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Abstract: Deep learning, which is a dominating technique in artificial intelligence, has completely
changed image understanding over the past decade. As a consequence, the sea ice extraction (SIE)
problem has reached a new era. We present a comprehensive review of four important aspects of
SIE, including algorithms, datasets, applications and future trends. Our review focuses on research
published from 2016 to the present, with a specific focus on deep-learning-based approaches in the last
five years. We divided all related algorithms into three categories, including the conventional image
classification approach, the machine learning-based approach and deep-learning-based methods.
We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets
and others. The applications are presented in four aspects including climate research, navigation,
geographic information systems (GIS) production and others. This paper also provides insightful
observations and inspiring future research directions.

Keywords: sea ice extraction; semantic segmentation; survey; remote sensing; mapping; machine
learning; deep learning

1. Introduction

Sea ice extraction (SIE) has been a crucial problem in many application aspects, such as
the polar navigation [1], terrain analysis [2], polar cartography [3] and polar expedition [4].
With the rapid development of the machine learning technique, computational capability and
data acquisition, the SIE problem has reached the deep learning era. Machine learning-based
approaches are being increasingly introduced to detect, segment or map the sea ice.

As a branch of machine learning, the deep learning technique attracts more attention
to solve the SIE problem in last five years, based on which the mapping or cartography
problem could also be solved. Most of the literature converts the SIE problem to another
common topic, namely the semantic segmentation problem, which determines the category
of each pixel via a post-classification procedure after the category probability is regressed
by deep convolutional neural networks. In recent years, there has been a growing body of
research focusing on SIE. To gain deeper insights into this field, we conducted a literature
search using the keywords “sea ice extraction” via the Web of Science Core Collection. As
illustrated in Figure 1, there has been a notable rise in publications since 2016, prompting
our emphasis on summarizing and synthesizing the literature published after this period.
Additionally, we utilized the Citespace [5] statistical algorithm to visualize the co-citation
network of relevant publications from the past five years (Figure 2). The visualization
highlights key themes and research areas associated with SIE, with a particular emphasis
on remote sensing and Synthetic Aperture Radar (SAR). Currently, SIE primarily relies on
remote-sensing techniques such as visible/infrared remote sensing, passive microwave
remote sensing and active microwave remote sensing [6]. Visible/infrared remote sensing
can provide texture information of sea ice, which is helpful for SIE tasks. However, it has
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certain limitations. Firstly, it is restricted in polar regions due to the occurrence of polar
day and polar night phenomena. Additionally, the orbital inclination (typically 97–98◦)
and altitude of conventional remote-sensing satellites affect observations in polar regions,
leading to polar data gaps where effective observations are not possible. Consequently,
polar orbit satellites are relied upon for conducting observations. On the other hand, passive
microwave remote sensing offers global coverage capabilities and, therefore, holds certain
advantages. Nevertheless, its drawback lies in relatively low spatial resolution. Typical
instruments for passive microwave remote sensing, such as the Advanced Microwave
Scanning Radiometer for EOS (AMSR-E), generally provide spatial resolutions at the
kilometer level. Such lower resolutions may not fulfill the requirements for detailed SIE
and further mapping. In contrast, active microwave remote-sensing techniques, such as
SAR, offer higher-resolution capabilities. SAR technology can achieve resolutions at the
meter level, making it highly suitable for fine-scale sea ice mapping [7,8]. As a consequence,
current research on SIE predominantly focuses on the application of active microwave
remote-sensing technologies, notably SAR. Moreover, significant achievements have been
made in SIE tasks through the utilization of optical remote sensing [9] and the integration
of SAR with optical approaches [10–12]. In addition to the aforementioned remote-sensing
satellite observations, some studies have utilized real-time ice monitoring using aerial
images captured by cameras onboard icebreakers [13,14] and unmanned aerial vehicles
(UAVs) [15,16]. These methods serve as valuable supplementary approaches for SIE tasks.

Figure 1. Publication trends from 2000 to present in the Web of Science Core Collection. Following the
time period marked by the blue dashed line, there is a significant surge in the number of publications,
with research during this period constituting the focal point of the review.

Machine learning methods have made significant applications in the field of SIE.
Recently, several reviews have provided summaries of sea ice remote sensing. In [17], the
focus was on analyzing the advantages and disadvantages of sea ice classification methods
based on SAR data. The advancements of Global Navigation Satellite System-Reflectometry
(GNSS-R) data in SIE, ice concentration estimation, ice type classification, ice thickness
inversion and ice elevation were reviewed. In [8], a comprehensive analysis of sea ice
sensing using polarimetric SAR data was conducted. Key geophysical parameters for
SIE, including ice type, concentration, thickness and motion, as well as SAR scattering
characteristics analysis, were summarized. However, these papers primarily focused
on providing overviews of sea ice monitoring methods using SAR technology, lacking
comprehensive summaries of specific technical approaches. Moreover, they predominantly
concentrated on summarizing sea ice remote-sensing methods and lacked a comprehensive
overview of downstream tasks related to SIE, specifically applications. Therefore, this
review aims to provide a comprehensive summary of the latest SIE methods developed in
the past five years. It aims to systematically categorize and analyze these methods, taking
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into account the associated datasets and subsequent mapping applications. Additionally,
this review incorporates the latest advancements in technology to assess the challenges and
future developments in SIE through the utilization of large-scale models.

Figure 2. The co-citation network for SIE research. The frequency of the keywords was visually
represented by the size of the nodes, while the strength of their relationships was indicated by the
width of the linking lines. Additionally, the publication year was visually depicted through the color
variation of the nodes.

The overall structure of this review is presented in Figure 3. Section 2 of this review will
provide detailed insights into recent methods for SIE. Section 3 will summarize the currently
available open-source datasets related to ice. Section 4 aims to outline downstream tasks
and enumerate the generated geospatial information products resulting from ice extraction.
Lastly, Section 5 will highlight areas where future developments are needed.

Figure 3. Structure of this review.
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2. Method of Sea Ice Extraction
2.1. Conventional Image Classification Methods

In the early stages, research on sea ice concentration (SIC) and SIE primarily relied
on statistical algorithms. These algorithms generally combined probabilistic models and
classical classification methods with texture or polarization features to generate sea-ice-type
maps. There is a rich body of literature on conventional image classification methods, and
this section will focus on some recent publications.

2.1.1. Bayesian

A new Bayesian risk function is proposed in [18] to minimize the likelihood ratio for
polarimetric SAR-data-supervised classification. A novel spatial criterion is also introduced
to incorporate spatial contextual information into the classification method, achieving a sea
ice classification accuracy of 99.9%. Bayesian theorem, as described in [19], is utilized to
compute the posterior probabilities of each class at each observed location based on the
texture features extracted from the gray-level co-occurrence matrix (GLCM) of the image.
In [20], the authors label each pixel in the SAR imagery as ice or water using MAp-Guided
Ice Classification (MAGIC) [21] and model the labeled pixels as a Bernoulli distribution.
The estimated ice concentration is then obtained by incorporating the labeled data into
the Bayesian framework along with AMSR-E ice concentration data. The authors of [22]
introduce a Gaussian Incidence Angle (GIA) classifier for sea ice classification, which
replaces the constant mean vector in the multivariate Gaussian probability density function
(PDF) of the Bayesian classifier with a linearly varying mean vector. The simplicity and fast
processing time of the GIA classifier enable near real-time ice charting. The authors of [23]
utilize this GIA classifier to generate classified winter time series of sea ice in the regions
covered during the Multidisciplinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) campaign, providing reliable support for navigation.

2.1.2. Maximum Likelihood Estimation

In [24], Maximum Likelihood Estimation is used to compute the probabilities of ice
and water in the observed SAR images. An unsupervised mixture Gaussian segmentation
algorithm is proposed in [25], which provides reasonable sea ice classification results
under similar incidence angle conditions. The authors of [26] apply logistic regression
(LR) statistical techniques to demonstrate that the average and variance of texture features,
specifically the GLCM, are most suitable for maximum likelihood supervised classification,
thus extracting the sea ice density map of the western Antarctic Peninsula region.

2.1.3. Thresholding Method

Zhu et al. [27] utilized the Delay-Doppler Map (DDM) of the Global Navigation
Satellite System (GNSS) signals reflected by sea ice and seawater, which exhibit distinct
scattering characteristics. The differential DDM, observed as the difference between two
adjacent normalized DDMs, provides information about the differences between the two
DDMs. By employing a thresholding method, the type of the reflecting surface can be
determined, thus extracting the sea ice. Building upon this, Alexander et al. [28] proposed
an adaptive probability threshold for automatic detection of ice and open-water areas.
The textural and edge features of different sea-ice-types in various turbid regions were
discussed, using the Yellow River Delta as an example, laying the foundation for the
classification of sea-ice-types. Automatic extraction of sea ice can be achieved by employing
the OTSU algorithm to determine the threshold automatically.

2.1.4. Other Statistical Approaches

Additionally, Zhang et al. [29] proposed an automatic classification method for SAR
sea ice images combining Retinex and the Gaussian Mixture Model algorithm (R-gmm).
Experimental results demonstrated that this algorithm effectively enhances the clarity of
SAR imagery compared to the Single-Scale Retinex Algorithm, GMM, and Markov Random
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Field (MRF)-based methods, thereby improving segmentation accuracy. In [30], a multi-
scale strategy of the curvelet transform was further utilized to extract curve-like features
from SAR images, distinguishing the MIZ from open water and consolidated ice areas.
Xie et al. [31] employed the polarization ratio (PR) between VV and HH in SAR images
calculated based on the roughness characteristics of the sea surface scattering and the
X-Bragg backscatter model. This measurement comparison can differentiate between open
water and sea ice, achieving an overall accuracy of approximately 96%. Mary et al. [32]
utilized the coefficient of variation (COV) from co-pol/cross-pol SAR data to detect thin ice
during the Arctic freezing period using a synergistic algorithm.

2.1.5. Limitations

Generally, when environmental changes are inevitable, it has been demonstrated that
relying solely on conventional image classification methods for real-time object detection is
inefficient. In addition to the challenges associated with threshold selection in conventional
image classification methods, other classical statistical methods, such as Bayesian and
maximum likelihood methods, also exhibit limitations. For instance, Bayesian methods
may face challenges related to the assumption of prior probabilities, which might not
accurately represent the true underlying distribution of the data. Similarly, maximum
likelihood methods can be sensitive to outliers in the data, leading to biased parameter
estimates. These limitations highlight the need for more robust and adaptive approaches,
particularly in dynamic and unpredictable environments.

While conventional methods have their strengths, these limitations pave the way for
exploring alternative approaches to address the aforementioned challenges. By leveraging
advanced techniques such as machine learning, probabilistic models, and adaptive algo-
rithms, researchers have sought to overcome the issues associated with threshold-based
segmentation. These alternative methods offer promising avenues to enhance segmentation
accuracy, handle complex scenes, and mitigate the sensitivity to brightness and noise.

2.2. Machine Learning-Based Methods

Machine learning methods primarily leverage the polarimetric characteristics of sea
ice images (HH, HV, HH/HV) and selected features such as GLCM texture features. These
features are then subjected to rule-based machine learning methods for classification,
enabling the differentiation between sea ice and open-water areas. Furthermore, in the
literature, there are approaches that further refine the classification of sea ice, distinguishing
between multi-year ice (MYI) and first-year ice (FYI), among other categories. Expanding
on the various methodological approaches, let us delve into each method and its specific
contributions in sea ice classification.

