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Abstract: This study focuses on the assessment of drought severity, employing a comparative analysis
between the normalized multi-band drought index (NMDI; calculated using Sentinel-2 imagery)
and the combined drought indicator (CDI). The research aims to pinpoint the most accurate and
reliable remote sensing techniques, which reflect ground-based measurements, thereby enhancing the
precision of drought monitoring systems. By investigating the specific area of Małopolska, the study
not only contributes to the global knowledge base on drought assessment methodologies but also
addresses the regional needs for improved drought management practices. Through an exhaustive
analysis correlating satellite-derived indices with in situ meteorological data, this research elucidates
the potential of integrating NMDI and CDI for a comprehensive understanding of drought dynamics
in Małopolska. In particular, the indices depict different dynamics of drought levels, as well as
the location of regions more prone to its occurrence. The findings are poised to advance drought
monitoring capabilities, offering significant insights for agricultural sustainability and water resource
management in the region.

Keywords: drought; CDI; NMDI; remote sensing; combined drought indicator; normalized
multi-band drought index; Małopolska; Lesser Poland

1. Introduction

As the global climate continues to change, the frequency and severity of droughts are
increasing, posing significant challenges to water resource management, agriculture and
ecosystems worldwide. Climate change has significant implications for drought patterns,
with various studies highlighting the potential exacerbation of water scarcity. Schewe [1]
emphasizes that climate change is likely to considerably worsen regional and global water
scarcity. This is supported by Apostolaki [2], who demonstrates that climate change,
associated with increased temperature and decreased precipitation, imposes high stress on
water resources, leading to increased water scarcity and drought. Furthermore, Graham [3]
asserts that future changes in climate and socio-economic systems will drive both the
availability and use of water resources, resulting in evolutions in scarcity.

The impact of climate change on drought severity is also a key concern. Wang [4]
highlights that the intensity, frequency and duration of droughts are expected to increase
due to climate change, particularly for agricultural and hydrological droughts. Additionally,
Verdon-Kidd and Kiem [5] express serious concern about how anthropogenic climate
change may exacerbate drought risk in the future. Moreover, Brownlee [6] projects an
increasing trend in areas affected by drought due to global climate change.
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The influence of climate change on water scarcity and drought is not limited to spe-
cific regions. Butts [7] presents a methodology for assessing climate change impacts and
adaptation potential for floods, droughts and water scarcity within the Nile Basin, empha-
sizing the regional approach to climate adaptation. Furthermore, Abedin [8] highlights
the potential health consequences of climate change, particularly malnutrition and water
scarcity, affecting a large number of people in southwestern coastal Bangladesh.

Drought itself is a multi-faceted phenomenon, which is difficult to define. Chal-
lenges arise primarily due to differences in hydrological and meteorological variables,
socio-economic factors and the diverse nature of water demand in various regions of the
world [9]. Emerging definitions can be categorized as conceptual and operational. Con-
ceptual definitions use general terms and cannot be applied to the assessment of current
drought; for example, “drought is a longer period without rain”. On the other hand, opera-
tional definitions attempt to define aspects such as the onset, intensity and end of drought
episodes. Often, through the evaluation of impacts, such as the influence of rainfall, soil
moisture and evapotranspiration on crop quality, such studies can be conducted system-
atically throughout the growing period (almost in real time) [10]. The most recognized
classification, facilitating communication, management and response, distinguishes four
types of droughts: meteorological, agricultural, hydrological and socio-economic [10].

The Intergovernmental Panel on Climate Change (IPCC), in its sixth report (Climate
Change 2023: Synthesis Report) [11], highlights that with advancing climate change, the
occurrence of extreme weather events intensifies (such as heavy rainfall, meteorological
and agricultural droughts), which can be observed in every region of the world. The
indisputable cause of these climate changes is attributed to humans, whose activities
have led to widespread and abrupt alterations in the atmosphere, oceans, cryosphere
and biosphere.

Human activities have significantly impacted natural hydrological processes, partic-
ularly in the context of drought. The alteration in soil moisture, hydrological cycle and
groundwater recharge due to human-induced changes in land and water management
has led to the reframing of drought definitions and understanding [12,13]. Anthropogenic
drought is now recognized as a compound, multi-dimensional phenomenon influenced
by natural water variability, climate change, human decisions and altered micro-climate
conditions [14]. Human activities, such as land cover change, reservoir regulation and
agricultural irrigation, have been identified as significant contributors to hydrological
drought in various regions [15,16]. Additionally, the construction of dams and reservoirs in
arid regions has raised concerns about their impacts on hydrological droughts [17]. Further-
more, anthropogenic warming has been found to substantially increase the likelihood of
extreme drought events, such as those observed in California [18]. The influence of human
activities on water availability has been highlighted, emphasizing the need to separate
meteorological variability from anthropogenic impacts using satellite observations [19].
Moreover, the occurrence of unprecedented drought events, such as the 2018–2019 Cen-
tral European drought, has been linked to global warming and human-induced climate
change [20].

