) Satellite image. (b) Bathymetric lidar DEM drawn over the 
image. The yellow cross in (a) is the optically deep water where a pixel spectrum is sampled for 
atmospheric correction and IOP estimation. 
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Figure 24. Analysis of inherent optical properties after optimization from Guam. 

 
Figure 25. SDB results from Guam. (a) Depth scatterplot, (b) 3D visualization of SDB result, and (c) 
3D visualization of bathymetric lidar. 

 
Figure 26. Analysis of erroneous SDB from Guam. (a) The black-colored polygon of the erroneous 
region in the scatterplot. (b) Red pixels corresponding to the sampled pixel points in the polygon. 

To perform fine-tuning, without having additional ground truth, one applies a 
straightforward adjustment. A secondary problem arising from the initial issue is the high 
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MAE value, where SDB substantially overestimates the depth. A major reason for the 
depth overestimation could be the inaccurate bottom reflectance. If the new bottom input 
was darker than the initial input, the newly optimized SDB would be shallower. Thus, a 
scale factor of 0.3 was applied to the initial sand and grass bottom reflectance. Because 
volcanic rock is the origin of the sediment, a low scale factor seems to make sense. The 
new region of interest excluding the inner harbor is presented in Figure 27a, and the over-
laid TBDEM is shown in Figure 27b. The scatterplot displays a substantial improvement 
(Figure 27c). Although the lidar TBDEM covers a very narrow range from the coast (Figure 
28b), the SDB depth map (Figure 28a) has greater coverage with better bottom description. 

 
Figure 27. SDB of Guam with fine-tuning. (a) Satellite image and SDB extent box, (b) bathymetric 
lidar DEM drawn over the image, and (c) depth scatterplot. 

 
Figure 28. Visualization of Guam in 3D after fine-tuning. (a) SDB in 3D. (b) TBDEM in 3D. 
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3.10. Fine-Tuning Strategies Using TBDEM 
The fine-tuning technique that has the greatest effect on the result would be scene-

derived bottom reflectance. The technique using the eigenanalysis from shallow water 
was described in the previous section. The second strategy is to scale bottom reflectance 
(Figure 29a). If the initial depth scatterplot shows vertical offset, the scaling of the bottom 
reflectance will shift the scatterplot ellipse to be aligned to the identity line (one-to-one 
line). The initially raised scatterplot ellipse will be lowered by decreasing 𝜌 , and the ini-
tially lowered ellipse will be raised by increasing 𝜌 . The third strategy is to adjust the 
diffuse attenuation spectrum 𝐾 (Figure 29b). If the initial depth scatterplot shows a tilt, it 
indicates the diffuse attenuation spectrum needs modification. 

The initially counter-clockwise-tilted ellipse will turn  clockwise to be aligned to the 
identity line by increasing 𝐾, and the initially clockwise-tilted ellipse will turn counter-
clockwise to be aligned to the identity line by decreasing 𝐾. 

 
Figure 29. Fine-tuning strategy. (a) Bottom reflectance scaling. (b) Adjustment of diffuse attenuation 
spectrum. The blue ellipse represents the depth points. Initial scatterplot ellipse in (a) can be verti-
cally shifted to the direction of red arrow by scaling bottom reflectance 𝜌 . Initial scatterplot ellipse 
in (b) can be tilted to the direction of the red arrow by changing the attenuation spectrum 𝐾. 