2.2.1. Iterative Region Growing Using Semantics (IRGS)

Yu et al. [22] proposed an image segmentation method called IRGS. IRGS [33] models
the backscatter characteristics using Gaussian statistics and incorporates a Markov random
field (MRF) model to capture spatial relationships. It is an unsupervised classification
algorithm that assigns arbitrary class labels to identified regions, with the mapping of class
labels left for manual intervention by human operators. Building upon IRGS, several pieces
of research have been conducted for sea ice–water classification. Clausi et al. [21] developed
a binary ice–water classification system called MAGIC. Subsequently, Leigh et al. [34] used
glocal IRGS to capture the spatial contextual information of RADARSAT-2 SAR images and
identified homogeneous regions using a hierarchical approach. Pretrained SVM models
were then used to assign ice–water labels. The IRGS method, combined with modified
energy functions and the contributions of glocal and SVM classification results, balanced
the contextual and texture-based information. Ghanbari et al. [35] tested the method
with four different SAR data types: dual-polarization (DP) HH and HV channel intensity
images, compact polarimetric (CP) RH and RV channel intensity images, all derived CP
features, and quad-polarimetric (QP) images. The experimental results demonstrated that
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utilizing CP data achieved the best classification results, which were further supported
by similar findings in [36,37]. The self-training IRGS (ST-IRGS) was introduced in [38],
which integrated hierarchical region merging with conditional random fields (CRF) to
iteratively reduce the number of nodes while utilizing edge strength for classification
and region merging. The key feature of ST-IRGS is the embedded self-training procedure.
Wang et al. [39] extensively tested IRGS on dual-polarization images for lake ice mapping,
minimizing the impact of the incidence angle. The experimental results demonstrated that
the IRGS algorithm provides reliable ice–water classification with high overall accuracy.

As emerging image classification methods advance, IRGS has been seamlessly integrated
with various classification techniques to enhance sea ice classification. Hoekstra et al. [40]
integrated IRGS segmentation with supervised labeling using RF. The IRGS segmentation
algorithm incorporated spatial context and texture features from the ResNet, utilizing region
pooling for ice–water classification [41]. Jiang et al. [42] made a comparison between two
benchmark pixel classifiers, SVM and RF, and two models, IRGS-SVM and IRGS-RF. The
experimental results indicated that IRGS-RF achieved better performance and demonstrated
stronger robustness. In [43], the IRGS algorithm was utilized to oversegment the input
HH/HV scene into superpixels. A graph was constructed on the superpixels, and node
features were extracted from the HH/HV images. With limited labeled data, a two-layer graph
convolution was employed to learn the spatial relationships between nodes. Chen et al. [44]
combined the segmentation results from the IRGS algorithm with pixel-based predictions
from the Bayesian Convolutional Neural Network (CNN), and by analyzing the uncertainty
of SAR images, sea ice and water were distinguished.

These works demonstrate the versatility of IRGS and its integration with different
classification methodologies, leading to improved performance and enhanced classification
accuracy in sea ice analysis.

2.2.2. Random Forest (RF)

Han et al. [45] utilized texture features from backscatter intensity and GLCM as input vari-
ables for sea ice mapping and developed a high-spatial-resolution summer sea-ice-mapping
model for KOMPSAT-5 EW SAR images using a RF model. Mohammed Dabboor et al. [46]
employed the RF classification algorithm to identify effective compact polarimetric (CP) pa-
rameters and analyzed the discriminatory role of CP parameters for distinguishing between
FYI and MYI. Alexandru Gegiuc et al. [47] applied RF for estimating the ridge density of sea
ice in C-band dual-polarization SAR images. Han et al. [48] evaluated four representative
sea ice algorithms using binary classification with RF based on PM-measured sea ice con-
centration (SIC) data. Tan et al. [49] employed a RF feature selection method to determine
optimal features for sea ice interpretation and implemented a semi-automated sea ice seg-
mentation workflow. Dmitrii MURASHKIN et al. [50] utilized a RF classifier to investigate
the importance of polarimetric and texture features derived from GLCM for the detection of
leads. James V. Marcaccio et al. [51] employed image object segmentation and a RF classifier
for automated mapping of coastal ice, indicating Laurentian Great Lakes winter fish ecology.
Yang et al. [52] developed a RF model to extract lake ice conditions from land satellite imagery.
Jeong-Won Park et al. [53] performed noise correction on dual-polarization images, supervised
texture-based image classification using the RF classifier, and achieved semi-automated SIE.
Meanwhile, in [54], the first approach directly utilizing operational ice charts for training
classifiers without any manual work was proposed based on RF.

These studies demonstrate the diverse applications of RF in sea ice analysis, including
sea ice mapping, classification of different ice types, feature selection, noise correction
and automated ice detection. The RF model has shown its effectiveness in leveraging
various image features for accurate and efficient sea ice analysis and has contributed to
advancements in sea ice research and monitoring.
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2.2.3. Multilayer Perceptron (MLP)

Ressel et al. [55] compared the polarimetric backscattering behavior of sea ice in X-band
and C-band SAR images. Extracted features from the images were input into a trained Artifi-
cial Neural Network (ANN) for SIE. The experiments found that the most useful classification
features were matrix-invariant features such as geometric strength, scattering diversity and
surface scattering fraction. In [56], further evidence was presented for the high reliability of
neural network classifiers based on polarimetric features, demonstrating their suitability for
near real-time operations in terms of performance, speed and accuracy. The authors of [57]
used neural networks to describe the mapping between image features and ice–water clas-
sification, with texture features extracted from co-polarized and cross-polarized backscatter
intensities and autocorrelation. It was tested for ice–water classification in the Fram Strait,
showing that the C-band reliably reproduced the contours of ice edges, while the L-band had
advantages in areas with thin ice/calm water. Suman Singha et al. [58] inputted the extracted
feature vectors into a neural network classifier for pixel-wise supervised classification. The
classification process highlighted matrix-invariant features like geometric strength, scattering
diversity and surface scattering fraction as the most informative. The findings were consis-
tent for both X-band and C-band frequencies, with minor variations observed for L-band.
Furthermore, the authors of [59] explored the influence of seasonal changes and incidence
angle on sea ice classification using an ANN classifier. The study concluded that in dry and
cold winters, the classifier could adapt to moderate differences associated with the incidence
angle. Additionally, it was found that the incidence angle dependency of backscatter remained
consistent across various Arctic regions and ice types.

Juha Karvonen et al. [60] estimated ice concentration based on SAR image segmenta-
tion and MLP, combining high-resolution SAR images with lower-resolution radiometer
data. In [61], they further demonstrated that MLP can estimate SIC from SAR alone, but
the results were more reliable and accurate when SAR was combined with microwave
radiometer data. Furthermore, they estimated the SIC and thickness in the Bohai Sea using
dual-polarization SAR images from the 2012–2013 winter, AMRS 2 radiometer data and
sea ice thickness data based on the High-resolution Ice Thickness and Surface Properties
(HIGHTSI) model. Additionally, Yan et al. [62] demonstrated the feasibility of using the
TDS-1 satellite data for neural network-based sea ice remote sensing using a satellite-based
GNSS-R digital data acquisition system. It relied on a MLP neural network with back-
propagation learning using an LM algorithm (800 inputs, 1 hidden layer with 3 neurons,
and 1 output). In a recent study [63], it was shown that MLP outperformed LR in captur-
ing the nonlinear decision boundaries, thus reducing misclassifications in certain cases.
Additionally, MLP combined cognitive uncertainty prediction methods with arbitrary
heteroscedastic uncertainty to allow estimation of uncertainty at each pixel location.

Overall, MLP has proven to be a valuable tool in sea ice remote sensing, providing
accurate classification results and enabling the estimation of sea ice parameters. As research
in this field continues, further advancements in MLP models and their integration with other
data sources will contribute to a better understanding of sea ice dynamics, improved sea ice
monitoring, and enhanced decision making for various applications related to sea ice.

2.2.4. Support Vector Machine (SVM)

Prior to the surge in popularity of deep learning, SVMs were the most favored model
due to their solid mathematical foundation and the ability to achieve global optimum
solutions (unlike linear models trained with gradient descent that may only converge to
local optima). SVMs are commonly employed for binary classification tasks and are defined
as linear classifiers that maximize the margin in the feature space.

The authors of [64] utilized backscattering coefficients, GLCM texture features and SIC
as the basis for SVM-based sea ice classification. Experimental results demonstrated that
SVMs exhibit stronger robustness against normalization effects compared to Maximum
Likelihood (ML) results. Some cases [65–68] showcased the effectiveness of SVMs in
distinguishing open-water areas from sea ice tasks. In [69], combining Kalman filtering,
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GLCM and SVM yielded better sea ice accuracy compared to simple CNN models at that
time. Yan et al. [70,71] proposed a simple yet effective feature selection (FS) approach and
employed SVM classification, resulting in improved accuracy and robustness compared to
NN, CNN and NN-FS approaches. Furthermore, experiments indicated that SVMs require
less data storage and fewer tuning parameters.

Additionally, researchers have explored combining SVMs with other methods to
enhance classification accuracy. For example, the authors of [72] integrated statistical
distribution, region connection, multiple features and a SVM into the CRF model. Experi-
mental comparisons revealed that the SVM-CRF achieved the best performance. Moreover,
by utilizing Transductive Support Vector Machines (TSVMs) as the classifier had good
performance on two hyperspectral images obtained from EO-1 [73].

In summary, SVMs were highly popular models in the field of sea ice classification
before the rise of deep learning. They offer robustness, suitability for binary classification
tasks and the potential for integration with other techniques, contributing to their effec-
tiveness in accurately distinguishing sea ice from other classes. Furthermore, SVMs have
advantages including lower data storage requirements and fewer tuning parameters.

2.2.5. Others

In addition to the commonly used machine learning methods mentioned above, deci-
sion tree (DT), LR, and k-means have also been used in ice classification tasks. The DT is
commonly used to solve binary classification problems. For example, the authors of [74]
employed a supervised classification model based on a DT to differentiate ice lakes from
water ice using the radiometric and textural properties of Landsat 8 OLI multispectral
data. Furthermore, Johannes Lohse et al. [75] utilized a DT for multi-class problems by
decomposing them into a series of binary questions. Each branch of the tree separates
one class from all other classes using a selected feature set specifically to that class. In
the Fram Strait region, ice was accurately classified into categories such as grey ice, lead
ice, deformed ice, level ice, grey-white ice and open water. Komarov et al. [76] modeled
the probability of ice presence in the study area using LR. They automatically detected
ice and open water from RADARSAT dual-polarized imagery. Additionally, based on the
aforementioned modeling approach, they developed a multi-scale SAR ice–water inversion
technique [77]. In [78], a multi-stage model was proposed for sea ice segmentation using
superpixels. The preprocessing involved enhancing contrast and suppressing noise in
high-resolution optical images. The segmentation results were refined through superpixel
generation, K-means classification and post-processing.