1.1. Monitoring Drought with Remote Sensing

Changes and progress in monitoring drought have been the subject of extensive
research and development in recent years. Efforts have been made to enhance drought
monitoring, forecasting and early warning systems, as well as to improve research on
the combined effects of anthropogenic activities and changes in climate systems [21].
Historically, assessments relied solely on in situ measurements, which did not provide
sufficient spatial–temporal accuracy. Since 1972, with the launch of the Landsat mission
by the National Aeronautics and Space Administration (NASA), the approach began to
change dramatically, as these events revolutionized the field of drought monitoring. This
has been particularly true in recent years, with the addition of European Space Agency
(ESA) Sentinel satellites to earth-monitoring missions. There has been a significant increase
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in interest within the scientific community in drought monitoring techniques using remote
sensing. The number of articles on this topic in the Remote Sensing of Environment journal
increased from 5 in 1982 to over 70 in 2017 [22].

The use of remote sensing technology has significantly advanced drought monitoring
in Europe. Remote sensing has proven to be a powerful tool for assessing the temporal
and spatial aspects of drought events [23]. It has revolutionized the field by allowing
observations and monitoring of key drought-related variables over larger temporal and
spatial scales than was previously possible using conventional methods [22]. The remotely
sensed global terrestrial drought severity index (DSI) enhances the capabilities for near-
real-time drought monitoring to assist decision makers in regional drought assessment
and mitigation efforts [24]. Additionally, the combined drought indicator (CDI) has been
successfully applied within the European Drought Observatory (EDO) as part of a near-
real-time monitoring with decadal updates [25]. Furthermore, remote sensing data play an
important role in drought monitoring, especially in studying the spatiotemporal dynamics
of drought, due to their multi-temporal sampling and high-resolution spatial coverage [26].
In the context of agricultural drought monitoring, remote sensing has been instrumental in
providing a comprehensive assessment of regional drought by considering factors such as
soil water stress, vegetation growth status and meteorological precipitation [27]. It has also
been used to develop a series of remote sensing indicators for crop drought monitoring,
such as the temperature vegetation drought index (TVDI) [28]. Moreover, the use of remote
sensing-based drought indices has been evaluated using cloud-based computing platforms,
demonstrating the versatility and adaptability of remote sensing technologies in drought
monitoring [29]. The normalized multi-band drought index (NMDI) has emerged as a
valuable tool for monitoring soil and vegetation moisture using remote sensing data. NMDI
integrates information from multiple near-infrared and short-wave infrared bands, making
it more sensitive to drought severity and capable of estimating soil moisture and vegetation
conditions [30]. This index has been successfully applied in the evaluation of vegetation
stress by soil water [31] and monitoring forest fires due to its accuracy in assessing drought
severity [32]. Additionally, NMDI has been developed based on the fact that short-wave
infrared (SWIR) is more responsive to soil and vegetation moisture, further improving
the index’s sensitivity for drought severity monitoring [30]. NMDI has also been used to
identify dry soil or bare land, making it a versatile indicator for various environmental
assessments [33]. In the case of satellite-based monitoring of atmospheric precipitation and
its use in drought assessment, indices such as the precipitation condition index (PCI) [34]
and the standardized precipitation index (SPI) [35] are utilized. Evaluation of evapotranspi-
ration is also possible through algorithms such as the global land evaporation Amsterdam
model (GLEAM) [36]. The integration of remote sensing, modeling and monitoring data
has been emphasized as crucial for evaluating droughts and establishing a comprehensive
understanding of the linkages between meteorological and hydrological droughts for future
management [37]. Additionally, the primary goal of using optical and thermal remote
sensing in the monitoring, assessment and prediction of agricultural drought has been
highlighted, indicating the diverse applications of remote sensing in addressing drought
challenges [38].

1.2. Area of Interest

Climate change impacts in Central Europe have been the subject of extensive research.
Studies have shown that the region is experiencing significant changes in climate variables,
with observed warming signals in temperature [39]. The impacts of climate change are
multi-faceted, affecting various aspects of the environment, including vegetation, hydrology
and ecosystems. For instance, there is evidence of increased forest growth, particularly
in Northern Europe, as a result of climate change [40]. Additionally, changes in the
North Atlantic thermohaline circulation have been found to significantly impact weather
conditions and climate elements in Poland [41].
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Furthermore, climate change is projected to have substantial effects on water resources
in Central and Eastern Europe, with warmer climates expected to lead to shifts in the
area and location of agroclimatic zones [42,43]. This is particularly relevant, given the
potential for more severe and impactful drought events in the future [44]. Moreover, the
impacts of climate change extend to ecological networks, with studies indicating that these
networks are more sensitive to plant than to animal extinction under climate change [45].
The observed changes in climate variables have also led to concerns about extreme weather
events, such as heatwaves, droughts and floods. For instance, the summer climate in Europe
has shown a drying trend, accompanied by devastating drought and flood events [46].
Additionally, there is evidence of a record dry summer in 2015, challenging precipitation
projections in Central Europe [47]. These extreme events have implications for various
sectors, including agriculture, biodiversity and public health [48,49].

