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Abstract: Ocean sound speed is important for underwater acoustic applications, such as communi-
cations, navigation and localization, where the assumption of uniformly distributed sound speed
profiles (SSPs) is generally used and greatly degrades the performance of underwater acoustic sys-
tems. The acquisition of SSPs is necessary for the corrections of the sound ray propagation paths.
However, the inversion of SSPs is challenging due to the intricate relations of interrelated physical
ocean elements and suffers from the high costs of calculations and hardware deployments. This
paper proposes a novel sound speed inversion method based on multi-source ocean remote sensing
observations and machine learning, which adapts to large-scale sea regions. Firstly, the datasets
of SSPs are generated utilizing the Argo thermohaline profiles and the empirical formulas of the
sound speed. Then, the SSPs are analyzed utilizing the empirical orthogonal functions (EOFs) to
reduce the dimensions of the feature space as well as the computational load. Considering the
nonlinear regression relations of SSPs and the observed datasets, a general framework for sound
speed inversion is formulated, which combines the designed machine learning models with the
reduced-dimensional feature representations, multi-source ocean remote sensing observations and
water temperature data. After being well trained, the proposed machine learning models realize
the accurate inversion of the targeted ocean region by inputting the real-time ocean environmental
data. The experiments verify the advantages of the proposed method in terms of the accuracy and
effectiveness compared with conventional methods.

Keywords: sound speed inversion; multiple sources; ocean remote sensing; EOF; machine learning

1. Introduction

Sound signals are an important medium for mild-long-range underwater signal prop-
agation. Sound speed is a key quantity for underwater communications, underwater
navigation and localizations [1,2]. Due to the inhomogeneous water body, the paths of
sound rays are bent and the estimated sound speed varies depending on the interrelated
and temporal–spatial-varying water parameters, such as the temperature, salinity and
depth. To incorporate the sound speed into the system, the assumptions of fixed sound
speed (about 1500 m/s) or measured sound speed profiles (SSPs) are generally considered
in underwater acoustic applications. An erroneous sound speed directly causes the mea-
sured sound rays to deviate, which greatly degrades the performance of the underwater
acoustic system. To measure SSPs requires deploying complicated sensors at a high cost.
Furthermore, the temporal–spatial variations in underwater conditions easily make the
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measured SSP outdated. To avoid these errors from mismatches between the measured
sound speed with the real one, the inversion of SSPs has attracted the researchers’ attention
and become one necessary approach to improve the performance of underwater signal
processing [3–5].

The inversion of the sound speed field utilizing measurements is intuitive, which re-
quires deploying instruments such as the sound velocity profilers or thermohaline profilers
to obtain direct sound speed quantities or indirect sound speed-related parameters [6].
These methods cannot cover large-range ocean regions, and their performance is limited
due to being time-consuming and the high cost. From this background information, the
indirect inversion methods of sound speed are developed. The earliest technique for the
indirect inversion of the sound speed is ocean acoustic tomography (OAT), which was
firstly proposed by Munk [7] and used to monitor the ocean mesoscale fluctuations through
the measured sound propagation time. Although OAT-based technology can obtain more
accurate results than measurement methods, the OAT-based inversion is the optimization
with the designed cost function and requires a large amount of calculations of sound
speed models. The aforementioned inversion methods are difficult to apply on the current
underwater acoustic systems with the requirements of fast speed and low cost.