Furthermore, various machine-learning algorithms have been combined to better
extract sea ice. Wang et al. [79] proposed a two-round weight voting strategy in ensemble
learning. In the first round of voting, six base classifiers, namely naive Bayes, DT, K-Nearest
Neighbors (KNN), LR, ANN and SVM, were employed. Misclassified pixels were further
refined through fine classification. Kim et al. [80] combined image segmentation, image
correlation analysis and machine-learning techniques, specifically RF, extremely random-
ized trees and LR, to develop a fast ice classification model. Liu et al. [81] selected KNN
and SVM classifiers for single-feature-based sea ice classification, while the classification
of sea ice based on multiple feature combinations was performed using the selected KNN
classifier. In [82], a Gaussian Markov Random Field model for automatic classification
was introduced. The initial model parameters and the number of categories were deter-
mined by fitting the histogram of the imagery using a finite Gaussian mixture distribution.
Experimental results show that it can achieve good classification effect.

2.2.6. Limitations

We aim to provide a more comprehensive discussion on the constraints associated with
the application of machine-learning techniques in sea ice image segmentation. One notable
limitation lies in the requirement for large labeled datasets for training. Many machine-
learning algorithms, particularly deep-learning models, exhibit superior performance when
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trained on large datasets. However, the collection and annotation of such datasets for sea ice
imagery can be challenging and time-consuming. For instance, researchers in [83] highlighted
the scarcity of labeled datasets as a major impediment to the development and evaluation of
machine-learning algorithms for sea ice classification. Additionally, another limitation arises
from the complexity and variability of sea ice characteristics, which can pose challenges for
machine-learning models to generalize effectively across different regions and environmental
conditions. This issue has been discussed extensively. In light of these limitations, further
research efforts are needed to address dataset scarcity and enhance the robustness of machine-
learning models for sea ice image analysis.

In summary, researchers have integrated different machine-learning algorithms to
improve SIE. The two-round weight voting strategy and LR have demonstrated favor-
able classification performance. Combining image segmentation, correlation analysis and
machine-learning techniques has facilitated the development of fast ice classification mod-
els. Additionally, the Gaussian Markov Random Field technique and self-supervised
learning approaches have shown promise in SAR sea ice image classification. However,
these approaches often involve manual feature extraction prior to network training, which
can be a labor-intensive and time-consuming process. Additionally, when dealing with
complex image scenes, the training process can become intricate and challenging.

2.3. Deep-Learning-Based Methods

Traditional approaches to sea ice classification rely heavily on manual feature ex-
traction from remote-sensing images and the construction of classifiers. However, this
methodology entails significant human and time costs, and often yields less accurate results
in complex scenarios. In contrast, deep learning offers the ability to automatically learn
and extract features, enabling more effective handling of sea ice classification tasks. Deep-
learning methods, such as classification networks and semantic segmentation networks,
have been widely applied in sea ice classification, showcasing remarkable performance in
feature extraction and classification, thus significantly improving the accuracy of sea ice
classification. In this section, we will discuss the applications of deep-learning methods in
sea ice classification and explore the performance of different models in this domain, as
shown in Figure 4.

Figure 4. Chronological overview of the most relevant deep-learning-based SIE methods.

2.3.1. Supervised Learning

Early on, research generally used some simple CNN structures for sea ice classification.
Wang et al. [84] were the first to employ CNN for SIC estimation from SAR images. Their
work utilized a two-layer architecture consisting of convolutional and pooling layers,
followed by a fully connected operation, eliminating the need for separate feature extraction
or post-segmentation processing. The generated SIC maps exhibited an absolute average
error of less than 10% compared to manually interpreted ice analysis charts. In [85],
a fully convolutional neural network (FCNN) was proposed for estimating SIC from
polarimetric SAR images. Experimental results showed slightly higher accuracy in SIC
estimation using FCNN compared to CNN, along with additional computational efficiency.
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In [86], a three-layer CNN with convolutional and pooling operations, as well as non-linear
transformations, was constructed. This CNN demonstrated reduced differences and biases
between ice concentration and labels compared to MLP or ASI algorithms, highlighting the
superiority of CNNs. In [87], the CIFAR-10 CNN model was adapted to construct a CNN
architecture, and experimental results demonstrated that CNN-based SIE achieved higher
accuracy compared to traditional SVM methods. Yan et al. [88,89] designed a classification-
oriented CNN for SIE and a regression-based CNN for SIC estimation. The CNN comprised
5 7 × 7 convolutional and pooling layers, followed by 2 fully connected layers. This was
the first application of CNN technology to TDS-1 DDM data for SIE and SIC estimation.
Compared to a NN, this approach exhibited improved overall accuracy and required fewer
parameters and less data preprocessing. Han et al. [90] utilized GLCM to extract spectral
and spatial joint features from hyperspectral sea ice images and constructed a 3D-CNN
for sea-ice-type classification. In [91], CNN was employed for sea-ice-type classification
based on Sentinel-1 SAR data, distinguishing between four categories: ice-free, young ice,
FYI and old ice. Experimental comparisons with existing machine-learning algorithms
based on texture features and RF demonstrated improved accuracy and efficiency. CNN-
based SIC estimation was shown to outperform earlier estimation algorithms in [92].
Additionally, Malmgren-Hansen et al. [93] tested CNN under the scenario of disparate
resolutions between Sentinel-1 SAR and AMSR 2 sensors and found that CNN was suitable
for multi-sensor fusion with high robustness. Additionally, the integration of SE-Block into
a 3D-CNN deep network was proposed in [94] to enhance the contribution of different
spectra for sea ice classification. By optimizing the weights of various spectral features
through the fusion of SE-Block, based on their respective contributions, the quality of
samples was further improved. This approach enables superior accuracy classification of
small-sample remote sensing sea ice images.

Given the significant progress in deep learning, a wide range of mature classification
and segmentation networks have been developed. Researchers have successfully applied
these existing networks to achieve accurate SIE. By building upon these established networks,
they have been able to effectively extract sea ice from various data sources and achieve
accurate results. In [95], a hyperspectral sea ice image classification method based on principal
component analysis (PCA) was proposed. A comparison was made among SVM, 1D-CNN,
2D-CNN and 3D-CNN, showing promising results in sea ice classification with fewer training
samples and a shorter training time. Xu et al. [96] employed transfer learning to extract features
from patches using AlexNet and applied a softmax classifier, achieving an overall classification
accuracy of 92.36% on test data. They also improved SIC estimation by augmenting the
training dataset with more independent samples of undersampled classes [97]. The impact
of transfer learning, data augmentation and input size on deep-learning methods for binary
classification of sea ice and open water, as well as multi-classification of different types
of sea ice, was further investigated in [98]. Subsequently, DenseNet [99] was introduced
and demonstrated excellent performance on the challenging ImageNet database. In [100],
DenseNet was employed to extract SIC from SAR images, achieving errors of 5.24% and 7.87%
on the training and testing sets, respectively. DenseNet161 was used in [101], where multi-
scale techniques were employed for automatic detection of the MIZ in SAR images. Analysis
of the DenseNet prediction results by Kruk et al. [102] revealed that neural networks faced
greater challenges in distinguishing different types of ice samples compared to differentiating
between water and ice samples. Lyu et al. [103] obtained SIE and classification results for the
first time from real polarimetric SAR data using the Normalizer-Free ResNet (NFNet) [104].
The Sea Ice Residual Convolutional Network (AS-SI-Resnet) was proposed in [105], and
experimental results demonstrated its superiority over MLP, AlexNet and traditional SVM
methods. The authors further considered spatial characteristics and temporal variations of sea
ice and introduced long short-term memory (LSTM) networks to improve the accuracy of sea
ice classification [106].

Building upon the outstanding performance of CNN in SIE tasks, researchers have
further explored its application in larger datasets and research areas. Kortum et al. [107]
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combined convolutional neural networks with dense conditional random fields (DCRF)
and incorporated additional spatio-temporal background data to enhance model robustness
and achieve multi-seasonal ice classification. Zhang et al. [108] developed a deep-learning
framework called Multiscale MobileNet (MSMN), and experimental tests demonstrated an
average improvement of 4.86% and 1.84% in classification accuracy compared to the SCNN
and ResNet18 models, respectively. Singh Tamber et al. [109] trained a CNN using the binary
cross-entropy (BCE) loss function to predict the probability of ice, and for the first time,
explored the concept of augmented labels to enhance information acquisition in sea ice data.

In various domains, deep learning has made remarkable advancements in semantic
segmentation in recent years. In particular, the U-Net network has been widely applied
in various semantic segmentation tasks and has shown good segmentation performance.
Researchers have also explored the application of the U-Net architecture in SIE. Ren et al. [110]
proposed a U-Net-based model for sea ice and open water SAR image classification. This
model can classify sea ice at the pixel level. Subsequently, the authors introduced a dual-
attention mechanism, forming a dual-attention U-Net model (DAU-Net), which improved the
segmentation accuracy compared to the U-Net model [111,112]. Kang et al. [9] improved the
decoding network and loss function, achieving excellent results in the 2021 High-Resolution
Challenge. A modified U-Net was used for automatic extraction of Antarctic glacier and ice
shelf fronts. Ji et al. [113] constructed the BAU-NET by adding a batch normalization layer and
an adaptive moment estimation optimizer to the U-Net. In addition, An FCN inspired by the
U-Net architecture was applied to SIC prediction [114]. Radhakrishnan et al. [115] proposed a
novel training scheme using curriculum learning based on U-Net to make the model training
more stable. Wang et al. [116] stacked U-Net models to generate aggregated sea ice classifiers.
Stokholm et al. [117] studied the effect of increasing the number of layers and receptive
field size in the U-Net model on extracting SIC from SAR data. RES-UNET-CRF (RUF) was
proposed in [118], which leverages the advantages of residual blocks and Convolutional
Conditional Random Fields (Conv-CRFs), as well as a dual-loss function. Experimental results
show that the proposed RUF model is more effective compared to U-Net, DeepLabV 3, and
FCN-8. Song et al. [119] proposed a network called E-MPSPNet, which combines multi-scale
features with scale-wise attention. Compared to mainstream segmentation networks such
as U-Net, PSPNet, DeepLabV 3 and HED-UNet, the proposed E-MPSPNet performs well
and is relatively efficient. UNET++ was proposed in [120], and it performs well in medical
image segmentation tasks. Murashkin et al. [121] applied UNET++ to the task of mapping
Arctic sea ice in Sentinel-1 SAR scenes. Feng et al. [122] proposed a joint super-resolution (SR)
method to enhance the spatial resolution of original AMSR2 images. They used a DeepLabv3+
network to estimate SIC, which demonstrated good robustness in different regions of the
Arctic at different times. In addition, Zhang et al. [123] combined semantic segmentation
frameworks with histogram modification strategy to depict the disintegration frontier of
Greenland’s glaciers. It was found that the combination of histogram normalization and
DRN-DeepLabv3+ was the most suitable. A hierarchical deep-learning-based pipeline was
designed [124], which significantly improved the classification performance in numerical
analysis and visual evaluation compared to previous flat N-way classification methods.

In addition, Colin et al. [125] conducted segmentation research on ten marine me-
teorological processes using the fully supervised framework U-Net, demonstrating the
superiority of supervised learning over weakly supervised learning in both qualitative
and quantitative aspects. Hoffman et al. [126] employed U-Net with satellite thermal
infrared window data for Sea Ice Lead detection. An improved U-Net was used for glacier
ice segmentation [127]. It introduced a new self-learning boundary-aware loss, which
improved the segmentation performance of glacier fragments covering ice. CNN has not
only been well-applied in SIE tasks but also used for extracting river and lake ice to achieve
continuous monitoring of glacial lake evolution on Earth [128,129]. This research will
provide references based deep learning for SIE tasks.