The Małopolska region in Poland presents a compelling case for studying the impacts
of climate change. This region is characterized by diverse ecosystems, including the
Carpathian Mountains, which are particularly sensitive to climate variations [50]. The
region’s vulnerability to climate change is further underscored by the potential impacts
on agriculture, as evidenced by the urgency to address agricultural adaptation in the face
of increasing climate impacts [51]. Additionally, the FORESEE database was developed
specifically to support research and adaptation to climate change in Central and Eastern
Europe, emphasizing the inadequate knowledge of possible climate change effects in this
region [52].

Furthermore, the Małopolska region’s agricultural sector is of significant importance,
and the impacts of climate change on crop productivity are a crucial area of study [53].
An evaluation of the quality of the NDVI3g (third generation of the normalized difference
vegetation index developed by Global Inventory Modeling and Mapping Studies) dataset
in Central Europe also highlights the relevance of studying the region’s vegetation activity
and greenness in the context of climate change impacts [54].

The diversity of the landscape, characteristic of Małopolska (Figure 1), is largely due
to the terrain’s topography, as well as hydrological and soil conditions. The mentioned
topography promotes the runoff of precipitation waters, making this region susceptible
to climatic changes through the potential occurrence of hydrological drought phenomena.
It is worth noting that the Małopolska region is characterized by the highest variability
in water flows in Poland. This variability, combined with diversified land morphology,
makes it difficult to develop a uniform strategy to combat extreme weather phenomena for
this region.
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Małopolska is also a diverse region in terms of land use (Figure 2). In the north, there
are areas extensively utilized for agriculture. Below, urbanized areas are located, with the
largest ones being the cities of Kraków and Tarnów. Smaller urbanized areas can be found
in the whole area. Further to the south are mountains covered with vegetation. In the
valleys, urbanized areas can be observed, but they are also used for agriculture. Most of
the mountains in Małopolska are covered with vegetation, except for the Tatra Mountains
located in the far south.
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As the report [55] shows, the trend values of average and maximum daily temperature
in the Małopolska region are alarming. The annual average maximum temperature in a
significant part of the region shows strong positive trends, reaching around 4.0 ◦C. Refer-
ring to the Intergovernmental Panel on Climate Change report (IPCC; 2001, 2013) [56,57],
climate changes are often understood precisely through changes in extreme temperatures.
Małopolska is a region where 60% of the area is legally protected by nature conservation
(6 national parks, including the largest in Poland—Tatra, 11 landscape parks, 85 nature
reserves, NATURA 2000 areas and others). Therefore, if the tendency of temperature
increases continues in the coming decades, the ecological diversity of this region may be
permanently lost.

1.3. Research Focus

The research objective of this study is to investigate various drought assessment meth-
ods and their application for the Małopolska region. In situ measurements, despite their
highest reliability, often lack sufficient temporal and spatial coverage for a comprehensive
assessment of the environmental conditions. Remote sensing technologies seem to provide
solutions, raising the question of whether they can extend the application of traditional
methods. This paper examines remote sensing methods for drought assessment, compares
them and attempts to correlate these data with in situ measurements. The study investi-
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gates whether the results from both methods overlap, meaning they similarly represent the
temporal variability in drought levels in Małopolska, and whether they identify regions
more prone to drought in a similar manner.

Despite the widespread use of the combined drought indicator, which relies on his-
torical data and employs a more matured methodology utilizing multiple data sources,
its spatial resolution is insufficient—5 km. Therefore, the following question arises: is
it possible to utilize methods with higher spatial resolution? To address this question,
the interpretation of the normalized multi-band drought index was chosen because it
directly pertains to drought. Moreover, with the use of Sentinel-2 data, it can provide
information with a spatial resolution of 20 m and, under favorable conditions, every 5 days.
These features seem ideal for applying NMDI in the creation of early warning systems for
drought occurrences.

The research interests of this study extend beyond the assessment methods for drought
alone, encompassing the overall condition of the Małopolska region. The focus is not only
on the general occurrence of drought-prone areas but also on the spatial distribution of
regions with an elevated risk of drought within Małopolska.

Therefore, the main research hypothesis of this study is as follows: the utilization of
high spatial resolution satellite imagery is an excellent source of information regarding
drought, which yields similar results to the application of in situ measurements or more
matured remote sensing methods.

2. Materials and Methods

An overview of the materials and methods used in this study is presented in the diagram
below (Figure 3). Data preparation consists of acquisition with some initial pre-processing.
The final datasets are generated using interpreted and down-sampled NMDI, contributing
with CDI to the analysis part, consisting of comparative maps and statistical analysis. In-depth
descriptions of the different steps can be found in the following paragraphs.
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2.1. Satellite Imagery

The research conducted within this study is based on level 2A imagery from Setninel-2
satellites. The mission consists of a constellation of two satellites, Sentinel-2A and Sentinel-
2B, which acquire high spatial resolution (10–60 m) optical imagery [58]. The mission
carries a wide-swath, high-resolution, multi-spectral imager (MSI) with 13 spectral bands,
offering unprecedented perspectives on land and vegetation [59]. The primary objective of
the Sentinel-2 mission is to provide high-resolution satellite data for land use monitoring,
climate change and disaster monitoring, complementing other satellite missions, such as
Landsat [60].