The relations of various physical ocean parameters, such as water temperature and
water salinity, have continued to be explored, and the research on the ocean temperature
and salinity fields promotes the development of SSP inversions. Many works have proved
the correlations among various SSP-related parameters [8,9], so it is meaningful to ex-
plore the nonlinear mapping relations between sound speed and other ocean parameters.
The artificial intelligence (AI) technologies such as machine learning (ML) are powerful
solvers to mine the inner relations of marine data and explore the unknown mapping
relations. Jain et al. [10] proposed an estimation method of the sound speed from surface
observations using an artificial neural network method, which considered the surface heat
flux, net radiation, sea surface wind stress, dynamic height (DH) and vertical profiles of
the temperature and salinity and utilized the multilayer perceptron (MLP) model with
two hidden layers. The paper [11] proposed a convolutional long short-term memory
(LSTM) network for SSP inversion, which considered the Argo-based SSPs. Due to the
rapid accumulation of marine data, a large number of highly valuable ocean observation
data provide sufficient training datasets. For the real-time data processing, it is necessary to
characterize and represent the available ocean sound speed data. Considering the temporal–
spatial correlations, the reduced-dimensional representations realize the parameterized
descriptions of the sound speed field with a few basis functions. The empirical orthogonal
function (EOF)-based construction method for the sound speed field greatly reduces the
number of required parameters [12]. The papers [13,14] proposed single empirical orthogo-
nal function regression (sEOF-r)-based construction methods for the ocean sound speed
field. A multilayer perceptron neural network was proposed to learn the SSPs’ functional
transformation and output the desired EOF coefficients for inversion [15]. In 2017, Bianco
induced the dictionary learning into the representation of the sound speed field, which
greatly improved the construction accuracy with sparse features [16]. Yan utilized dictio-
nary learning for the sparse encoding and compressing storage of SSPs [17]. The paper [4]
proposed a learned dictionary-based supervised framework for SSP classifications. The
paper [5] proposed an interpretable deep-K singular-value decomposition model to analyze
the SSP data with uncertainties.

Due to the development of an integrated air–sea network, satellite remote sensing
provides more available data for the rapid acquisition of the sound speed in the large-scale
ocean area. Depending on the satellite, remote sensing observations have potential for
the achievement of near-real-time and accurate SSP inversion. Based on the Argo data
and the sea surface datasets, the paper [18] considered the eddy kinetic energy in the
sEOF-r inversion framework, which proved the concept of global SSP inversion. The
paper [19] incorporated XGBoost into the field of sound speed inversion, which further
improved the estimation accuracy of SSPs by utilizing satellite remote sensing data. As
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with the aforementioned investigations, ML-based SSP inversion methods are developing
and achieve good results in many aspects, such as feature representations, ML model
establishment and SSP-related datasets generation. However, the exploration of available
data has developed immaturely, where the sea surface remote sensing data are limited
for SSP inversion with different depths. There is a lack of a general framework for the
SSP inversion by considering the remote sensing data and other ocean observation data.
There is also lack of the physical interpretation of the relations between the sea surface
parameters and the sound speed field disturbances.

To fill this gap and aim to the accurate, fast, low-cost sound speed inversion over
large-scale sea regions, this paper proposes an inversion method for the ocean sound
speed field based on multi-source ocean remote sensing observations and the designed ML
models. The major contributions of this paper are as follows.

(1) Multi-source remote sensing datasets are utilized, which include the global ocean Argo
datasets to generate SSPs and ocean sea surface remote sensing datasets to provide
information, such as sea level anomalies (SLA) and the sea surface temperature (SST),
shallow-water temperature data and localization information. The utilization of
multi-source remote sensing datasets explores the feasibility of SSP inversion over
a large-scale ocean area, and the utilization of water temperature observations in
different depths further improves the accuracy of SSP inversion in the local sea region.

(2) The EOF-based characterization is exploited to reduce the dimensions of Argo-based
SSPs. The sound speed reconstruction performances with different-order EOFs are
compared and analyzed. Combining with the dynamic ocean phenomena, the EOF
and PC parameters are analyzed to explore their physical meaning. Then, the first five
orders of coefficients are chosen as model labels to achieve the tradeoff of inversion
accuracy and computational load.

(3) Combining the reduced-dimensional characterization of the sound speed field and
multi-source remote sensing datasets, this paper provides a novel and general frame-
work for SSP inversion, where a single ML model or combined ML models are ex-
ploited considering different inversion performances for each order of EOF. Experi-
ments are executed to verify the advantages of the proposed method in term of the
accuracy and robustness for SSP inversion, especially for shallow-water cases, due to
the consideration of the temperature at different water depths.

2. Materials and Method

In this section, we introduce the involved datasets, the EOF representations of the SSP
datasets and the ML models. On the basis of the datasets analysis and typical models for
the nonlinear estimation for ocean parameters, a general SSP inversion method is proposed.