With the popularity and cost reduction of UAV technology, and considering its high
spatiotemporal resolution, it has been widely applied in ice monitoring. It could fill the gap in
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satellite imagery data to some extent. Zhang et al. [13,16] proposed ICENET and ICENETv2
networks for fine-grained semantic segmentation of river ice from UAV images captured in
the Yellow River. ICENET achieved good results in distinguishing open water, surface ice and
background. In addition to UAV imagery, some research has utilized in situ digital sea ice
images captured by airborne cameras. Compared to large-scale satellite images, information
recorded by airborne cameras has lower spatial scales, providing more detailed informa-
tion about the formation of surrounding sea ice at higher resolutions. Dowden et al. [130]
constructed semantic segmentation datasets based on photographs taken by the Nathaniel
B. Palmer icebreaker in the Ross Sea of Antarctica. SegNet and PSPNet architectures were
used to establish detailed baseline experiments for the datasets. In [131], an automated SIE
algorithm was integrated into a mobile device. In [132], considering the impact of raindrops
on the segmentation results of captured images, raindrop removal techniques were developed
to improve the classification performance. In [133], a semantic segmentation model based
on a conditional generative adversarial network (cGAN) was proposed. This model has
good robustness and makes the effect of raindrops on the segmentation results smaller. In
addition, a fast online shipborne system was developed and validated in [14] for ice detection
and estimation of their locations to provide “ground truth” information supporting satellite
observations. Ice-Deeplab [134] was developed to segment airborne images into three classes:
Ocean, Ice and Sky. Zhao et al. [135] improved the U-Net network by introducing Vgg-16 and
ResNet-50 for encoding, constructing the new networks VU-Net and RU-Net, and achieved
good results in testing with mid-high-latitude winter sea ice images captured by airborne
cameras. Furthermore, a multi-label sea ice classification model embedded with SE modules
was used for airborne images [136], showing significant improvement in accuracy compared
to machine-learning methods such as RF and gradient boosting decision tree [137].

Deep-learning techniques have also found application in predicting SIC from daily
observations of passive microwave sensors such as SMMR, SSM/I and SSMI/S [138,139].
Chen et al. [140] utilized passive microwave and reanalysis data to quantitatively predict
SIC, thereby providing not only navigational assurance for human activities in the Arctic but
also valuable insights for studying Arctic climate change. Additionally, Gao et al. [141,142]
have made significant contributions by employing collaborative representation and a
transferred multilevel fusion network (MLFN) to detect and track sea ice variations from
SAR images, which holds crucial importance for ensuring maritime safety and facilitating
the extraction of natural resources.

2.3.2. Semi-Supervised Learning (SSL)

The current research on SIE is often limited by the scarcity of available datasets. To
extract accurate information from large-scale datasets when only a limited number of
labeled data are available, researchers have introduced SSL [143]. SSL is a technique
that leverages unlabeled data to improve model performance. In the context of sea ice
classification tasks. SSL can better utilize unlabeled sea ice images to enhance the model’s
classification accuracy. Staccone et al. [144] presented a SSL method based on generative
adversarial networks (GANs) for sea ice classification. The approach leverages labeled
and unlabeled data from two different sources to acquire knowledge and achieve more
accurate results. Khaleghian [145] proposed a Teacher–Student label propagation method
based on SSL (TSLP-SSL) to deal with a small number of labeled samples. Experimental
results demonstrated its superior generalization capability compared to state-of-the-art
fully supervised and three other semi-supervised methods, namely semi-GANs, MixMatch
and LP-SSL. Jiang et al. [43] proposed a semi-supervised sea ice classification model (IRGS-
GCN) that combines graph convolution to address this challenge. Furthermore, a weakly
supervised CNN approach was proposed in [146] for ice floe extraction. This research
leveraged a limited number of manually annotated ice masks as well as a larger dataset
with weak annotations generated through a watershed segmentation model, requiring
minimal effort. By effectively leveraging unlabeled or weakly labeled data, this method
was able to build more accurate extraction models on limited labeled datasets.
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2.3.3. Unsupervised Learning

Due to ongoing technological advancements, unsupervised learning has emerged as a
promising approach for sea ice classification tasks. Taking advantage of the principle that
SAR imagery can depict the electromagnetic properties of sea ice, Huang et al. employed a
guided-learning approach based on physical characteristics, designing the structure and
constraints of the models to better capture the scattering characteristics and information of
sea ice in SAR imagery. By combining physical models, prior knowledge can be introduced
into deep-learning models, enhancing their interpretability and generalization capability. In
their work [147], the scattering mechanism was encoded as topic compositions for each SAR
image, serving as physical attributes to guide CNNs in autonomously learning meaningful
features. A novel objective function was designed to demonstrate the learning process
of physical guidance. The unsupervised method achieved sea ice classification results
comparable to supervised CNN learning methods. In another work [148], a novel physics-
guided and injected learning (PGIL) unsupervised approach for SAR image classification
was proposed. Compared to data-driven CNNs and other pre-training methods, PGIL
significantly improved classification performance with limited labeled data. Furthermore,
in [149], uncertainty was embedded into transfer learning to estimate feature uncertainty
during the learning process. Experimental results demonstrated that this method achieved
better sea ice classification performance.

This research all demonstrates that physics-guided learning can help address the issue
of scarce sea ice data. Manual annotation of SAR imagery data is time consuming and
expensive, making it challenging to obtain large-scale annotated data. However, physical
characteristics can provide additional information to assist models in achieving more accurate
classification and segmentation with limited labeled data. By leveraging physical models
and prior knowledge, synthetic SAR imagery data can be generated for model training and
optimization, thereby alleviating the problem of data scarcity. Therefore, future research can
focus on achieving a more comprehensive and accurate understanding and classification of
SAR imagery by combining physical characteristics with deep-learning methods.

2.3.4. Limitations

The application of deep learning in sea ice classification has certain limitations. One of
these limitations is its dependence on labeled sea ice data for training, yet currently, there
is a lack of large-scale and representative benchmark datasets. Additionally, the absence
of large-scale models like SAM poses a challenge in determining whether it is feasible to
conduct large-scale training across different regions and latitudes to adapt to varying SIC
tasks. Furthermore, research on multi-source data fusion in SIC is relatively limited. The
challenge lies in leveraging the complementary characteristics of different data sources
to improve the accuracy of SIC. Multi-source data fusion can encompass remote-sensing
images acquired from different sensors, meteorological data and oceanic observation data,
among others. By integrating and analyzing these diverse datasets, more comprehensive
and accurate sea ice information can be obtained.

3. Accessible Ice Datasets

According to the guidelines established by the World Meteorological Organization
(WMO), sea ice can be classified in multiple ways, taking into account factors such as
the stages of its growth process, its movement patterns, and the horizontal dimensions
of its surface. The predominant classification method found in the literature is based on
the developmental stages of sea ice, which encompass frazil ice, nilas ice, FYI and MYI.
Additionally, some studies focus on specific tasks, such as the binary classification of open
water and sea ice, as well as the multi-classification of different types of sea ice.

Currently, as researchers’ interest in sea ice continues to grow, there is a rising availabil-
ity of relevant datasets that are openly accessible. In order to meet the demands for further
experimental evaluations and establish a standardized framework for future research, we
have meticulously compiled a comprehensive database. This database encompasses all
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currently available open-source SAR-based, optical-based, airborne camera-based and
drone-based datasets. A total of 13 datasets have been collected, accompanied by de-
tailed descriptions of their sources, as shown in Table 1. The emphasis is placed on key
attributes such as sensor types, study areas, data sizes and partitioning methods, ensuring
a comprehensive and structured resource for the research community.

3.1. SAR-Based Datasets
3.1.1. Radiation Characteristics of Sea Ice

SAR is the most commonly used active microwave data type and has been employed
in 80% of SIC publications. The radar wavelength, polarization mode and incidence angle
of SAR have significant impacts on the extraction performance. The specific parameters
can be referred to in [7].

• Radar wavelength Much of the literature on sea ice classification has discussed the
effectiveness of different radar wavelengths, including the Ku-band, X-band, L-band
and C-band SAR. In summary, the X-band and Ku-band are suitable for winter sea ice
monitoring, while the L-band offers advantages for summer sea ice monitoring. The
C-band, which lies between the Ku-band and L-band, provides a balanced choice for
sea ice monitoring across different seasons. Currently, many sea ice monitoring tasks
opt for SAR in the C-band for research purposes. The authors of [150] demonstrate
that, compared to the C-band, the L-band is more accurate in detecting newly formed
ice.

• Polarization mode Polarimetric techniques offer valuable insights into sea ice identifi-
cation by capturing more detailed surface information using polarimetric SAR. This
leads to improved classification of different sea-ice-types. For instance, the distinc-
tive rough or deformed surfaces of FYI result in higher backscattering coefficients in
cross-polarization. Conversely, MYI, known for its stronger volume scattering, ex-
hibits higher backscattering coefficients in both co-polarization and cross-polarization.
Notably, Nilas ice, characterized by its smooth surface and high salinity content,
demonstrates consistently low backscattering coefficients across both polarizations in
radar observations.

• Incidence angle In many scattering experiments, the statistical characteristics of sea
ice backscattering coefficients with respect to varying incidence angles can be observed
distinctly. When a radar emits microwaves towards a calm open water surface, the
echo signal becomes prominent when the incidence angle is close to vertical or ex-
tremely small. However, as the incidence angle increases, the backscattering from the
sea surface weakens, resulting in a gradual reduction in surface roughness. Research
has shown that at higher frequency bands, increasing the incidence angle improves
the classification accuracy between sea ice and open water. Additionally, the backscat-
tering coefficients during the melting period of sea ice are also influenced by the
incidence angle. For instance, in HH-polarized data, the backscattering coefficients
obtained at small incidence angles are significantly higher, and they exhibit a linear
relationship with increasing incidence angles.

3.1.2. Datasets

• SI-STSAR-7 [83] The dataset is a spatiotemporal collection of SAR imagery specifically
designed for sea ice classification. It encompasses 80 Sentinel-1 A/B SAR scenes captured
over two freeze-up periods in Hudson Bay, spanning from October 2019 to May 2020 and
from October 2020 to April 2021. The dataset includes a diverse range of ice categories.
The labels for the sea ice classes are derived from weekly regional ice charts provided
by the Canadian Ice Service. Each data sample represents a 32 × 32 pixel patch of SAR
imagery with dual-polarization (HH and HV) SAR data. These patches are derived from
a sequence of six consecutive SAR scenes, providing a temporal dimension to the dataset.



Remote Sens. 2024, 16, 842 15 of 37

• The TenGeoP-SARwv dataset [15] The dataset is built upon the acquisition of Sentinel-
1A wave mode (WV) data in VV polarization. It comprises over 37,000 SAR image
patches, which are categorized into 10 defined geophysical classes.

• SAR WV Semantic Segmentation The dataset is a subset of The TenGeoP-SARwv
dataset. It consists of three parts: training, validation and testing. The images comprise
1200 samples and are stored as PNG format files with dimensions of 512 × 512 × 1 uint8.
The label data are stored as npy files, represented by arrays of size 64 × 64 × 10, where
each channel represents 1 of the 10 meteorological classes.

• KoVMrMl The dataset utilizes Sentinel-1 Interferometric Wide (IW) SAR data, in-
cluding Single-Look Complex (SLC) and Ground Range Detected High-Resolution
(GRDH) products in the HH channel. The GRDH images are annotated with 7 types
of sea ice in patches of size 256 × 256. The H/α labeling is obtained by processing the
dual-polarization SLC data using SNAP v9.0.0 software.