The period chosen for analysis encompasses the years 2018–2023. This selection was
made due to the absence of level 2A data in the preceding years in the Open Access Hub,
the platform operated by the European Space Agency for data provision. It was also
challenging to find imagery with low cloud cover before 2018. In the years 2015–2017, there
was only one satellite operating from Sentinel-2 constellation—Sentinel-2A.

Despite cloud and snow masking during data processing, appropriate imagery selec-
tion enhances the representativeness of results and statistics. Attention was also given to
choosing images from similar periods within each year. Taking these considerations into
account, four dates were selected for each year, and their detailed compilation is presented
in the table below (Table 1). Almost all data (exceptions described below Table 1) were ac-
quired by Sentinel-2 satellites under relative orbit number 036. Furthermore, measurements
from both satellites were utilized.

Table 1. Dates for selected satellite imagery. S2A—imagery acquired by Sentinel-2A. S2B—imagery
acquired by Sentinel-2B.

Year Date 1 Date 2 Date 3 Date 4

2018 20 April S2A 19 June S2A 23 August S2B 6 November S2A

2019 31 March S2B 9 June S2B 28 August S2B 27 October S2B

2020 9 April S2A 13 June S2B 22 August S2B 25 November S2A

2021 9 April S2B 18 June S2B 6 September S2B 31 October S2A

2022 25 March S2B 3 June S2B 27 August S2A 31 October S2B

2023 23 April * 3 June S2A - -
* It was not possible to select images from a single day; therefore, images from 22 April and 24 April 2023 were
used. The images from 22 April (S2B, orbit 079) had a sufficiently low level of cloud coverage; however, orbit
number 079 did not cover the entire Małopolska region, so the gaps were filled with data from 24 April (S2A,
orbit 036).

2.2. Normalized Multi-Band Drought Index and Selected Interpretation

The normalized multi-band drought index (NMDI) is used to assess moisture levels,
addressing issues with the soil reflectance factor, which affect other vegetation-based indices
(e.g., NDWI, NDVI) [61]. Wang and Qu [61] introduced the NMDI as a novel approach to
monitor drought using satellite remote sensing. They aimed to provide a more accurate and
robust measure, especially in areas with issues related to soil reflectance. NMDI addresses
a critical challenge faced by other vegetation-based indices, namely the influence of soil
reflectance. This can be especially problematic in areas with sparse vegetation cover, where
soil has a significant impact on the reflectance values obtained by satellite sensors.

The formula for NMDI using Sentinel-2 spectral bands’ notation is as follows:

NMDI = (B08 − (B11 − B12))/(B08 + (B11 − B12))

where B08 refers to the near-infrared band (VNIR, 842 nm), whereas B11 and B12 refer to
the short-wave infrared bands (SWIR, 1610 nm and 2190 nm, respectively).

The interpretation created by L. Wang, J. Qu and X. Hao [62] was used in this study.
It is based not only on NMDI but also utilizes the normalized difference vegetation index
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(NDVI) [63] to differentiate areas with vegetation and bare soil and understand moisture
content in the context of vegetation health.

The formula for NDVI using Sentinel-2 spectral bands’ notation is as follows:

NDVI = (B08 − B04)/(B08 + B04)

where B08 refers to the near-infrared band (VNIR, 842 nm), B04 refers to the visible red
band (665 nm), whereas B11 and B12 refer to the short-wave infrared bands (SWIR, 1610 nm
and 2190 nm, respectively).

The classification divides pixels into 4 classes: Very Wet, Wet, Dry and Very Dry. The
formula used for the interpretation of NMDI is described in Table 2.

Table 2. Formula used for the interpretation of NMDI [62].

Class Vegetation (NDVI ≥ 0.4) Soil (NDVI < 0.4)

Very Wet >0.6 <0.3
Wet 0.4–0.6 0.3–0.5
Dry <0.4 >0.5

Very Dry <0.2 0.7–0.9

By incorporating NDVI, this interpretation provides context for the moisture levels not
only of vegetation but also of soil. NMDI responds oppositely to soil moisture compared to
vegetation water content. For instance, for vegetation, higher values mean higher water
content, but for bare soil, higher values mean less soil moisture. Additionally, dry classes in
an area with healthy vegetation (high NDVI) might be more concerning than the same type
of class in an area with typically low vegetation or bare soil. This combined approach allows
for better targeted interventions and can aid in identifying areas in need of immediate
attention due to drought or other water-related concerns. The classification was performed
on data with the original spatial resolution (20 m). Furthermore, a down-sampling (the
weighted average of all non-NODATA contributing pixels) of NMDI values was carried
out to obtain pixels with the same resolution as CDI (5 km).