We present a simulation study to demonstrate the effect of varying the diffuse atten-
uation coefficient spectrum 𝐾(𝜆). The SDB inversion area is shown in Figure 30a. After 
atmospheric correction of an optically deep water signal, the optimization of inherent op-
tical properties is performed to estimate the 𝐾(𝜆) spectrum. Figure 30b is the result of the 
SDB depth scatterplot using 𝐾(𝜆) derived from optically deep water, where the 𝐾 value 
at 532 nm is 0.07 𝑚 . The scatterplot result in Figure 30b shows good results, mostly 
following the one-to-one line, with an RMSE value close to 1.0 m. It is the result of several 
reasons. First, the initial optimized 𝐾(𝜆) from optically deep water is pretty accurate. Sec-
ond, the optical properties of the entire area are quite homogenous, so that the IOPs of the 
rest of the area are similar to the deep water. To demonstrate the effect of SDB error when 
an inaccurate 𝐾(𝜆) is used, we perform SDB inversion using both lower and higher 𝐾(𝜆) 
spectra than the initial estimation. When a lower 𝐾(𝜆) spectrum that corresponds to 0.05 𝑚  at 532 nm is used, the scatterplot turns counterclockwise (Figure 30c). It is because 
clear water forces the fixed image reflectance to a longer optical pathlength (deeper wa-
ter). When a higher 𝐾(𝜆) spectrum that corresponds to 0.09 𝑚  at 532 nm is used, the 
scatterplot turns clockwise (Figure 30d). It is because turbid water forces the fixed reflec-
tance to a shorter optical pathlength (shallower water). Accordingly, the RMSE increased 
two to three times in the case of incorrect diffuse attenuation. This simulation result sup-
ports the strategy of fine-tuning the 𝐾 spectrum. 
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Figure 30. Effect of diffuse attenuation coefficient. (a) SDB inversion area, (b) depth scatterplot using 
the diffuse attenuation obtained from the optically deep water of the scene, (c) depth scatterplot using 
lower diffuse attenuation, and (d) depth scatterplot using higher diffuse attenuation. 

The accuracy of physics-based SDB is evaluated in reference to the International Hy-
drographic Organization (IHO) Standards. The SDB result shown in Figure 30b is pro-
cessed to give uncertainty in the discrete 1 m depth bin, and two depth-dependent vertical 
uncertainty tolerance categories (Order 2 and Order 1b) defined by IHO S-44 [21] are com-
pared (Figure 31). 
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Figure 31. Uncertainty of physics-based SDB in reference to IHO standards. 

The main purpose of fine-tuning is to take advantage of the known TBDEM from a 
relatively small area. The fine-tuned SDB system is applied to the rest of the entire local 
region where the lidar TBDEM does not exist. In the example of Puerto Rico, the red-
colored boundary (Figure 32) is the area with known lidar TBDEM. The fine-tuned SDB 
system can be applied to the entire optically shallow coastal zone and the surrounding 
islands of Puerto Rico to create a seamless bathymetric DEM. 

 
Figure 32. SDB of the entire local region in Puerto Rico after fine-tuning using partially available 
TBDEM. The known TBDEM area is marked as a red-colored boundary. 

3.11. Comparison with Log-Ratio Method 
Although comparing the performance of physics-based SDB to other methods is not 

the main interest of this paper, it may be beneficial to determine the improvements over 
other SDB methods. For instance, a commonly used method like Log-ratio by Stumpf [3] 
has a well-known key conceptual idea that the Log-ratio of the two bands may have a 
linear relationship with depth independently of bottom albedo. We use only the main con-
cept without considering auxiliary tuning for the conditions specific to the Puerto Rico 
scene of this study (Figure 33a); thus, it is advised that the result may not be the best out-
come from the Log-ratio method. After atmospheric correction, the green band to blue 
band log-ratio is linearly modeled against known lidar depth. 𝑧 = 𝑚 ∙ ( )( ) + 𝑚   (31)

The training data used for obtaining the linear regression coefficients 𝑚   and 𝑚  
are 10% of the pixels in the bounding box. The Log-ratio of the entire scene is computed, 
and the regression coefficients are applied to obtain depths. The comparison between the 
physics-based depths, Log-ratio depth, and the lidar depth are shown in Figure 33b–d. 
Both algorithms produce depths that compare with the lidar depth quite well. The overall 
error analysis is shown in the depth scatterplot (Figure 34), where physics-based SDB 
shows improved MAE and RMSE compared to the Log-ratio method. 
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Figure 33. Depth profile along transect lines. (a) The Puerto Rico scene, comparing physics-based 
SDB and the Log-ratio method. The three transect lines in yellow (b), green (c), and red (d) colors 
are shown. The corresponding depth profiles are in diamond symbols, where physics-based SDB 
depth is in white, Log-ratio SDB depth is in red, and the lidar depth is in green. 