2.1. Datasets

The datasets involved in this paper are the Global Argo Ocean Observation dataset and
the satellite remote sensing-based National Oceanic and Atmospheric Administration (NOAA)
and Copernicus Marine Environment Monitoring Service (CMEMS) datasets, which are shown
in Figure 1. Argo is a global ocean project initiated by scientists from the United States, Japan
and other countries in the late 1990s [20]. In Figure 1, the first subfigure shows the distribution
of active buoys in the Argo observation network as of 8 February 2023. The red circle dots
represent Chinese Argo program buoys. This paper uses the Argo Grid Dataset provided by
the Argo Live Data Center (http://www.argo.org.cn/ (accessed on 8 February 2023)). The
NOAA dataset is provided by the National Oceanic and Atmospheric Administration
and is designed to address the risk of climate disasters. The SST data are from NOAA’s
1/4° Optimum Daily SST (OISST) database, primarily from the observations of the Ad-
vanced Very High Resolution Radiometer (AVHRR) satellite, which has covered a large-
scale temperature field since 1981. Copernicus is the European Union’s Earth observation
project, which uses observational data from space satellites and in situ measurements for
the purpose of making free, open, near-real-time ocean datasets available worldwide. The

http://www.argo.org.cn/
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data in Figure 1c,d include the data of the SLA and SST, which are obtained from the
Copernicus C3S (Copernicus Climate Change Service) series of database products.

(a) (b)

(c) (d)

Figure 1. Grid dataset source examples. (a) Global Argo real-time Ocean Observation Network [21];
(b) NOAA OISST dataset [22]; (c) CMEMS SLA dataset [23]; and (d) CMEMS SST dataset [24].

2.2. EOF Analysis of SSP

The key to the utilization of satellite remote sensing data is to build the regression
relationship between the ocean sound speed field and remote sensing parameters. Benefit-
ing from the advantages of an EOF analysis in data compression, SSPs are parameterized
with reduced dimensions. An EOF analysis generates the Principal Components (PCs)
parameter, which reflects the change weight of EOFs in the time dimension. Then, the
regression relationship between the SSP and remote sensing parameters is transformed into
the regression relation between multi-order PCs and remote sensing parameters. When
it comes to analyzing the EOFs of the SSPs, we can obtain the multi-order EOFs and PCs.
Then, we use the remote sensing dataset to fit the relation between the first k orders of PCs
and sea surface parameters according to

αk = α0k + α1kSST + α2kSLA + α3kSST × SLA (1)

where αk is the corresponding PC for the kth-order EOFs. α0k, α1k, α2k and α3k are the regres-
sion coefficients, which can be obtained using the least squares method. With Equation (1),
the regression coefficients are achieved. When we input real-time remote sensing sur-
face parameters, the PCs can be calculated. Combined with the known EOFs, the SSPs
are recovered.

2.3. Machine Learning Models

The machine learning models in this paper include multiple linear regression (MLR),
support vector regression (SVM), MLP and XGBoost. These four models are widely applied
to the parameter estimation of ocean environments. We give a brief introduction for
these models.

MLR analyzes the approximate linear relationship between a single independent
variable and multiple dependent variables based on statistical theory [25]. Given a group of



Remote Sens. 2024, 16, 814 5 of 18

observations {Y, x1, x2, · · · , xk}, Y is the fitting value, {xi}k
i=1 are independent explanatory

variables, and then the model of MLR is given by

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (2)

where βi, i = 1, 2, · · · , k is the regression coefficient, β0 is the constant term and ε is the
error term.

SVR is a branch of SVM for a regression problem [26]. The training process of SVR is
transformed as an optimization problem (3) given datasets {(x1, y1), (x2, y2), · · · , (xn, yn)},

min 1
2∥w∥2 + C

n
∑

i=1

(
ξon

i + ξdown
i

)
s.t.


yi − ⟨w, Φ(x)⟩ − b ≤ ε + ξon

i
−yi + ⟨w, Φ(x)⟩+ b ≤ ε + ξdown

i
ξon

i , ξdown
i ≥ 0(i = 1, 2, · · · , n)

(3)

where Φ(x) is the nonlinear mapping function, w is the weight vector, b is the compensation
term and ε is the tolerance deviation of the interval band. C is the error penalty factor,
which controls the tradeoff between the estimated function and the tolerant deviation
amount of ε. ξon

i and ξdown
i are introduced as the slack variables to cope with the otherwise

infeasible constraints of the convex optimization problem.
XGBoost is an addition model that integrates multiple lift trees [27]. Assume there

are K decision trees, the tree model for the tth iteration training is ft(x), and the predicted
value ŷ(t)i is given by