2.3. Combined Drought Indicator

In this study, the third version [64] of the combined drought indicator (CDI) was
employed. It has been implemented in the European Drought Observatory (EDO) and is
created by combining three drought indicators:

• standardized precipitation index (SPI),
• soil moisture anomaly (SMA),
• fraction of absorbed photosynthetically active radiation anomaly (FAPAR anomaly).

The CDI is calculated at specific intervals—10 days—resulting in values determined for
specific days: the 1st, 11th and 21st day of each month. The final product generated for this
indicator is a raster with a spatial resolution of 5 km, where each individual pixel contains
information about the class indicating the environmental condition in drought-affected
areas. The individual classes have the following interpretations:

• 0—No Drought: normal conditions,
• 1—Monitoring: precipitation deficit,
• 2—Warning: negative effects affecting soil moisture, typically caused by precipita-

tion deficit,
• 3—Alarm: negative effects impacting vegetation growth, usually due to precipitation

deficit and reduced soil moisture,
• 4—Recovery: post-drought period, both meteorological conditions and vegetation

growth return to normal,
• 5—Temporary Recovery of Soil Moisture: soil moisture conditions are above the

drought threshold but still insufficient to consider the drought episode conclusive,
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• 6—Temporary Recovery of Vegetation Condition: the vegetation condition is above
the drought threshold but still insufficient to consider the episode conclusive.

2.4. Methods Used for Comparison between NMDI and CDI

Both the combined drought indicator (CDI) and the interpreted normalized multi-band
drought index (NMDI) are presented in the form of classified (discrete) values for individual
pixels. To compare the extents of the Małopolska region, which may experience drought
during a specific period between both indices, it was decided to assess the proportion of
the following classes in the total number of pixels covering the Małopolska region:

• For CDI—share of Warning and Alarm classes,
• For NMDI—share of Dry and Very Dry classes.

The data in this form were then compared on a line chart, where their variability over
time is visible, allowing for a visual comparison of their fluctuations. These data were
also examined in tabular form, enabling the identification of periods where the indices
indicated the most similar environmental conditions.

A spatial analysis was conducted using CDI and NMDI maps for selected dates.
Additionally, for each pixel, counts of the relevant classes were also presented; for CDI,
these were the Warning and Alarm classes, and for NMDI, they were the Dry and Very Dry
classes. This allowed for the definition of areas where these classes occur most frequently,
and consequently, the presentation of regions, which are most susceptible to drought
(according to the utilized index).

The table below presents a compilation of satellite imagery acquisition dates with the
dates of CDI, which were used for comparison (Table 3).

Table 3. Compilation of acquisition dates for satellite imagery and CDI used for comparison.

Year Type Date 1 Date 2 Date 3 Date 4

2018
Sat. img. 20 April 19 June 23 August 6 November

CDI 21 April 21 June 21 August 11 November

2019
Sat. img. 31 March 9 June 28 August 27 October

CDI 1 April 11 June 1 September 1 November

2020
Sat. img. 9 April 13 June 22 August 25 November

CDI 11 April 11 June 21 August 21 November

2021
Sat. img. 9 April 18 June 6 September 31 October

CDI 11 April 21 June 11 September 1 November

2022
Sat. img. 25 March 3 June 27 August 31 October

CDI 21 March 1 June 1 September 1 November

2023
Sat. img. 23 April 3 June - -

CDI 21 April 1 June - -

2.5. Methods Used for Comparison with Meteorological Data

The verification of the results utilizes in situ meteorological measurements from the
open data from the Polish Institute of Meteorology and Water Management (IMGW). All
calculations are based on daily rainfall from 97 stations located throughout Małopolska
(Figure 4).

CSV files were downloaded from the archive and then processed into the appropriate
format. A preliminary dataset was established as a table, where, for each station and
each day, the total precipitation was presented. The cumulative rainfall for 30, 60 and
90 days before each date, from which the utilized indices originated, was then calculated
based on this dataset and converted to rainfall anomaly to account for the differences in
characteristics of specific locations. The rainfall anomaly was calculated by subtracting
a mean value of cumulative rainfall from a certain period (30, 60 or 90 days) registered
at a specific station from all cumulative rainfall values from that period registered at
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that station. Data were presented as box plots and strip plots to aid visual analysis, and
Spearman’s rank correlation coefficients were calculated based on the entire dataset and
bootstrapped samples.
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2.6. Data Processing Environment

Data acquisition, processing and visualization in this study were performed using
the Python programming language. The main libraries utilized included sentinelsat (ver-
sion 1.1.1), rasterio (version 1.3.3), numpy (version 1.23.5), scipy (version 1.10.1), geopandas
(version 0.12.1), matplotlib (version 3.6.2) and seaborn (version 0.13.2).

3. Results
3.1. Comparison between NMDI and CDI

In terms of analysis of the level of coverage of the Małopolska region by classes
indicating drought occurrence, the compared indices yield extremely divergent results. The
variability in these levels over time is entirely unrelated, similarly to the case of observed
peaks (Figure 5). The fluctuations observed for CDI—Warning and Alarm increase their
range only from the year 2020 onwards (this is particularly evident in their lower limit).
Regarding NMDI, it is challenging to discern any trends over the analyzed years, with the
only anomaly being a peak in the data from 25 March 2022, which is distinctly noticeable.
Interestingly, for CDI, the values did not deviate beyond the bounds of their standard
fluctuations during this time. Instead, a peak emerges for coverage in the Alarm class in
CDI, but only in subsequent observed dates.