 
Figure 34. Depth scatterplot. (a) Physics-based SDB method. (b) Log-ratio SDB method. 

3.12. Discussion 
The governing equation for the water-leaving reflectance over optically shallow wa-

ter is an approximated equation, and it was derived based on two-flow radiative transfer 
theory [22–24]. Many shallow water inversion studies including SDB were published us-
ing the reflectance equation. The governing equation has several different forms depend-
ing on the types of the model variables, such as radiance or irradiance and surface or sub-
surface. When the Hydrolight numerical solution of ocean optical radiative transfer was 
created as a research tool by Mobley [25,26], many remote sensing reflectances were sim-
ulated over a wide range of incident radiance distributions, surface conditions, vertical 
profiles of optical properties, and bottom albedo. By analyzing many simulated reflec-
tances, a governing equation in the form of subsurface remote sensing reflectance was 
suggested [27], which our suggested physics-based SDB algorithm also uses, as shown in 
Equation (19). The inherent optical property models for chlorophyll, dissolved organic 
matter, and suspended detritus and solids as described in Equations (5)–(9) are well es-
tablished in the ocean optics community [28]. Atmospheric correction before applying 
semi-analytic algorithms may have slight differences, but the effect should be negligible 
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in most optically shallow water compared to major sources of errors such as unknown 
bottom albedo. In our research, we used Ahmad RT LUT because 6SV and MODTRAN 
LUT lack the capability of handling the water surface reflected sky radiance component. 
Differences in numerical solution methods such as nonlinear optimization [19,27,29] or 
the look-up-table method [21,30–32] have negligible effects on the accuracy of the result 
and are simply a matter of choice. 

Considering all the related components of the semi-analytic method, differences are 
not substantial between many different previous studies. One major difference in the in-
version of the semi-analytic model is how to handle bottom albedo. Some methods assume 
only a single endmember bottom model, which is one generic sand-like or grass-like bot-
tom type [27,33] that estimates the weights of the normalized bottom spectrum. The ap-
proach implies that the depth and other inversion results could be erroneous by design 
over the area with the other bottom type. In practice, a sand bottom is used if water-leav-
ing reflectance is greater than tolerance; otherwise, a grass bottom is used [29]. A different 
strategy is to create many combinations using two bottom endmembers from the library 
and then iteratively optimize the system and choose a unique combination that results in 
minimum total error [34,35]. However, the assumption of known local bottom spectra is 
not practical in most cases. 

Our approach is to use two endmembers with the linear unmixing concept. During 
optimization for SDB inversion, two unknown mixing coefficients are estimated along 
with the depth. The two most generic endmembers (sand-like and algae- or vegetation-
like) give more freedom to apply SDB to an arbitrary coastal zone with a range of mixed 
bottoms of typical sand or grass. This means no a priori knowledge of site-specific bottom 
albedo. In most inland water or coastal water, aquatic vegetation or dark bottoms are cov-
ered with a thick coat of mud. In that case, it is justified to use a single mud- or sand-like 
bottom. Our suggested approach can be readily applied when no ground truth reference 
data (lidar or sonar) are available, although known depth information will improve the 
accuracy. 

When lidar depths over a shallow water area are available, scene-derived bottom 
endmembers can be estimated. We used eigenanalysis and the detailed its successful ap-
plication. We also provided several tuning strategies for when a small set of lidar depths 
are available. 

Another emphasis we made was that all the procedures were tailored to be applicable 
to a small number of bands. So, even minimum three-band satellite imagery can be pro-
cessed in cases when the simplification assumptions are viable. Many physics-based SDB 
algorithms operate on hyperspectral data that inherently require a large number of bands. 
They cannot be applied to typical multispectral satellite data with only three or four bands 
in the visible wavelength range. 