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (4)

where xi is the ith sample input. The objective function is given by

Obj( ft) =
n

∑
i=1

L
(

yi, ŷ(t)i

)
+ Ω( ft) (5)

where the loss function is L = 1
2 (yi − ŷi)

2 and the regulation term is Ω( ft) = γT +

1
2 λ

T
∑

j=1
w2

j . n is the sample number, γ and λ are the regulation coefficients and T is the

number of samples of multi-leaf nodes in the decision tree.
MLP is a fully connected feedforward neural network, which is composed of the input

layer, hidden layer and output layer [28]. The MLP model is given by

y = f

(
n

∑
i=1

wixi

)
, i = 1, 2, · · · , n (6)

where y is the output of the network, f is the activation function, xi and wi are the input of
the ith neuron and weight and n is the number of neurons.

2.4. Proposed Inversion Method of SSPs

This subsection proposes an inversion method of the sound speed based on multi-
source ocean remote sensing observations, which combines the datasets and machine
learning models with the reduced-dimensional characterization of the SSP.

The inversion results use remote sensing data depending on the correlation between
the parameters of sea surface and the sound speed field. In the interior of the ocean,
ocean dynamic activities lead to different disturbances in the sound speed field. Random
disturbance information is not fully covered in sea surface parameters, so the inversion
performance will be worse. It is limited for the sound speed of the whole sea depth
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only using remote sensing data of the sea surface. It is necessary to reasonably expand
datasets of the sound speed field. Therefore, we add a very small amount of shallow-water
temperature data to reduce the estimation error of the sound speed in shallow sea; on
the other hand, according to the characteristics of the spatial variation in the ocean sound
speed, this paper adds the longitude and latitude of the marked sea area as the position
information to optimize the SSP inversion results.

The framework of the inversion method is shown in Figure 2. The whole diagram
includes three steps: preprocessing of the grid data, training of the machine learning model
and the real-time inversion of the SSP.

• Data preprocessing: In the part of data preprocessing, different types of remote
sensing data are required to be space-time matched. Through converting the daily
average data to the monthly average data, we can keep the datasets consistent in time
resolution. For the spatial resolution, two-dimensional interpolation is used to arrive
at the consistency of the latitude and longitude.

• Model training: We combine the Argo thermohaline profiles and empirical formulas
for the sound speed to generate a large number of SSP samples as training datasets.
Through an EOF analysis for these SSP samples, the PCs are treated as the training
labels for the model training. In the training part of machine learning, eight kinds of
ocean environmental parameters are concatenated as input vectors, i.e., the SST, SLA,
water velocity of the sea surface turning to the east (ugos), water velocity of the sea
surface turning to the north (vgo), water temperature of 100 m and 200 m beneath the
surface in shallow water (T100 and T200) and the longitude and latitude of the target
sea regions. The above parameters and labels are input into different machine learning
models to train, and then the inversion model of the SSP is established by tuning the
optimal hyperparameters.

• SSP inversion: After the off-line training, the model is on-line deployed. Only a small
number of sea surface data and temperature data are required for the SSP inversions, which
has the advantages of fast estimation, low-cost deployment and large-scale applications.

SST SLA ugos vgos longitude

latitude

Remote sensing datasets

Temporal-spatial 

matching

Training input

Machine 

learning model

Argo data

SSP

calculation

EOF 

analysis

Water temperature 

in shallow water 

Localization 

information

Training 

labels

SST SLA ugos latitude

Testing input

Testing output
SSP

Preprocessing step

Learning step

Data 

processing

Original

data

Training 

data

Inversion step

100T 200T

1PC 2PC 5PC

1PC

2PC

5PC

SST SLA ugos latitude

Figure 2. Proposed method for SSP inversions.
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3. Numerical Simulation

This section uses measured data to verify the superiority of the proposed method in
SSP inversion. The experimental results present the processed datasets, the time-varying
characteristics of the sound speed field based on PCs and the SSP inversion results.

3.1. Experimental Datasets

The target ocean region is the central region of the China south sea with the longitude
range 116◦E∼119◦E and latitude range 17◦N∼19◦N. The sea region is subject to a monsoon
climate and the influence of the Kuroshio invasion, and the activities such as the mesoscale
vortex, front and turbulence are frequent. It causes random fluctuations in the temperature
and salty field in the ocean, and the uncertainty of various environmental factors intensifies
the difficulties for the inversion of the sound speed field.