• SAR-based Ice types/lce edge dataset for deep learning analysis The dataset is specif-
ically compiled for sea ice analysis in the northern region of the Svalbard archipelago,
utilizing annotated polygons as references. It encompasses a total of 31 scenes and contains
6 distinct classes. The dataset is organized into data records, referred to as patches, which
are extracted from the interior of each polygon using a stride of 10 pixels. Each class is
represented by patches of different sizes, including 10 × 10, 20 × 20, 32 × 32, 36 × 36 and
46 × 46 pixels.

• AI4SeaIce [117] The dataset consists of 461 Sentinel-1 SAR scenes matched with ice
charts produced by the Danish Meteorological Institute during the period of 2018–2019.
The ice charts provide information on SIC, development stage and ice form in the
form of manually drawn polygons. The dataset also includes measurements from
the AMSR2 microwave radiomete sensor to supplement the learning of SIC, although
the resolution is much lower than the Sentinel-1 data. Building upon the AI4SeaIce
dataset, Song et al. [119] constructed an ice–water semantic segmentation dataset.

• Arctic sea ice cover product based on SAR [116] The dataset is based on Sentinel-1
SAR and provides Arctic sea ice coverage data. Approximately 2500 SAR scenes
per month are available for the Arctic region. Each S1 SAR image acquired in the
Arctic has been processed to generate NetCDF sea ice coverage data. Each S1 image
corresponds to an NC file. The spatial resolution of the SAR-derived sea ice cover is
400 m. The website has released the processing of S1 data obtained in the Arctic from
2019 to 2021 and has uploaded the corresponding sea ice coverage data.

3.2. Optical-Based Datasets
3.2.1. Common Optical Sensors

There are several types of optical sensors commonly used for ice classification:

• MODIS MODIS is an optical sensor widely used for ice classification. It is carried on
the Terra and Aqua satellites. By observing the reflectance and emitted radiation of
the Earth’s surface, MODIS can provide valuable information about ice characteristics
such as color, texture and spectral properties.

• VIIRS VIIRS is an optical sensor with multispectral observation capabilities, used for
monitoring and classifying the Earth’s surface. It provides high-resolution imagery
and has applications in ice classification.

• Landsat series The Landsat satellites carry sensors that provide multispectral imagery
for land cover classification and monitoring, including ice classification. Sensors such
as OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) on Landsat 8,
as well as previous sensors like ETM+ (Enhanced Thematic Mapper Plus), have been
extensively used in ice classification tasks.

• Sentinel series The European Space Agency’s Sentinel satellite series includes a range
of sensors for Earth observation, including multispectral and thermal infrared sensors.
The multispectral sensor on Sentinel-2 is utilized for ice classification and monitoring,
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while the sensors on Sentinel-3 provide information such as ice surface temperature
and color.

• HY-1 (Haiyang-1) HY-1 also contribute to ice classification and monitoring. The
HY-1 satellite is a Chinese satellite mission dedicated to oceanographic observations,
including the monitoring of sea ice. The HY-1 satellite carries the SCA (Scanning Mul-
tichannel Microwave Radiometer) sensor, which operates in the microwave frequency
range. This sensor can provide measurements of SIC, sea surface temperature and
other related parameters. By detecting the microwave emissions from the Earth’s
surface, the SCA sensor can differentiate between open water and ice.

• The VIIRS-based river ice maps [151] The dataset furnishes daily updates on river ice
conditions across continental scales, encompassing the northern basins of the United
States and the entirety of Canadian territory. Segmentation of VIIRS imagery holds
promise for facilitating the detection and mapping of river ice, while also enabling the
generation of additional classes such as snow, water and clouds.

These optical sensors capture spectral information or radiation characteristics in dif-
ferent bands, enabling the acquisition of valuable data on ice morphology, types and
distribution. They play a crucial role in ice classification and monitoring. These sensors are
widely employed in remote sensing and Earth observation, providing valuable data for ice
monitoring and research purposes.

3.2.2. Datasets

Compared to SAR-based datasets, there are fewer datasets based on optical imagery. To the
best of our knowledge, there are currently two open-source optical imagery datasets available:

• 2021Gaofen Challenge The dataset is based on HY-1 visible light images with a
resolution of 50 m. The scenes cover the surrounding region of the Bohai Sea in China.
The provided images have varying sizes ranging from 512 to 2048 pixels and consist of
over 2500 images. Each image has been manually annotated at the pixel level for sea
ice, resulting in two classes: sea ice and background. The remote-sensing images are
stored in TIFF format and contain the R-G-B channels, while the annotation files are in
PNG format with a single channel. In the annotation files, sea ice pixels are assigned a
value of 255, and background pixels have a value of 0.

• Arctic Sea Ice Image Masking The dataset consists of 3392 satellite images of the
Hudson Bay sea ice in the Canadian Arctic region, captured between 1 January 2016
and 31 July 2018. The images are acquired from the Sentinel-2 satellite and composed
of bands 3, 4 and 8 (false color). Each image is accompanied by a corresponding mask
that indicates the SIC across the entire image.

3.3. Datasets Based on Alternative Acquisition Methods

Ice classification datasets based on alternative acquisition methods include imagery
captured by icebreakers and drones.

• Airborne camera-based datasets The dataset is constructed from GoPro images cap-
tured during a two-month expedition conducted by the Nathaniel B. Palmer ice-
breaker in the Ross Sea, Antarctica [130]. The video clips captured can be found at
https://youtu.be/BNZu1uxNvlo, accessed on 1 January 2024. These images were
manually annotated using the open-source annotation tool PixelAnnotationTool into
four categories: ice, ship, ocean and sky. The dataset was divided into three sets,
namely training, validation and testing, in an 8:1:1 ratio. Data augmentation was
performed by horizontally flipping the images, resulting in a training dataset of 382
images.

• River ice segmentation [152] The dataset collects digital images and videos captured
by drones during the winter seasons of 2016–2017 from two rivers in Alberta province:
the North Saskatchewan River and the Peace River. The images in the dataset are
segmented into three categories: ice, anchor ice and water. The training set consists

https://youtu.be/BNZu1uxNvlo
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of 50 pairs, while the validation set includes 104 images; however, there are no labels
available for the validation set.

• NWPU_YRCC2 dataset A total of 305 representative images were selected from videos
and images captured by drones during aerial surveys of the Yellow River’s Ningxia-
Inner Mongolia section. These images contain 4 target classes and were cropped to
a size of 1600 × 640 pixels. The majority of these images were collected during the
freezing period. Each pixel of the images was labeled into one of four categories:
coastal ice, drifting ice, water and other using Adobe Photoshop 2020 software. The
dataset was split into training, validation and testing sets in a ratio of 6:2:2, comprising
183, 61 and 61 images, respectively.

These datasets provide valuable resources for training and evaluating ice classification
algorithms using imagery from icebreakers and drones. They contribute to the development
of accurate and robust models for ice classification, utilizing alternative data sources.

Table 1. The overview of the detailed description of the 12 datasets we collected.

Type Dataset Data Source Research Area Task Ref.
Download Link
(accessed on 1 January
2024)

SAR-based

SI-STSAR-7

Sentinel-1 A/B
dual-polarization
(HH and HV) in
EW scan mode

cover the entire
open ocean

Classified by: OW,
NI, GI, GWI,
ThinFI, MedFI and
ThickFI

[83]
http:
//ieee-dataport.org/
open-access/si-stsar-7

The TenGeoP-
SARwv dataset

the WV in VV
polarization from
Sentinel-1A

over the open
ocean

Classified by:
Atmospheric
Fronts, Biological
Slicks, Icebergs,
Low Wind Area,
Micro Convective
Cells, Oceanic
Fronts, Pure
Ocean Waves,
Rain Cells, Sea Ice,
Wind Streaks

[15]
https:
//www.seanoe.org/
data/00456/56796/

SAR_WV
Semantic
Segmentation

Same as above Same as above Same as above [125]

https://www.kaggle.
com/datasets/rignak/
sar-wv-
semanticsegmentation

KoVMrMl

Sentinel-1 IW SAR
data, including
SLC and GRDH
products with HH
channel

Belgica Bank, an
ice-covered area
along the
north-east coast of
Greenland

Classified by:
Water, Young ice,
FYI, Old ice,
Mountains,
Iceberg, Glaciers
and Floating Ice

[147]

https://drive.google.
com/file/d/1VK2
geghwl_JUuEETntG_3_
5rDBH8qnHN/view?
usp=sharing

SAR based Ice
types/lce edge
dataset for
deep learning
analysis

Sentinel-1A EW
GRDM north of Svalbard

Classified by:
Open Water,
Leads with Water,
Brash/Pancake
Ice, Thin Ice, Thick
Ice-Flat and Thick
Ice-Ridged

—

https:
//dataverse.no/dataset.
xhtml?persistentId=doi:
10.18710/QAYI4O

AI4SeaIce

The Sentinel-1
dual-polarization
HH and HV, along
with the PMR
measurements from
the AMSR2
instrument on the
JAXA GCOM-W
satellite

the waters
surrounding
Greenland

Sea ice
concentration,
developmental
stages, and forms
of sea ice

[117]

https://data.dtu.dk/
articles/dataset/AI4
Arctic_ASIP_Sea_Ice_
Dataset_-_version_2/13
011134/2

http://ieee-dataport.org/open-access/si-stsar-7
http://ieee-dataport.org/open-access/si-stsar-7
http://ieee-dataport.org/open-access/si-stsar-7
https://www.seanoe.org/data/00456/56796/
https://www.seanoe.org/data/00456/56796/
https://www.seanoe.org/data/00456/56796/
https://www.kaggle.com/datasets/rignak/sar-wv-semanticsegmentation
https://www.kaggle.com/datasets/rignak/sar-wv-semanticsegmentation
https://www.kaggle.com/datasets/rignak/sar-wv-semanticsegmentation
https://www.kaggle.com/datasets/rignak/sar-wv-semanticsegmentation
https://drive.google.com/file/d/1VK2geghwl_JUuEETntG_3_5rDBH8qnHN/view?usp=sharing
https://drive.google.com/file/d/1VK2geghwl_JUuEETntG_3_5rDBH8qnHN/view?usp=sharing
https://drive.google.com/file/d/1VK2geghwl_JUuEETntG_3_5rDBH8qnHN/view?usp=sharing
https://drive.google.com/file/d/1VK2geghwl_JUuEETntG_3_5rDBH8qnHN/view?usp=sharing
https://drive.google.com/file/d/1VK2geghwl_JUuEETntG_3_5rDBH8qnHN/view?usp=sharing
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O
https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/2
https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/2
https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/2
https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/2
https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/2
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Table 1. Cont.

