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Abstract: The measurement of groundwater exchange between neighboring regions is a critical
topic in water resource management and can usually be achieved through a combination of field
investigations and the use of groundwater flow models. In this study, we employed the water
balance and Darcy’s law methods, utilizing downscaled Gravity Recovery and Climate Experiment
(GRACE) and GRACE-Follow On (GRACE-FO) data to assess groundwater exchange patterns in
the Beijing-Tianjin-Hebei (BTH) region of China. Additionally, we determined the contributions of
human activities and climate factors to the observed variations via residual analysis. The results
revealed a consistent decrease in groundwater storage in the study area since 2008, especially in the
spring and summer months. The groundwater exchange rates calculated by 1◦ and 0.05◦ groundwater
storage anomalies (GWSAs) were basically consistent, and the downscaled GWSAs could better
reflect the small-scale groundwater exchange characteristics. The groundwater exchange rate showed
a decreasing trend from the Piedmont plain to the coastal areas. A notable trend of declining
groundwater exchange between the Taihang Mountains and Piedmont plains was observed, and
the downward trend gradually intensified from north to south between 2003 and 2007. After 2008,
there was an increasing trend, and coastal areas exhibited the smallest amount of groundwater
exchange. Human activities emerged as the predominant factor accounting for more than 90.9% of
the overall reduction in groundwater storage, while climate change imposed a minimal influence on
groundwater storage variations. The insights obtained in this study hold significant implications for
groundwater resource planning and management in the region.

Keywords: groundwater exchange; GRACE; dynamic downscaling; BTH regions; groundwater storage

1. Introduction

Groundwater represents a vital freshwater resource that plays a pivotal role in facili-
tating sustainable human development and preserving ecosystems. However, compared
to other water sources, such as rivers, soil, and lakes, our understanding of groundwater
availability remains limited. Aquifers experience gradual changes and follow extended
replenishment and discharge cycles, constituting a dynamic equilibrium process between
recharge and discharge. When subjected to human activities, both the replenishment and
discharge rates of groundwater are affected, particularly in densely irrigated agricultural
regions [1,2]. When discharge exceeds recharge, a series of ecological and geological
challenges can occur [3,4]. Consequently, analyzing the spatiotemporal fluctuations in
groundwater storage (GWS) within aquifers is necessary for effective water resource plan-
ning and management.

Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) has
emerged as a valuable and precise tool for monitoring significant shifts in terrestrial water
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storage on a large scale [5–7]. It is an invaluable resource when on-site groundwater moni-
toring wells are unavailable or as a complementary component to existing groundwater
monitoring networks. For instance, in Northwest India [6], the U.S. High Plains and Central
Valley in California [8,9], the Colorado River Basin [10], Australia [11,12], and the Middle
East [13]. Especially in North China, numerous studies [14–19] have focused on explain-
ing the depletion of groundwater resources, as well as the effects of the South-to-North
Water Diversion Project on groundwater storage in the North China Plain [20–22]. As the
timeline of GRACE monitoring data increases and data processing capabilities improve,
there is a growing interest in employing statistical downscaling techniques (e.g., multiple
regression [23], artificial neural networks [24], and machine learning [25]) or dynamic
downscaling approaches, such as data assimilation [26] and hydrological models [27], to
assess small-scale regional groundwater storage variations. In North China, Yin et al. [28]
effectively employed statistical downscaling of GRACE-derived groundwater storage
anomalies (GWSA) by incorporating evapotranspiration data in the North China Plain,
yielding satisfactory results. We adopted a dynamic downscaling approach to downscale
GRACE-derived GWSA data at a spatial resolution of 0.05◦ in the Beijing-Tianjin-Hebei
(BTH) region by constructing a groundwater storage model and assessed the changes in
groundwater storage between different regions [29].

Nonetheless, evaluating groundwater storage changes using GRACE data presents
challenges due to the inclusion of total water variations within aquifers, making it difficult
to separate the impacts of boundary fluxes on storage changes. Groundwater level moni-
toring offers more precise in situ data, enabling the estimation of groundwater exchange
using Darcy’s law based on groundwater level contour maps [30]. However, economic con-
straints often result in an insufficient number of groundwater level monitoring wells with
inadequate spatial distributions for reliably representing groundwater exchange [31,32].
Numerical models, which offer considerable flexibility and predictive capabilities, can be
used to characterize the groundwater environment, providing comprehensive and detailed
insights into groundwater flow dynamics [30–33]. However, this approach necessitates
accurate initial and boundary conditions, and imperfect input data could lead to inaccu-
rate results [34,35]. In addition, groundwater exchange can be studied through diverse
techniques, such as tracer tests [36–38], groundwater chemical analysis [39], and water
balance or water cycle methodologies [40–42]. Another limitation of these approaches is
that the total surface area undergoing recharge must be estimated to calculate regional
recharge rates. Yin et al. [43] proposed a method that leverages GRACE data, water balance
calculations, and Darcy’s law to assess groundwater exchange along different boundaries
in the Heihe River Basin in China, producing reliable results. This method is simple and
efficient because GRACE data are readily accessible without limitations related to time
and space. However, the study of Yin et al. [43] exhibits several limitations, including the
coarse resolution of the GRACE products used, as their analysis of groundwater exchange
was based on 1◦ GRACE data, which are less suitable for small-scale applications. Addi-
tionally, they did not account for the data gap between GRACE and GRACE-Follow On
(GRACE-FO) data, and the utilized data time series were relatively short.