The spatial resolution of the Argo datasets adopted in this paper is 1◦ × 1◦. The
six grid points of Argo are considered as shown in Figure 3. The monthly average Argo
thermohaline profiles from 2004 to 2016 are taken as the original data. We utilize the Leroy
empirical formula to generate SSP datasets, in which 936 SSP samples are taken as the
training datasets and 72 SSP samples in 2017 are treated as the testing datasets. The reason
for choosing Leroy’s empirical formula is that the sea water temperature in the South China
Sea in the summer may exceed 30 ◦C, while Leroy’s empirical formula is applicable to the
sea water temperature range of −2∼34 ◦C. This paper uses sea surface remote sensing
parameters including the SST, SLA and SSV, which are listed in Table 1.

17.5° N

18.5° N

116.5° E 117.5° E 118.5° E

17° N

19° N

116° E 119° E

1

2

3

4

5

6

SST

SLA

ugos

vgos

Figure 3. Six grid points in target sea area. The longitude and latitude of the six grid points
are (116.5◦E, 17.5◦N), (116.5◦E, 18.5◦N), (117.5◦E, 17.5◦N), (117.5◦E, 18.5◦N), (118.5◦E, 17.5◦N)
and (118.5◦E, 18.5◦N).

Table 1. Parameters of datasets.

Parameters Datasets Time Resolution Space Resolution

Thermohaline Argo Monthly average 1◦ × 1◦

SST NOAA Daily average 0.25◦ × 0.25◦

SLA and SSV CMEMS Daily average 0.25◦ × 0.25◦

3.1.1. Data Matching and Correlation Analysis

According to Table 1, the temporal–spatial resolution of the remote sensing data is
higher than the Argo data, so then it is necessary to perform spatial–temporal matching to
ensure a consistent resolution across the different datasets. To unify the time resolutions,
we take the monthly average of the daily averages in the sea surface remote sensing data,
and finally, all the kinds of the remote sensing parameters have 1008 monthly average data
samples. The unification of the spatial resolutions requires a two-dimensional interpolation
as shown in Figure 4, which is operated using the interpolation function.
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Figure 4. Spatial matching of the six grids.

3.1.2. Correlation Analysis

The correlation between the sea surface remote sensing parameters and shallow-water
temperature is analyzed as a prerequisite for the accurate inversion of the sound speed.
The Spearman correlation coefficient measures the degree of dependence between variables
based on monotonicity, which is in the range [−1, 1]. When the coefficient is positive, it
indicates a positive correlation. The more closer to 1 of the absolute value, the stronger the
correlation is. The Spearman coefficient ρs is given by

ρs = 1 −
6

N
∑

i=1
d2

N3 − N
(7)

where d = rx − ry, and rx and ry are the rank of X and Y. N is the sample number.
Figure 5 shows the Spearman coefficients between the SLA, SST and water temper-

ature with water depths of 50 m, 100 m, 150 m, 200 m and 300 m. As shown in Figure 5,
the SST and SLA are correlated with water temperatures of different depths. The corre-
lation coefficient reaches above 0.6, which verifies the feasibility of using remote sensing
parameters of the sea surface to invert the sound speed field.

Figure 5. Spearman coefficients of shallow-water temperature and remote sensing sea surface parameters.
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3.2. Analysis of SSP Datasets

Figure 6 shows 168 monthly average SSP samples corresponding to grid point 1 from
2004 to 2017. The blue part represents 156 SSPs in the training set, and the red part
represents 12 SSPs in the testing set.

D
e
p
th

 (
m

)

Sound speed (m/s)

Training datasets

Testing datasets

Figure 6. SSP samples of the first grid point.