Type Dataset Data Source Research Area Task Ref.
Download Link
(accessed on 1 January
2024)

Arctic sea ice
cover product
based on
spaceborne
SAR

Sentinel-1
dual-polarization
HH/HV data in
EW mode

the Arctic Arctic sea ice
coverage data [116]

https://www.scidb.cn/
en/detail?dataSetId=77
1301999089025024

Optical-based

2021Gaofen
Challenge

HY-1 visible light
imagery with a
resolution of 50 m

near the Bering
Strait, China

Segmentation into
sea ice and
background

[9]

https://www.gaofen-
challenge.com/
challenge/competition/
2

Arctic Sea Ice
Image
Masking

The Sentinel-2
satellite,
composed of
bands 3, 4, and 8
(false-color)

Hudson Bay sea
ice in the
Canadian Arctic

Segmented into
different SIC
categories

https://www.kaggle.
com/datasets/
alexandersylvester/arctic-
sea-ice-image-masking

The
VIIRS-based
river ice maps

The following
VIIRS I-bands are
used: I01, I02, I03,
and I05

all rivers and
waterbodies from
western Alaska to
the east coast of
the US and
Canada

Segmented into
water, land,
vegetation, snow,
river ice, cloud,
and cloud shadow

[151]

https:
//web.stevens.edu/
ismart/land_products/
rivericemapping.html

Airborne
camera-based

Sea Ice
Detection
Dataset and
Sea Ice
Classification
Dataset

GoPro images
captured by the
Nathaniel B.
Palmer icebreaker

Ross Sea,
Antarctica

automated
detection of sea ice
(ice, ocean, vessel,
and sky) and
classifying
sea-ice-types
(ocean, vessel, sky,
lens artifacts, FYI,
new ice, grey ice,
and MYI)

[130] https://youtu.be/
BNZu1uxNvlo

Drone-based

River ice
segmentation

The Reconyx
PC800 Hyperfire
professional game
camera, and the
Blade Chroma
drone equipped
with the CGO3 4K
camera at the
Genesee dock

two Alberta rivers:
North
Saskatchewan
River and Peace
River

Segmented into
ice, anchor ice,
and water

[152]

https://ieee-dataport.
org/open-access/
alberta-river-ice-
segmentation-dataset

NWPU_YRCC2
dataset

a fixed wing UAV
ASN216 with a
Canon 5DS visible
light camera and a
DJI Inspire 1

the Ningxia–Inner
Mongolia reach of
the Yellow River

Segmented into:
coastal ice, pack
ice, water, and
other

[16]
https://github.com/
nwpulab113
/NWPUYRCC2

4. Applications

Given the progress in SIE and classification technologies, obtaining accurate spatial
distribution and dynamic changes of sea ice has become increasingly vital. Through careful
analysis and evaluation, a multitude of valuable geographic information products have been
developed. These products play a pivotal role in various domains, including weather forecast-
ing [153], maritime safety [154], resource development [141] and ecological conservation [155].
In this section, we will delve into the specific applications, as shown in Figure 5.
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Figure 5. The extracted sea ice information finds significant applications in various domains, including
meteorological forecasting and climate research, maritime navigation and geospatial information products.

4.1. Meteorological Forecasting and Climate Research

The results have significant applications in climate prediction. By utilizing remote-
sensing techniques to extract and classify sea ice data, it becomes possible to improve
the models that depict the interactions between the ocean and the atmosphere, further
enhancing our understanding of sea ice response to climate change [156]. Analysis from
research [153] reveals the potential value of sea ice observation data. The authors emphasize
the regional variations in sea ice trends and highlight the lack of comprehensive records
regarding marine connections. They utilize observation data to establish extensive Arctic
and regional sea ice trends, enabling the identification and selection of climate models
with optimal predictive capabilities on a global scale. These models subsequently provide
more accurate predictions of future sea ice changes, which are closely linked to vital marine
pathways in the Arctic region.

Furthermore, the extraction and classification of sea ice hold significant implications
for monitoring climate change. This is due to the high albedo [157] of sea ice, which
greatly alters the energy balance of the ocean. Additionally, sea ice exhibits low thermal
conductivity, exerting a significant influence on the heat exchange between the ocean and
the atmosphere. Thus, sea ice serves as a crucial indicator of climate change. Through
regular extraction and classification of sea ice, we can monitor its temporal and spatial
variations, analyze the trends of sea ice retreat and formation and provide data support for
climate change research. Research outlined in [155] evaluates Arctic amplification and sea
surface changes by observing the anomalies in Arctic sea ice extent, thickness, snow depth
and ice concentration in comparison to the mean state during different periods (2011-2018).

Hence, the application of and classification is crucial for meteorological forecasting,
climate prediction, and climate change monitoring. By utilizing remote-sensing techniques
to extract and classify sea ice data, we can enhance the predictive capabilities of climate
models, delve deeper into the interactions between sea ice and the climate system and
assess and monitor the trends and impacts of climate change.

4.2. Maritime and Ocean Navigation

Accurate extraction and classification of sea ice data play a vital role in maritime and
ocean navigation. By utilizing remote-sensing techniques to extract and classify sea ice
information, it becomes possible to efficiently generate valuable products such as sea ice
distribution maps, ice edge charts and route planning tools. These products serve as crucial
aids for ships, enabling them to navigate safely and avoid ice-prone areas.
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The Arctic Northeast Passage (NEP) has undergone remarkable changes in sea ice
conditions, significantly impacting both the environment and navigational capabilities [158].
Research indicates a continued reduction in Arctic sea ice, leading to the shortening of trade
routes in the Arctic Ocean and potentially affecting the global economy [159]. The authrs
of [160], focusing on the Arctic NEP, have examined the influence of sea ice variations on
the future accessibility of the route. While reduced sea ice has made it relatively easier for
vessels to traverse the Arctic NEP, challenges and risks still persist. Another work [161]
analyzed changes in sea ice volume and age, assessing the accessibility and navigable
regions of the Arctic route.

Furthermore, the extent and thickness of sea ice hold significant importance for naviga-
tion, as emphasized in [162]. MYI, known for its thickness and hardness, poses substantial
risks to ships. In contrast, younger and thinner ice enables icebreakers and regular cargo
vessels to navigate more freely along ice-free coastal areas during the summer [163]. A recent
study [164] investigated the impact of sea ice conditions. Similarly, research [165] revealed that
sea ice thickness has a greater impact on vessel speed than ice concentration, underscoring its
pivotal role in successful transit through the Arctic route. Therefore, future research endeav-
ors should focus on enhancing the spatial and temporal resolution of sea ice monitoring to
accurately evaluate the navigational capabilities of critical straits and regions.

Recent achievements have been made in this domain. A study [166] utilized high-
quality, co-located satellite data and observation-calibrated reanalysis data to analyze sea
ice changes along Arctic shipping routes. This research investigated the spatiotemporal dis-
tribution characteristics, melt/freeze timing and variations across trans-Arctic routes using
datasets such as NSIDC SIC and daily Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS) SIT products. Additionally, by incorporating optimal interpolation sea
surface temperature (SST) and SIC data, another study [167] examined the spatiotemporal
distribution characteristics of SST and SIC above 60°N in the Arctic, along with their in-
terrelationships. These findings hold crucial implications for Arctic shipping and sea ice
forecasting, contributing to enhanced navigation and decision making in the region.

4.3. Geographic Information Products

In recent years, significant advancements have been made in utilizing remote-sensing
techniques to generate geographic information products related to ice and polar regions.
These applications encompass various aspects, including mapping, GIS and algorithmic
approaches. The authors of [168] highlight the positive impact of Interferometric Synthetic
Aperture Radar (InSAR) technology on Antarctic topographic mapping, not only at scales
as small as 1:25,000 but also in thematic analysis and monitoring. By employing multiple
radar images and D-InSAR techniques, it becomes possible to monitor subtle centimeter-
level changes, offering tremendous potential for studying Antarctic glacier movement, mass
balance and global environmental changes. In a similar vein, the authors of [3] demonstrate
the production of polar remote-sensing products using very high-resolution satellite (VHRS)
imagery, which proves to be an effective alternative to costlier aerial photographs or ground
surveys. Moreover, Ref. [169] utilizes high-resolution ICESat laser altimetry to observe the
dynamic changes in the grounding line of Greenland and Antarctic ice sheets, revealing
a widespread thinning phenomenon across Greenland’s latitudes and intensified thinning
along critical Antarctic grounding lines. These findings hold crucial implications for Arctic
shipping and sea ice forecasting, contributing to enhanced navigation and decision making in
the region. Furthermore, Ref. [170] introduces the Ship Navigation Information Service
System (SNISS), an advanced ship navigation information system based on geospatial
data. SNISS offers a macroscopic perspective to develop optimal navigation routes for
the Arctic NEP and provides ice image retrieval and automated data processing for key
straits. Similarly, the authors of [171] developed RouteView, an interactive ship navigation
system for Arctic navigation based on geospatial big data. By incorporating reinforcement
learning and deep-learning technologies, RouteView calculates the optimal routes for the
next 60 days and extracts sea ice distribution. These studies have the potential to enhance
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the safety of vessels navigating the NEP and drive the development of augmented reality
(AR) information-extraction methods. Arctic sea ice distribution maps serve as valuable
aids for route planning, enabling vessels to avoid ice-covered areas and ensure sufficient
water depth for safe passage. In addition, PolarView is a ship navigation and monitoring
system specifically designed for polar regions. It offers real-time vessel positioning and
navigation information, including sea ice coverage, ship route planning and hazard zone
alerts. In the realm of path-planning optimization, a sophisticated maze path-planning
algorithm with weighted regions has been proposed in research [154].

As remote-sensing techniques continue to advance and polar observation data become
increasingly accessible, a variety of geographic information integration and visualization
platforms have emerged. One notable platform is Quantarctica [172], which has been
specifically designed as a comprehensive visualization platform for mapping Antarctica,
the Southern Ocean and the islands surrounding Antarctica. It encompasses scientific data
from nine disciplines, including sea ice, providing a wealth of information for researchers.
Another significant resource is the International Bathymetric Chart of the Southern Ocean
(IBCSO) [173], which offers detailed information about the bathymetry of the Southern
Ocean. This dataset serves as a valuable resource for marine science research and the
exploration of marine resources in the region. For terrain data in polar regions, ArcticDEM
is a prominent system that enables terrain analysis, glacier research, hydrological modeling
and more. Its comprehensive dataset contributes to a better understanding of the physical
characteristics of the polar regions. To access a wide range of information about the
polar regions, the ArcticWeb platform serves as a comprehensive polar information hub.
It offers various resources including maps, satellite imagery, weather data and sea ice
information. This integrated platform facilitates access to vital information for researchers,
scientists and policymakers working in the polar regions. Additionally, there are online
systems dedicated to sea ice monitoring and prediction. IceMap utilizes satellite data
and numerical models to provide real-time sea ice coverage maps, thickness estimates
and predictive simulations. It assists users in monitoring the state and trends of sea ice,
providing valuable insights for various applications. For studying Arctic sea ice changes,
the PIOMAS system offers simulation and analysis capabilities. It provides information
on Arctic sea ice thickness, volume and distribution, which are crucial for climate research
and analysis of ice conditions. In terms of monitoring snow and ice cover thickness in
polar regions, the SNOWsat remote sensing system employs radar and laser altimetry
data to deliver high-resolution measurements. These data are valuable for understanding
snow depth and ice cover thickness, aiding in research related to climate change and polar
ecosystems. Lastly, the Sea Ice Index, an online system provided by the U.S. National
Snow and Ice Data Center, offers monitoring capabilities for global sea ice coverage and
changes. It provides satellite-based sea ice indices and spatiotemporal distribution maps,
enabling effective climate monitoring, environmental conservation and management of
marine resources in polar regions. These systems collectively contribute to a comprehensive
understanding of the polar regions and their dynamic characteristics. Moving forward, it is
crucial to enhance the analytical capabilities of these systems by incorporating structured
modeling of sea ice, enabling more sophisticated geographical analysis and providing
better support for various applications in polar environments.