The indices compared provide such disparate insights that it is difficult to apply them
to a general assessment of the environment in terms of the possible drought phenomenon
in the Małopolska region. The fluctuations occurring for both indices can only indicate that
the conditions prevailing in this area did not change over the years analyzed.

Even when examining data from periods showing the highest similarity between
indices (Table 4), it is impossible to pinpoint areas, which may be more susceptible to
drought occurrence (Supplementary File S1). Moreover, for the first eight periods with the
highest similarity, the level indicated by the indices is not high. Only the ninth period—25
March 2022—shows higher coverage by classes indicative of drought. However, upon
scrutinizing the spatial distribution of individual classes during this period, it is impossible
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to define areas with an elevated risk of drought consistently for both indices. Even assuming
that there may be a delayed response in the case of CDI—the maps were compared with
a lag of one period (Figure 6)—the areas with the highest class for NMDI and CDI are in
completely different locations.
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Table 4. Coverage of the Małopolska region with areas with an elevated risk of drought indicated
by NMDI and CDI. The share of selected classes in the total number of pixels for the Małopolska
region for CDI, interpreted NMDI (20 m pixel) and interpreted, down-sampled NMDI (5 km pixel)
(CDI—Warning and Alarm classes; NMDI Interpreted—Dry and Very Dry classes). Values sorted
from smallest to largest according to the Difference column values.

Date CDI 5 km NMDI 5 km NMDI 20 m Difference *

6 September 2021 0.00 0.08 0.00 0.04
31 October 2022 0.09 0.14 0.06 0.04

23 April 2023 0.01 0.14 0.04 0.08
9 June 2019 0.15 0.06 0.01 0.12

25 November 2020 0.00 0.14 0.13 0.14
31 October 2021 0.27 0.14 0.12 0.14
23 August 2018 0.30 0.12 0.05 0.22

9 April 2021 0.02 0.27 0.23 0.23
25 March 2022 0.76 0.40 0.53 0.29
28 August 2019 0.41 0.11 0.02 0.34
22 August 2020 0.49 0.09 0.01 0.44
27 October 2019 0.51 0.12 0.02 0.45

3 June 2023 0.49 0.08 0.00 0.45
13 June 2020 0.52 0.05 0.00 0.49

31 March 2019 0.78 0.26 0.23 0.53
27 August 2022 0.61 0.12 0.02 0.54
20 April 2018 0.72 0.14 0.03 0.64
9 April 2020 0.90 0.19 0.10 0.76
18 June 2021 0.82 0.06 0.00 0.79
3 June 2022 0.84 0.08 0.01 0.80

6 November 2018 0.87 0.10 0.02 0.81
19 June 2018 0.84 0.05 0.00 0.82

* The difference between CDI and NMDI is calculated as the average of the absolute values for two differences—
between CDI and NMDI 5 km and between CDI and NMDI 20 m.

Concerning the sum of occurrences of Dry and Very Dry classes for NMDI in various
locations, higher values are evident in the northern part of the region (Figure 7). This implies
that in those areas, classes indicative of drought occurrence appeared most frequently
during the analyzed period. Individual pixels with higher values in other locations may
result from the presence of larger water reservoirs or exposed rocks (mountainous regions
without vegetation are located in the southern part of the region). For CDI, in the sum of
occurrences of Warning and Alarm classes, the area with the highest values is located in the
central part of Małopolska (Figure 8). Elevated values in the north, present in the sum for
NMDI, are in no way reflected in the case of CDI. Regarding counts of only the Alarm class,
elevated values are visible in the southeastern part of Małopolska. Some of them overlap
with observations for NMDI. However, due to the displacement, they are not the result of
the same changes occurring in the natural environment.
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of Alarm class only.

Despite analyzing other periods as well (all available in Supplementary File S1), no
dependencies were found between these indices. They did not exhibit similarities either in
temporal variability for the share of dry regions or in their locations. With the analyzed
data, it was also not possible to identify regions where dry conditions occur more frequently
consistently for both indices.

On the other hand, it appears that, in the case of NMDI, elevated values of the sum
of occurrences in the northern part of the region may be related to land use. The northern
part of the province is more intensively utilized for agriculture (Figure 2). However, this
cannot explain areas with elevated sums for CDI. The central part of the region has rather
mixed land use. Interestingly, heavily urbanized areas do not stand out in the indices; there
are no conspicuous values for either of them.