After the data processing, we analyze the EOF coefficients of the datasets to decide the
model output labels. We define the cumulative variance contribution rate (CR) of the first
k orders of EOFs as

CR =

k
∑

i=1
λi

M
∑

j=1
λj

(8)

where λi is the eigenvalue of the ith-order EOF.
Figure 7 and Table 2 present the reconstruction performance of the sound speed field

with different-order EOFs. In Figure 7a, the variance CR decreases as the order of the EOF
increases. The first-order EOF contributes the most variance CR, which arrives at 67.91%.
The sixth-order EOF contributes less than 1%. The result shows that the main features of the
sound speed field exist in the first five orders of EOFs. Figure 7b reflects the construction
errors at different depths with different EOF orders. On the whole, the reconstruction error
decreases as the depth increases. When the depth is greater than 1200 m, the sound speed
error is less than 0.2 m/s and tends to be flat. When the depth is less than 100 m, the error of
the sound speed increases significantly and the motion is obvious, especially in the vicinity
of 50 m, and the reconstruction error using the first three orders of EOFs is greater than
1 m/s. With the order increasing, the error of the sound speed at each depth decreases,
especially the reconstruction accuracy of the sound speed field within 1000 m, which is
significantly improved. In Table 2, the construction error is 0.33 m/s when choosing the
first five orders of EOFs, and the first five orders of the EOFs are enough to reconstruct the
acoustic speed field as the prior information considers the tradeoff between the accuracy
and the computational load. The first five orders of the EOFs and PCs can be estimated to
reconstruct the sound speed field in the target sea area.

Figure 8 shows the first five orders of EOFs for the reconstruction of the sound speed
field. In the figure, the jitters of the EOF are concentrated in water layers with less than
500 m depth. When the depth is greater than 1000 m, the amplitude of each order of EOF
tends to 0. The phenomenon proves that the disturbance of the upper ocean speed field
is relatively active. The EOF reflects the characteristics of the spatial distribution for the
sound speed.
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Figure 7. Performance comparison of reconstructed SSP with different EOF orders. (a) Cumulative
variance contribution rate; and (b) error of reconstructed SSP.

Table 2. Performance of reconstructed SSP with different EOF orders.

EOF Order VAR CR Cumulative VAR CR Error (m/s)

1 67.91% 67.91% 1.13

2 17.21% 85.12% 0.77

3 7.49% 92.61% 0.54

4 3.19% 95.80% 0.41

5 1.45% 97.25% 0.33

6 0.82% 98.07% 0.28

D
ep

th
 (

m
)

EOF1 EOF2 EOF3 EOF4 EOF5

Figure 8. The first 5 orders of EOFs.

Figure 9 shows the first five orders of PCs corresponding to the first five orders of EOFs.
In Figure 9a, the fluctuation range of the first order is obviously larger than the last four
orders, and the fluctuation trend is relatively regular. The amplitude gradually increases
from May to August every year and decreases from January to February in the next year.
The maximum value is mostly concentrated in August and September, and the minimum
value mainly appears in February and March. The above change law corresponds to the
annual cycle characteristics of the sound speed field changing with the seasons. From this
analysis, it can be seen that the first-order PC essentially reflects the annual cycle change
rule of the sound speed field, and the sea water temperature at this time is the dominant
factor for sound speed variation.

The amplitude variation law of the second-order PC is similar to that of the first-order
PC, which also has annual cycle characteristics. However, there are outliers at some points
as shown in Figure 9b, which are noted by circle. It can be seen that outliers appear at
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the time points concentrated in the summer and autumn seasons, and the corresponding
amplitude changes are exactly opposite to the first-order PC. Because the second order
of the ocean vertical profile is usually associated with the thermocline [29], the outliers
of the second-order PC may be related to the abrupt changes in the salinity in the upper
ocean layer.

Different from the change law of the first two orders of PCs, the last three orders of PCs
jitter more frequently and there is no obvious annual cycle characteristics, whose amplitude
range is reduced relative to the first two orders of PCs. It is because higher-order PCs
tend to contain subtle disturbance information of sound speed fields and are particularly
sensitive to the heat exchange in the ocean [30]. Figure 9c shows three consecutive outliers
in the third-order PC, which correspond to the time of September 2006 to December 2006.
According to the “Typhoon query” service of the China Meteorological Administration, Ty-
phoon 619 Cimaron passed the sea area near grid point 1 (17◦N∼17.7◦N, 116.3◦E∼116.8◦E)
from 31 October to 3 November 2006 as shown in Figure 9d. Its maximum wind reached
10 levels. From this analysis, it can be seen that the outliers of the third-order PC are
most likely related to severe weather, such as typhoons, which causes intense mixing of
the upper ocean and dramatic changes in the water temperature and salinity, resulting in
disturbances of the ocean sound speed field.