From glacier change observations to information system integration, and from ship
navigation to route planning, these applications provide valuable data and tools for scien-
tists, governments, policymakers and related industries, helping them better understand
and manage sea ice resources. Additionally, scholars have conducted research on polar
mapping and achieved significant results. Wang et al. [174] identified three commonly used
map projection methods for the Antarctic region: Polar Stereographic Projection, Transverse
Mercator Projection and Lambert Conformal Conic Projection, all of which are equal-angle
projections. Figure 6 lists several commonly used projection visualizations of the Arctic region.
The Quantarctica system utilizes the Antarctic Polar Stereographic projection EPSG:3031. Due
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to the unique geographical position of polar regions, commonly used map projections have
their limitations, and specific research is needed to address specific issues.

(a) (b) (c)

(d) (e)

Figure 6. Several projection visualizations in the Arctic region: (a) The projection center is at the
North Pole, characterized by a circular boundary. The map is symmetrically and uniformly distorted
in all directions from the North Pole as the center. (b) The projection center is shifted away from the
North Pole. The map still has a circular boundary, but the center is no longer the North Pole, and the
distortion of the projection is not symmetric. (c) Rectangular maps are commonly used to display
the entire polar region. (d) Vertical map. The Universal Transverse Mercator projection is used to
simultaneously depict the North and South Poles. (e) The projection center is shifted, resulting in a
non-global polar effect, with the coordinate range forming a sector-shaped area.

4.4. Others

Sea ice information is critical for the development of natural resources in coastal
areas. Extracting and classifying sea ice can help assess its impact on activities such as
fishing [175], oil and gas extraction [176] and submarine cable laying [177], providing
important references for decision makers.

Sea ice is an essential component of the polar ecosystem. Its freezing and melting not
only have a certain balancing effect on temperature changes in polar regions, but also affect
the stability of ocean temperature, salinity and stratification, thereby impacting global
ocean circulation [178]. Extracting and classifying sea ice can generate information such as
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sea ice boundaries, ice–water interfaces and cracks, which are useful for ecological research
and conservation efforts.

The results of and classification can be used in various fields of marine science [179,180],
including ocean physics, marine biology and marine geology. By analyzing the characteristics
and distribution of sea ice, changes and evolutionary processes of the marine environment
can be inferred.

5. Challenges in Sea Ice Detection

There are several issues and challenges in SIE tasks. Firstly, a major problem is
the limited availability of data sources, which restricts the accuracy and spatiotemporal
resolution of SIC. The scarcity and discontinuity of existing data sources make it difficult to
comprehensively capture and analyze sea ice features. Secondly, current SIC techniques
have limited accuracy in complex sea ice conditions. Sea ice exhibits diverse variations
in morphology, density, thickness and other characteristics, making it challenging for
traditional algorithms to cope. Moreover, complex sea ice features such as cracks, ridges
and leads undergo intricate changes, which are difficult to capture and represent using
conventional methods. Additionally, there are limitations in the ability to detect underwater
ice, making it challenging to obtain parameters such as its morphology and thickness. To
address these issues, further exploration is needed in terms of detection methods, modeling
approaches and mapping applications.

5.1. Exploration Methods Aspect
5.1.1. Multi-Sensor Integration

Current research primarily relies on optical imagery, SAR imagery or aerial photogra-
phy captured by airborne cameras. Different sensors have their own characteristics and
limitations in observing sea ice. A single sensor may not provide comprehensive infor-
mation about sea ice. By introducing multi-sensor integration, the advantages of various
sensors can be fully utilized to compensate for the limitations of a single sensor and obtain
more comprehensive and accurate sea ice data. Multi-sensor integration can combine differ-
ent technological approaches, such as microwave radar, optical sensors, acoustic techniques,
etc., to acquire more comprehensive information about sea ice. For example, combining
radar and optical sensor data enables simultaneous extraction of sea ice geometry and
surface features, facilitating more precise and monitoring. Moreover, multi-sensor integra-
tion can also fuse data obtained from ground-based observations, satellite remote sensing,
UAVs, and other platforms, providing multi-scale and multi-angle sea ice observations,
thereby gaining a more comprehensive understanding of the spatiotemporal variations in
sea ice.

In the Arctic Ocean, particularly in the Eastern Arctic, overcast sky conditions are preva-
lent, posing significant challenges for using optical satellite imagery to monitor sea ice. How-
ever, SAR imagery offers advantages of all-weather, all-day capability, unaffected by weather
conditions, enabling the collection of clear, unobstructed images under any weather conditions.
SAR imagery complements optical imagery by providing distinct texture features. Therefore,
in the future, the integration of SAR and optical multimodal fusion methods can facilitate
more comprehensive and accurate monitoring and analysis of sea ice.

Furthermore, establishing a continuous monitoring system using multiple sensors
allows for dynamic monitoring and analysis of sea ice through long time series of remote
sensing observations. By utilizing satellite remote sensing and other data sources, long-
term monitoring of sea ice changes can be achieved to reveal seasonal and interannual
variations. This enhances the reliability and consistency of data, enables multi-scale and
all-weather sea ice observations and improves the capability of sea ice monitoring and
prediction. These advancements provide more comprehensive and accurate data support
for sea ice research and related applications.
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5.1.2. Underwater Ice Detection

Currently, remote-sensing techniques are primarily used for employing remote-sensing
sensors such as satellites, aircraft and UAVs to obtain image data of sea ice. Common
remote-sensing techniques include optical remote sensing, SAR and multispectral remote
sensing, which provide information on the spatial distribution, morphological features,
cracks, and ice floes of sea ice. In addition, close-range images of sea ice can be acquired by
mounting imaging devices on ships. Shipborne observations provide higher accuracy and
local-scale sea ice information. Furthermore, UAVs equipped with sensors such as cameras
and thermal infrared cameras enable high-resolution observations and measurements of
sea ice. UAV technology offers high maneuverability and flexibility, allowing for more
detailed information about sea ice [181,182].

However, remote-sensing methods are primarily suitable for surface detection and
observation of sea ice, while direct remote-sensing detection of underwater ice, such as
subsea ice caps, is relatively challenging. Due to the absorption and scattering properties of
water, remote-sensing techniques are limited in their penetration and detection capabili-
ties underwater. However, the detection of underwater ice is crucial for navigation and
hydrographic surveying, as it can have significant implications for ship and navigation
safety. The presence of underwater ice can lead to collisions, obstruction of navigation or
structural damage to vessels. Therefore, accurate detection and localization of underwater
ice are essential for safe navigation planning and guidance.

Some remote-sensing techniques and sensors can still provide some information about
underwater ice under specific conditions. Sonar remote sensing is a technique that uses
sound waves for detection and imaging in underwater environments. It can provide
relevant information about underwater ice, such as the morphology of the ice bottom
surface and ice thickness, by measuring the time and intensity of sound waves propagating
in water. Sonar remote sensing finds widespread applications in the study of subsea ice
caps and marine surveying. Additionally, technologies such as lasers and radars can also
be used to some extent for underwater ice detection. Laser depth sounders can measure
the distance and shape of underwater objects, providing information about ice thickness.
Radar systems can penetrate to a certain depth underwater and detect the presence of
underwater ice layers when operating at appropriate frequency bands.

5.2. Model Approaches Aspect
5.2.1. Multi-Source Data Fusion Model

The monitoring of sea ice primarily relies on SAR remote-sensing technology, which
can penetrate meteorological conditions such as clouds, snowfall, and polar night to
obtain high-resolution sea ice information. SAR also has the advantage of being sensitive
to the structure and morphological changes of sea ice, enabling the identification and
differentiation of different types of sea ice and providing more accurate monitoring and
prediction of sea ice. There is also some research that utilizes optical remote-sensing
technologies, such as visible light and infrared satellite imagery. However, optical remote
sensing is limited under conditions of cloud cover, polar night and other factors, making
it difficult to obtain clear sea ice information. Furthermore, due to the complexity and
variability of sea ice, the limitations of a single optical remote-sensing technology can lead
to misclassification and omission errors.

Therefore, some studies have fully considered the complementarity of optical and
SAR data in sea ice classification and have fused the two to extract sea ice information in
the study area. Li et al. [10] analyzed the imaging characteristics of sea ice in detail and
achieved fusion by solving the Poisson equation based on Sentinel-1 and Sentinel-2 images
to derive the optimal pixel values. Compared to the original optical images, the fused
images exhibit richer spatial details, clearer textures and more diverse material textures
and colors. The constructed OceanTDL 5 model is then employed for SIE.

In addition to directly fusing heterogeneous images, Han et al. [11] proposed a fusion
of the features extracted from both sources. They first utilized an improved Spatial Pyramid
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Pooling (SPP) network to extract different-scale sea ice texture information from SAR
images based on depth. The Path Aggregation Network (PANet) was employed to extract
multi-level features, including spatial and spectral information, of different types of sea ice
from the optical images. Finally, these extracted low-level features were fused to achieve
sea ice classification. In their work [12], they further introduced a Gate Fusion Network
(GFN) to adaptively adjust the feature contributions from the two heterogeneous data
sources, thereby improving the overall classification accuracy.

Han’s work primarily focuses on feature-level fusion of SAR and optical images. In
addition, input-level fusion and decision-level fusion have been demonstrated as effective
methods [183–185], yielding favorable results in land use classification tasks. However,
in the context of sea ice classification, it is crucial to consider the influence of different
spectral bands on the radiation properties of sea ice. For instance, a simple approach
involves replacing one of the R, G or B channels in the RGB image with a single SAR band.
Through experimentation, it was found that replacing the B band yielded superior results,
as the B band exhibits weaker texture characteristics while SAR better reflects the radiation
properties of sea ice. Furthermore, another approach involves concatenating a single SAR
band with the RGB three-channel image to form a four-channel image. However, during the
model’s pretraining process, there may be difficulties in loading certain weights, resulting
in suboptimal outcomes.

5.2.2. Unsupervised Deep Learning

However, deep-learning methods currently face challenges in the classification of
remote-sensing images, and one major challenge is the extensive manual annotation re-
quired. Additionally, accurate labeling of sea ice categories relies on expert knowledge,
resulting in a scarcity of large-scale sea ice datasets for research purposes. The emer-
gence of unsupervised deep learning presents a promising solution to this problem. By
leveraging pre-training techniques such as transfer learning and self-supervised learn-
ing, unsupervised approaches can learn informative features for different sea-ice-types,
enabling effective sea ice classification tasks.

Research generally focuses on specific regions of interest, such as the Greenland area.
However, imagery exhibits variations across different regions, and sea ice distribution
patterns differ as well. Consequently, testing the same model in different regions yields
substantial discrepancies in the results. To tackle this challenge, the authors of [68] proposed
the integration of texture features derived from GLCM into the extraction and classification
of training samples. Unsupervised generation of training samples replaced the costly and
labor-intensive process of manual annotation. Moreover, the method produced adaptable
training samples that better accommodate the pronounced fluctuations in sea ice conditions
within the Arctic MIZ. This concept has undergone initial testing using a subset of Gaofen-3
images. In response to the scarcity of labeled pixels in remote-sensing images, the authors
of [186] present an effective approach for sea ice classification from two perspectives.
Firstly, a feature extraction method is developed that extracts contextual features from the
classification map. Secondly, an iterative learning paradigm is established. Experimental
results demonstrate that with limited training data available, the training and classification
of sea ice image representations with comprehensive exemplar representation under mutual
guidance provide insights into addressing the scarcity of labeled sea ice data.