Due to limitations in the frequency of CDI datasets, there is a certain gap between
the acquisition of satellite imagery used to calculate NMDI and the date for which CDI
is calculated. Utilizing a scatter plot (Figure 9), no relationship was observed between
differences in the share of classes considered dry and the number of days, which differed
between satellite data acquisition for NMDI and the calculation of CDI. However, it should
be noted that the number of data points is insufficient for conducting a proper statistical
analysis to exclude such dependency.
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3.2. Comparison with Meteorological Data

In order to gain additional information regarding the performance of both indices, the
CDI and NMDI classes from pixels containing meteorological stations (total of 97 locations)
were compared with one of the conventional drought predictors: rainfall anomaly from
90 days prior to each dataset’s acquisition.

A visual inspection of the data (Figure 10) shows negative correlation between rainfall
anomaly and NMDI and a complicated non-linear and non-monotonic relationship between
rainfall anomaly and CDI. The inspection also shows that the distribution of observations
between the classes is extremely uneven. For each index, the vast majority of observations
fall into two classes: Very Wet and Wet in the case of NMDI and No Drought and Warning
in the case of CDI.
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Figure 10. Comparison of NMDI and CDI classifications with rainfall anomaly from 90 days prior
to each dataset’s acquisition; TSMR—Temporary Soil Moisture Recovery; TVR—Temporary Vegeta-
tion Recover.

Due to extremely uneven data distribution between individual classes, the observed
relationships are not reflected in the calculated correlation coefficients. The values of
Spearman’s rank correlation coefficient are equal to −0.0363 for NMDI and −0.2965 for
CDI, which indicates a much higher negative correlation between rainfall anomaly and
CDI than NMDI and contradicts the relationships observed in the plots.
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In order to address this problem, a bootstrap method with disproportionate stratified
random sampling was used. A total of 5000 samples were drawn separately for the NMDI
and CDI datasets, ensuring that each class contributed 50 observations for each sample
selected with replacement (200 observations in total). Based on each sample, Spearman’s
rank correlation coefficient was calculated. The results (Figure 11) indicate a much higher
negative correlation between rainfall anomaly and NMDI than CDI. The 95% confidence
intervals of Spearman’s rank correlation coefficient were [−0.4491, −0.1992] for NMDI and
[−0.1731, 0.0792] for CDI, with mean values of −0.3256 for NMDI and −0.0477 for CDI.
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A similar analysis was performed for rainfall anomalies calculated for 30 and 60 days
prior to each dataset’s acquisition (Supplementary File S2). In both cases, the results were
similar to those presented above.

4. Discussion

The study of drought has been the subject of extensive research, with a focus on
utilizing remote sensing and drought indices to monitor and understand drought events.
Aghakouchak [65] discussed the progress, challenges and opportunities encountered in
remote sensing of drought, highlighting the limitations of satellite missions and sensors
in providing sufficient data for studying droughts from a climate perspective. This article
also points out that remote sensing has numerous limitations, mainly due to the time
resolution of the data. Blauhut [66] emphasized the wide-ranging transboundary, envi-
ronmental and socio-economic impacts of drought in Europe, particularly on sectors such
as agriculture, energy production, public water supply and water quality. Furthermore,
Stagge [67] observed an increasing divergence in the observed drought indices across
Europe, with Southern Europe experiencing increasing drought frequencies and Northern
Europe experiencing decreasing frequencies. Nyayapathi [68] emphasized the robustness
and effectiveness of remote sensing-based studies in monitoring and mapping droughts
compared to conventional ground survey methods, indicating the potential of remote
sensing in drought assessment. The observation of this article is a confirmation that remote
sensing is an important source of knowledge regarding drought due to the ability to observe
large areas without the need to perform in situ measurements. These studies collectively
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demonstrate the significance of remote sensing and drought indices in understanding the
complex and diverse patterns of drought across Europe.

All the data employed in this manuscript possess unique characteristics, rendering
their comparative analysis challenging; nonetheless, employing multi-index analyses may
yield more insightful information. For the calculated NMDI index, which is based on
optical data, the challenge lies in selecting imagery to minimize the impact of clouds.
Clouds significantly influence the results of analysis, and their masking is a crucial element
of data processing [69]. In this research, the criteria for selecting images with minimal
cloud coverage resulted in delineation of only four overlapping periods for each year.
However, it is important to acknowledge that the criteria employed were exceedingly
stringent. By lowering the threshold, the quantity of satellite imagery available could
markedly rise; however, this would entail excluding a more substantial portion of the area,
thereby diminishing the representativeness of the findings.

In Ref. [70], Sentinel-2’s superior spatial, spectral and temporal resolution is high-
lighted as a pivotal asset in drought assessment, offering enhanced capabilities over contem-
poraneous platforms, such as Landsat-8. The distinct advantage of Sentinel-2 is attributed
to its red-edge band, which provides high precision in detecting vegetation responses
to drought, surpassing conventional indices, such as NDVI. Furthermore, the potential
application of advanced machine-learning and deep-learning algorithms in conjunction
with Sentinel-2 data could further enhance the accuracy of classifying surface water, wet-
lands, vegetation and general land cover, thereby strengthening the capabilities of drought
monitoring and management through the use of NMDI. This aligns with and expands upon
the findings of our study, underscoring the integral role of Sentinel-2 in comprehensive
drought analysis.