Through analyzing the physical meanings of the first five orders of PCs, it can be seen
that the first two orders of PCs reflect the seasonal variation in the speed field. Some of the
outliers of the second PC may be associated with the upper ocean salinity field. The last
three orders of PCs mainly reflect the subtle disturbance phenomena of the ocean sound
speed field from dynamic activities such as the front and turbulence, which increases the
difficulty of retrieving the sound speed field.
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Figure 9. The first 5 orders of PCs and analysis. (a) the first 5 orders of PCs; (b) the 2nd–order PC;
(c) the 3rd–order PC; and (d) the track of Typhoon Cimaron [31].

3.3. Result Analysis of SSP Inversion

The ML models include SVR, MLP, MLR and XGboost. The SVR model uses the Gaus-
sian kernel function. γ = 1 and the penalty factor is 10. XGBoost leverages 20 categorical
regression trees for learning, the learning rate is 0.1, the maximum depth of the tree is
6 and the minimum leaf node weight is set to 1. MLP uses two hidden layers, and each
layer has 50 neurons. The activation function is selected as the LeakyRelu function, and the
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stochastic gradient descent algorithm is adopted. The initial learning rate is set to 0.015
and the loss function is the mean square error. The accuracy of the SSP inversion depends
on the PCs. From Figures 10–14, the recovery performance of the dominant first five orders
of PCs are compared with different ML models.

Figure 10 shows the estimation results of the first-order PC. It can be seen that all
four models can learn the changes in the first-order PC, among which sEOF-r has the
worst estimation performance, and it is difficult to fit the peak and jitter details of the
first-order PC. SVR can learn some jitters between peaks, but its fitting results are still
not enough. XGBoost and MLP have better ability in learning the peak values and the
fluctuation details of the first-stage PCs, where MLP has the best fitting effect. The results
prove that the nonlinear ML models have better regression results than conventional linear
models. Because the first-order PC has the major information for the sound speed, the
accurate estimation lays good foundations for the SSR inversion.
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Figure 10. Estimation of the first–order PC with conventional method and different ML models.
(a) sEOF-r; (b) SVR; (c) XGBoost; and (d) MLP.

Figure 11 shows the estimation performance of the second-order PC. It can be seen
that all the methods do not fit the details of the changes. Compared with sEOF-r, the ML
models can partially learn the jitter trends. MLP has relative better performance among the
compared methods. Compared with the results of the first-order PC, the worse performance
is because the second-order PC not only reflects the annual cycle characteristics of the sound
speed field but also is affected by other marine environmental factors, such as the abrupt
change in the ocean upper salinity field.

Figures 12–14 show the estimation results of the last three orders of PCs. It is worth
noting that the cumulative VAR CR is only 12.13%, which is far less than the first two orders
of PCs, which means the effects of the last three orders of the PC estimation accuracies on the
reconstruction of the sound speed are much smaller than that of the first two orders of PCs.

As a whole, the estimation results of the last three orders of PCs are significantly worse
than that of the first two orders of PCs, especially MLP, which has results close to 0. SVR
can estimate more peak fluctuations. In Figure 12c, XGBoost produces a large amplitude
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outlier when estimating third-order PCs, and the stability of the estimate is poor. As in
the analysis of high-order PCs, the high-order PCs often reflect the random disturbance
of the sound speed field, which contains complicated and changeable information that
is hard to estimate. The MLP mode is not good at learning the subtle fluctuations of a
higher-order PC in the sound speed field, which has advantages in grasping the circulation
law of the climate state in the sound speed field. In addition, with SVR it is difficult to
estimate the annual cyclic peak of the sound speed field; however, it can estimate the partial
jitter tendency of a higher-order PC for random perturbations in the sound speed field,
which has a stronger ability to learn the random disturbance of the sound speed field.
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Figure 11. Estimation of the second–order PC with conventional method and different ML models.
(a) sEOF-r; (b) SVR; (c) XGBoost; and (d) MLP.
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Figure 12. Estimation of the third–order PC with conventional method and different ML models.
(a) sEOF-r; (b) SVR; (c) XGBoost; and (d) MLP.
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Figure 13. Estimation of the fourth–order PC with conventional method and different ML models.
(a) sEOF-r; (b) SVR; (c) XGBoost; and (d) MLP.
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Figure 14. Estimation of the fifth–order PC with conventional method and different ML models.
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Based on the performances of ML models in learning the sound speed field, this paper
integrates the results of MLP and SVR. The main step to build the novel model is to use the
first two orders of PCs from the MLP estimation and the last three orders of PCs from the
SVR estimation to form a new set of the first five orders of PCs and reconstruct the SSPs,
which is shown in Figure 15.
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Figure 15. Designed “MLP + SVR” model.