Therefore, in response to the limitations of annotated datasets in sea ice research,
unsupervised deep learning emerges as a highly promising avenue. By directly extracting
insights from unlabeled data itself, it serves as a powerful tool for automatic feature
learning, representation learning and clustering. Unsupervised deep-learning methods
exploit the intrinsic structures and patterns within sea ice imagery, enabling the automatic
extraction of informative features without the reliance on external labels or manual feature
engineering. Within the realm of sea ice classification tasks, unsupervised deep learning
techniques, such as autoencoders, GANs and variational autoencoders (VAEs), excel at
acquiring meaningful representations from unlabeled sea ice data. These approaches
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discover similarities, textures, shapes and other discernible patterns inherent in sea ice
images, thereby transforming them into valuable feature representations. Moreover, the
utilization of extensive unlabeled sea ice data for training purposes expands the available
dataset, consequently enhancing the generalizability and robustness of sea ice classification
models across varying timeframes, locations and sensor conditions.

However, the application of unsupervised deep-learning methods to SIC tasks introduces
certain challenges. Primarily, the absence of external labels as supervision signals may yield
inaccurate or ambiguous feature representations. Therefore, it is imperative to design suitable
objective functions and loss functions to guide the unsupervised learning process, ensuring
the acquired features effectively facilitate the classification and analysis of sea ice images.
Additionally, training unsupervised learning models may necessitate increased computational
resources and time due to the involvement of complex network architectures and larger-
scale datasets. Furthermore, evaluating the performance of unsupervised learning methods
and conducting comparative analyses to discern the strengths and weaknesses of different
approaches represent inherently challenging tasks in this domain.

5.2.3. Construct ICE-SAM Large Model

The Segment Anything Model (SAM) [187], originally designed for segmenting natural
images, is capable of segmenting various objects. We applied this model to the task of sea
ice classification, and the segmentation results are shown in Figure 7.

(a)

(b)

Figure 7. SAM segmentation results applied to Sentinel-2 imagery. (a) Sentinel-2 imagery and
(b) SAM segmentation results. It can be observed that the first column accurately segments the
image, the second and fifth columns can easily differentiate sea ice, the third and sixth columns do
not perform segmentation and the segmentation result in the fourth column is excessively detailed.

SAM demonstrates high precision in the task of sea ice image segmentation, effectively
distinguishing different types of sea ice. However, the model itself cannot directly deter-
mine the specific category names of the sea ice, i.e., it cannot associate the segmentation
results with predefined sea ice categories. To address this issue, we try to introduce the
CLIP model [188] as an auxiliary classifier, as it possesses the capability of joint understand-
ing of images and text. We use the segmented sea ice image patches as inputs and compare
them with a range of predefined sea ice category names. Through this comparative analysis,
the CLIP model comprehends the connection between image content and category names,
identifying the category that matches most. Consequently, we can accurately classify the
sea ice image patches into their respective sea ice categories, obtaining specific category
names for each sea ice region. Thus, the role of the CLIP model in sea ice image seg-
mentation is to provide inference capability for sea ice category names. By leveraging its
understanding of both images and text, the CLIP model establishes the association between
segmentation results and category names, enabling us to acquire more comprehensive and
detailed sea ice classification information. This approach allows for a more comprehensive
understanding of sea ice features and attributes, providing more accurate data support for
sea ice monitoring and research.
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5.3. Cartographic Applications Aspect
5.3.1. Polar Geographic Information Systems (GIS)

Researchers have developed various GIS and tools specifically tailored for polar re-
gions to support the processing, analysis, and visualization of polar environments and
related data. In the early stages, a web-based GIS system [189] was developed, providing
online access, exploration, visualization and analysis of archived sea ice data. Subsequently,
systems such as PolarView, SNISS [170] and RouteView [171] were designed for polar navi-
gation planning and ship navigation. These systems offer functionalities such as voyage
planning, vessel position monitoring and channel information retrieval, utilizing real-time
data and model analysis to facilitate safe and efficient navigation in polar waters. However,
these systems have limited integration of information, and the analysis paths considered
are relatively narrow, resulting in somewhat idealized outcomes that have only limited
reference value. Furthermore, with the increasing availability of polar observation data,
several geographic information integration and visualization platforms have emerged. For
example, Quantarctica [172], (IBCSO) [173], ArcticDEM and ArcticWeb provide functional-
ities for visualizing polar geographic data, scientific data querying, map generation and
analysis. Online systems dedicated to sea ice monitoring and prediction, such as IceMap,
PIOMAS, SNOWsat and Sea Ice Index, offer real-time sea ice coverage data, thickness
estimation and predictive simulations.

The aforementioned systems primarily encompass ship navigation and monitoring, sea
ice monitoring and prediction, polar mapping and geospatial information display, ice thickness
measurement, climate research and environmental protection. These GISs generally employ
a layered architectural framework consisting of a data layer, an application layer and a user
interface layer. The data layer is responsible for storing and managing various polar-related
geographic data, generally organized and stored in databases or file systems. These data
can originate from multiple sources such as satellite observations, remote-sensing imagery,
marine surveys, meteorological stations and vessels. The application layer is dedicated to
processing and analyzing polar geospatial data, providing various functionalities and services.
Within these polar systems, the application layer includes functions such as sea ice monitoring
and prediction, navigation planning and guidance, map creation and visualization and
geospatial analysis and modeling. The functionalities within the application layer are typically
implemented through algorithms, models and tools, enabling data processing, analysis and
generating corresponding results and products. The user interface layer is responsible for
presenting and displaying geospatial data, functionalities and results to users, facilitating
interaction and visualization of the system’s capabilities.

However, most existing systems primarily focus on data integration and visualization,
lacking comprehensive geospatial analysis capabilities. In order to achieve geospatial
analysis functions for polar regions (taking sea ice as an example), the architectural design
and expansion of polar systems can be further improved. Here are some suggested feature
enhancements and architectural directions:

• Data Integration and Management. Polar systems should integrate sea ice data
from multiple sources and manage them in a unified and standardized manner. This
includes satellite observations, marine measurements and more. To enable structured
modeling and geospatial analysis, the data integration and management module
should incorporate functionalities such as data cleansing, format conversion, quality
control and metadata management.

• Structured Modeling. The system needs to develop algorithms and models for struc-
tured modeling of sea ice, transforming raw sea ice data into structured representations
with geospatial information. This involves modeling sea ice morphology, density, thick-
ness, distribution and the relationships between sea ice and other geographical features.
The sea ice structured modeling module should consider the spatiotemporal characteris-
tics of sea ice and establish associations with the geographic coordinate system.

• Geospatial Analysis Capabilities. The system should provide a wide range of geospa-
tial analysis functions to extract useful geospatial information from the sea ice struc-
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tured model. This may include spatiotemporal analysis of sea ice changes, thermody-
namic property analysis, analysis of sea ice interactions with the marine environment
and more. The geospatial analysis module should support various analysis methods
and algorithms, along with interactive visualization and result presentation.

• Real-time Data and Updates. To ensure timeliness, the system should support real-
time acquisition and updates of sea ice data. This can be achieved through real-
time connections with data sources such as satellite observations, buoys, UAVs and
more. Additionally, the system should possess efficient and scalable data storage and
processing capabilities to handle large-scale data-processing requirements.

Future systems can further expand their architectural framework by incorporating
technologies such as distributed computing, cloud computing and artificial intelligence
to enhance system performance and scalability. Furthermore, strengthening data sharing,
standardization and interoperability can facilitate data integration and functional consoli-
dation among different systems, enabling a higher level of integration and collaborative
work. These extended functionalities will enhance the overall performance and practicality
of polar systems, providing comprehensive support for scientific research, navigation safety
and environmental protection, among other domains.

5.3.2. Polar Map Projections

The unique shape and geographical attributes of the Earth’s surface in polar regions
make mapping challenging, hence research on polar cartographic projections has always
been an important topic.

Specifically, Bian et al. [190] introduced the concept of complex variable isometric
latitude based on the Gauss projection complex variable function. They overcame the
limitations of traditional Gauss projections and established a unified and comprehensive
“integrated representation” of Gauss projection in polar regions. Building upon this foun-
dation, through rigorous mathematical derivations, they provided theoretically rigorous
direct and inverse expressions for Gauss projection that can be used to fully represent
polar regions, as well as corresponding scale factors and meridian convergence formulas.
This approach addresses the problem of the impracticality of traditional Gauss projection
formulas in polar regions and is of significant importance in improving the mathematical
system of Gauss projection. It can be applied to the entire polar region and has important
reference value for compiling polar maps and polar navigation [191]. Furthermore, the
authors of [192] demonstrate that the non-singular Gauss projection formula for polar
regions meets the requirements of continuous projection within the polar region, providing
a theoretical basis for the production of polar charts. Due to its conformal property, Gauss
projection can better determine directional relationships and is of significant reference
value for the production of topographic maps along the central meridian in polar regions,
and can be combined with the current need for polar navigation charts for the Arctic route.
Gauss projection has advantages over sundial projection when applied to polar regions.
Currently, most globally released Antarctic sea ice distribution maps are presented in a
spherical projection, which cannot be directly used for mainstream tiled map publication.
The authors of [193] convert polar azimuthal stereographic projection sea ice charts to
the mainstream web Mercator projection map, and utilizes appropriate image resampling
methods to generate tiles and store them with numbered tiles according to different scale
levels, ultimately achieving the publication and sharing of sea ice image maps.

In recent years, there has been a relative lack of research on the latest developments
in polar cartographic projections. The current major challenges include severe distortion
of commonly used projection methods in polar regions and the difficulty of finding a
suitable balance between equal area and equal angle properties. Additionally, polar regions
generally possess highly complex data, such as sea ice distribution and ice sheet changes.
Therefore, another challenge in polar projection is how to effectively visualize and present
the geographical information of polar regions. To more effectively visualize and present
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geographic information of the polar regions to meet the needs of different users, there are
several potential research prospects and directions for future development, including:

• Novel polar projection methods. Researchers can continue to explore and develop
new polar projection methods to address the existing issues in current projection
methods. This may involve introducing more complex mathematical models or
adopting new technologies such as machine learning and artificial intelligence to
achieve more accurate and geographically realistic polar projections.

• Multiscale and multi-resolution polar projections. Polar regions encompass a wide
range of scales, from local glaciers to the entire polar region, requiring map projections
at different scales. Therefore, researchers can focus on how to perform effective polar
projections at various scales and resolutions to meet diverse application requirements
and data accuracy needs.

• Dynamic polar projections. The geographical environment in polar regions undergoes
frequent changes, such as the melting of sea ice and glacier movements. Researchers
can investigate how to address this dynamism by developing dynamic polar projec-
tion methods that can adapt to changes in the geographical environment, as well as
techniques for real-time updating and presentation of geographic information.

• Multidimensional polar projections. In addition to spatial dimensions, data in polar
regions also involve multiple dimensions such as time, temperature, and thickness. Re-
searchers can explore how to effectively process and present multidimensional data within
polar projections, enhancing the understanding of polar region changes and features.

6. Conclusions

This review provides a summary and overview of the methods used for SIE in the
past five years, including conventional image classification methods, machine learning-
based methods, and deep-learning-based methods. In addition, we have compiled a list
of currently available open-source datasets for ice classification and segmentation, and
explored the application aspects of from multiple perspectives. Finally, we have identified
potential research directions based on the challenges encountered in detection methods,
model approaches and cartographic applications.
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