The amount of data used in this article for each year may be insufficient, which could
possibly lead to omission of some variability in the studied phenomena. In the case of CDI,
new data appear three times a month, potentially providing a better picture of the changes
occurring in the environment. However, a spatial resolution of 5 km does not allow for a
detailed analysis of these phenomena. Furthermore, some of the source datasets on which
CDI is based have an even lower spatial resolution. The precipitation data used have a pixel
size of 0.25 degrees [25]. High-resolution images are a valuable source of information, but
usually, either high spatial or temporal resolution is available, never both [71]. NMDI, due
to its superior spatial resolution, possesses a notable advantage. The distinct differences
between NMDI and CDI carry critical implications for practical applications in drought
management. NMDI’s fine spatial resolution (20 m) allows for detailed, localized drought
analysis, enabling precise management interventions in small, critically impacted areas.
Meanwhile, CDI, with a spatial resolution of about 5 km, offers a broad overview, beneficial
for larger scale drought planning and management, albeit potentially missing localized
anomalies. Ref. [72] provides empirical support for the findings presented in this research,
particularly in the context of using optical data for drought monitoring—in this case, in
agricultural settings. It underscores the methodological strengths and practical implications
of NMDI, validating the current research’s approach in leveraging this index for detailed
and accurate assessment of drought impacts. As an example, for limited use of low
spatial resolution imagery, soil moisture products based on microwaves currently lack
sufficient spatial resolution to be useful for applications in irrigation management or flood
predictions [73]. West et al. highlight spatial resolution as one of the factors identified for
future development of drought assessment [22].

CDI also utilizes historical data, so the information obtained refers to a wider time
range. On the other hand, it treats each pixel separately, making it impossible to infer from
it that drought is at a higher level in one area than in another because these values are
always referenced individually to the historical conditions prevailing there. In contrast,
NMDI allows us to draw such conclusions, since the methodology focuses on data from a
specific time, making it universal and absolute.
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In examining the comparisons of the indices, stark contrasts were identified, notably
in the spatial distribution of regions with higher index values, which indicate potential
drought occurrences (Supplementary File S1), and in the overall area defined as potentially
drought-prone (expressed as a percentage of pixels; Figure 5).

NMDI, which utilizes multi-spectral imagery, facilitates the measurement of land
surface absorption levels across various electromagnetic wave ranges, thereby enabling
the assessment of factors such as vegetation chlorophyll content and water absorption,
contingent upon the spectral band. Conversely, CDI employs a distinct dataset comprising
the standardized precipitation index (SPI), soil moisture anomaly (SMA) and fraction of
absorbed photosynthetically active radiation anomaly (FAPARA).

A pivotal distinction exists in the reference periods employed by the indices. NMDI
does not utilize reference data, with its values being absolute and its maximum analysis
period spanning from 2015 to 2023, employing Sentinel-2 datasets. In contrast, CDI draws
upon three relative information sources, using reference periods to pinpoint anomalies.
SPI employs a reference period 1981–2010; SMA uses a reference period 1996–2018; and
FAPARA utilizes a reference period 2001–2018 [74]. This endows the indices with markedly
different perspectives in delineating drought-affected areas. While NMDI permits the
observation of changes solely within the analyzed period, CDI yields results, which portray
deviations in the current conditions relative to the reference periods. If the chosen reference
periods are inappropriately wide or encompass anomalous periods, the resultant data may
neglect significant environmental changes.

Furthermore, the choice of data inputs and reference periods varies significantly be-
tween the two. NMDI provides an absolute, real-time snapshot of the current conditions,
imperative for immediate response scenarios. Contrastingly, CDI utilizes historical refer-
ence periods, offering a normalized perspective, which aids in understanding the current
drought conditions relative to historical norms.

5. Conclusions

The meticulous comparison between the normalized multi-band drought index (NMDI)
and the combined drought indicator (CDI) performed within this study unveiled significant
insights into the drought dynamics of the Małopolska region. The findings illuminate the
distinct advantages and synergies of utilizing both indices for a more nuanced under-
standing of drought severity. The research demonstrated a robust correlation between
satellite-derived indices and in situ observations, underscoring the potential of an inte-
grated approach in enhancing drought detection and monitoring capabilities. Notably,
the study revealed that the indices depict different dynamics of drought levels, as well
as the location of regions more prone to its occurrence. The convergence of these indices
in reflecting true drought conditions suggests a compelling avenue for improving the
precision of drought assessments. As a result, the study advocates for the integration of
NMDI and CDI into existing drought management frameworks to support more informed
decision making. Future research is encouraged to focus on refining these indices and
exploring their application in other regions, aiming to bolster global drought resilience
through advanced remote sensing technologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16050836/s1, Supplementary File S1: The full set of CDI and
NMDI comparison maps for 22 different dates, which were analyzed in this study. Supplementary
File S2: A comparison of NMDI and CDI with rainfall anomaly computed based on cumulative
rainfall from 30, 60 and 90 days prior to each dataset acquisition.
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