To measure the inversion performance, the root mean square error (RMSE) is given by

RMSE =

√√√√√ N
∑

j=1

M
∑

i=1

[
ct
(
zi, tj

)
− cr

(
zi, tj

)]2
N × M

(9)

where ct
(
zi, tj

)
and cr

(
zi, tj

)
denote the real and the reconstructed SSP at time instant tj

and the depth zi. N is the sample number and M is the layer number of the depth.
Table 3 shows the RMSE comparisons of the different methods. It can be seen that

the MLP-based inversion method has the best estimation performance. The estimation
performance of the MLP combined with SVR inversion method is similar to that of the
MLP inversion method.

Table 3. RMSE comparison of SSP inversion with different models.

ML Models MLR MLP MLP + SVR XGBoost SVR

RMSE (m/s) 1.63 1.08 1.09 1.16 1.53

Figure 16 compares the inversion errors between the best two proposed methods,
i.e., MLP and “MLP + SVR”, and the traditional sEOF-r method at different depths. From
Figure 16, it can be seen that the proposed inversion methods have smaller errors than that
of the sEOF-r method at the depth of 30 m to 550 m. The estimated performance of the
three methods are similar at depths greater than 550. For the combination of MLP and SVR,
the inversion error is slightly smaller than that of MLP in the range of 30 m∼130 m, which
decreases by about 0.116 m/s. But after 150 m, the method loses its advantage, especially
the estimation errors, which are slightly higher than the traditional methods when the
depth is greater than 550 m. So, we can choose MLP or the MLP and SVR combined method
to retrieve SSPs when the water depth is within 550 m.

The experiments are executed on the basis of remote sensing parameters, and a very
small amount of shallow sea water temperature data are added, which are from the Argo-
measured thermohaline depth profile dataset. The experiments verify that the method of
the ocean sound speed has significant advantages in accuracy and robustness, with the
characteristics of fast, low cost and large coverage, which provides schemes for the scene
requirement of sound ray correction in the underwater acoustic systems.
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Figure 16. Performance comparison of reconstructed SSP with different depth layers. (a) the sound
speed estimation error in depth range 0∼2000 m; (b) the sound speed estimation error in depth
range 0∼350 m.

4. Conclusions

In this paper, an SSP inversion method based on multi-source ocean remote sensing
observations is proposed. The method formulates a general sound speed field inversion
framework, which is suitable for different ML models or the designed ML models. Besides
the sea surface remote sensing datasets, the proposed method considers the sea surface
temperature and localization information of the targeted region as the input of the ML
models. Combining the convenience of the grid remote sensing dataset with the reduced-
dimensional EOF-based SSPs, the feature representation and feature analysis help to realize
the real-time reconstruction of the local ocean speed field. The proposed method has
the advantages of simple implementation, fast estimation and accurate and good inter-
pretability. The experiments verify that the proposed method can effectively improve the
construction accuracy from 30 m to 500 m. Compared with the traditional sEOF-r method,
the proposed method can estimate the sound speed with an accuracy of 1.51 m/s at the
depth of 50 m∼100 m. For the whole depth SSP, the total root mean square error is reduced
by about 0.55 m/s.

The proposed method explores the ML-based SSP inversion method and the inherent
relations between the feature representations and physical ocean phenomenon. However,
this method is still limited, which requires being further developed. (a) The datasets
involved in this paper, such as the existing remote sensing parameters of the sea surface
and the shallow sea water temperature data, cannot cover the perturbation information of
the sound speed field, so the estimation performance of the models is limited. For dataset
generation, besides the remote sensing datasets and temperature datasets, more reliable
datasets are required to be explored for more accurate SSP inversion. (b) For the design
of network models, DL models can provide robust and powerful learning models for SSP
inversion, especially along with the number of available datasets increasing. In the future,
our focus is on the design of DL-based SSP inversion models and feature representations
for SSP datasets, which considers the spatial–temporal variation in the sound speed in the
target ocean region.
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