We utilized generic optical theories and models and adopted the concept of generic 
mixing of two endmembers to enhance the applicability. Also, we made meaningful per-
formance-enhancing strategies for multi-band SDB. As a result, our SDB system consist-
ently produces up to 30 m depth over relatively clear water with about 1.0 m of MAE and 
1–1.5 m of RMSE, which we believe is quite useful in the absence of lidar or sonar data. 

A physics-based SDB algorithm solves for water depth from a radiometrically cali-
brated satellite coastal zone image using a sequence of physics theories, such as atmos-
pheric theory, ocean bio-optics theory, and the radiative transfer of hydro-optics. All these 
base physics theories are expressed using many parameters that need to be obtained from 
the multi-band spectrum of the image via inversion solutions. Thus, the primary con-
straint of physics-based SDB is the number of bands of the satellite image. If larger num-
bers of bands are available, pixel-by-pixel solutions for many parameters are possible, 
which may produce better results. In the case of Landsat OLI, only four bands are availa-
ble in the visible wavelengths. Thus, the atmospheric solution and water optical property 
solution are obtained from an optically deep region of the image, and then we have no 
other choice but to assume the same atmospheric condition and optical properties apply 
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to the optically shallow region, too. In that case, the pixel-by-pixel SDB solution is just an 
optimization problem for three variables (depth and two bottom weights). Thus, the ob-
vious limitation of this technique is that it can be applied only to areas of homogeneous 
atmosphere and water optical properties. However, it is only because of the limited num-
ber of bands, not because of the limited capability of physics-based SDB itself. Another 
limitation is the general applicability of bottom spectral albedo. A generic version of bot-
tom spectra (sand-like and grass-like) may have some difference compared to a local spe-
cific bottom of a similar kind. 

Future research endeavors include the following. The current approach finds a satel-
lite image with the lowest cloud cover and the clearest water. If SDB is applied to multiple 
satellite images collected at several different times, it will be possible to fix the erroneous 
area by patching the erroneous area using a better-quality image collected at a different 
overpass time. The properties of a better-quality image are lesser cloud cover and clearer 
water. Another important improvement needed is the collection of bottom reflectance 
spectra from a wide range of coastal zones. An enhanced literature review of sea floor 
reflectance measurement campaigns will be greatly beneficial to add a bottom library from 
various global locations. 

4. Conclusions 
As the theory of SDB includes atmospheric radiative transfer and ocean optical radi-

ative transfer modeling, the algorithm presented here is categorized as a physics-based 
method. Technical details of the physics-based SDB method starting from the satellite im-
age to depth inversion were presented. The sampling of optically deep water for atmos-
pheric correction and the estimation of optical properties was emphasized as a crucial 
step. The next step was to apply SDB over an optically shallow region. This two-step ap-
proach is necessary to solve a complex physical system with a much larger number of 
unknowns when only four bands of OLI in visible wavelengths are available. Regarding 
bottom reflectance, a method to estimate scene-derived bottom endmembers using eige-
nanalysis was presented. A technique to constrain all parameters to be physically valid in 
the solution process using Levenberg–Marquardt numerical optimization was also de-
scribed. 

The TBDEM was resampled for each satellite image pixel. Based on the pixel spectral 
characteristics, a DEM offset was estimated at the time of satellite overpass to convert the 
DEM to lidar water depth. The depth error was mostly about 1 m or less in terms of MAE 
and less than 2 m in terms of RMSE for a depth range of up to 30 m in the case of relatively 
clear water. For non-typical bottom types, the physics-based approach requires fine-tun-
ing to fit to site-specific conditions. The fine-tuning consists of the modification of bottom 
reflectance or the diffuse attenuation coefficient. 

Although this technique could be used without reference depths from lidar or sonar, 
known depths from other sources can be used for fine-tuning site-specific bottom 
endmembers. For instance, our physics-based SDB system is fine-tuned using an available 
bathymetric lidar DEM over the southwest corner of Puerto Rico; then, the depth map of 
the entire coastline of the island can be created using Landsat OLI images. Although the 
point density is very low, the ICESat-2 (ice, cloud and land elevation satellite) bathy point 
cloud is a globally available data source for fine-tuning. 
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