The North China region is the world’s largest groundwater depletion zone, resulting
in ecological and environmental challenges such as land subsidence and seawater intru-
sion [44,45]. Several key factors impact groundwater recharge and the discharge flux in
the North China region, including groundwater extraction, precipitation, upstream inflow
from hilly regions, and interregional water transfers [46]. Mountain front lateral flow is a
significant source of recharge, with an impact second only to that of groundwater extraction
in North China, but this process is not well understood or quantified [47,48]. In light of the
complex human activities in this region, it is important to establish quantitative methodolo-
gies for understanding groundwater exchange and investigating groundwater dynamics
across different areas. Therefore, this study begins by obtaining downscaled GRACE data
and then applying the method of Yin et al. [43] for assessing groundwater exchange in the
BTH region, with a focus on the interactions between mountainous regions, plains, coastal
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areas, and different administrative zones. Furthermore, we analyze the factors influencing
groundwater storage exchange and quantitatively assess the contributions of both human
and meteorological factors to groundwater storage changes. The research findings hold
significant implications for the comprehensive management of overexploited groundwater
resources in the BTH region.

2. Materials
2.1. Study Area

The Beijing-Tianjin-Hebei region is situated in the North China Plain and extends
from approximately 36◦01′ to 42◦35′ and from 113◦29′ to 119◦58′, covering a total area
of approximately 218,000 km2 (Figure 1a). This region exhibits a gradual topographic
transition from the northwesterly Yanshan-Taihang Mountains system to the southeastern
plains, revealing distinctive elevation characteristics from high to low. Geographically,
the region can be divided into two main zones: the mountainous area and the BHT plain.
Within the BTH Plain, there are further subdivisions, including the Piedmont plain (PP) and
the east–central plain (ECP). The Beijing Plain is located at the intersection of the Yanshan
and Taihang Mountains (YM and TM, respectively) ranges, as shown in Figure 1a.
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Figure 1. Map of the study area. (a) Location of the study area, monitoring well distribution and
groundwater flow direction. (b) The numbers denote the grid numbers from the upper left to the
lower right in the 1◦ grid. (c) Hydrogeological cross section along the A–A′ line.

In the study area, groundwater is influenced by various factors, including deposition,
topographical features and human activities. In the Piedmont zone, the Quaternary aquifer
comprises alluvial and colluvial deposits characterized by cohesive soil mixed with gravel.
These deposits are often poorly sorted and contain local aquifers. Moving from the Pied-
mont zone to the plain, the aquifer becomes multilayered, with the lithology changing from
cobbles to gravel and ultimately to multilayered sand deposits. In some single-layered
structures, clay layers enclose certain areas, forming lens-shaped bodies. These deposits
can be categorized into four hydrostratigraphic units, as shown in Figure 1c. Deposits units
(I and II) either directly or indirectly receive recharge from precipitation, creating favorable
connections for intense vertical circulation, usually combined into a shallow groundwater
system. In contrast, deposit types III and IV are confined aquifers with poor hydraulic
conditions, resulting in a low hydraulic conductivity zone, usually combined into a deep
groundwater system. Generally, the boundary between shallow and deep groundwater
systems occurs at a burial depth of approximately 120 m, which are mutually independent
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yet interconnected [46]. The aquifers exhibit a gradual decrease in the estimated yield,
decreasing from 3000–5000 m3/d in the Piedmont plains to 100–500 m3/d in the central
and coastal plains.

The BTH region exhibits a semiarid continental monsoon climate and is primarily
drained by the Luan River and Hai River systems. The annual average precipitation ranges
from 500–600 mm, while the annual potential evaporation ranges from approximately
1100–2000 mm. To meet the water demands for economic and social development, the
BTH region experienced water resource development and utilization, which peaked at
106%. Even after the completion of the South-to-North Water Diversion Project in 2014,
70% of the water resources remained overexploited, indicating severe overexploitation of
the regional water resources. The water supply in the BTH region relies on groundwater,
surface water, and other sources, such as reclaimed water and water transfers. As shown in
Figure 2, groundwater extraction has significantly decreased in recent years due to stringent
regulations. Between 2000 and 2021, the proportion of groundwater in the water supply
decreased from more than 75% to 35%, while the proportion of surface water increased
from 26% to 55%. The groundwater levels in the Beijing Plain reached their lowest value in
2014, while they gradually recovered with water source replacement from the South-to-
North Water Diversion Project. Similarly, in the Hebei Plain, efforts to control groundwater
overexploitation in the North China region have limited the rate of decrease in groundwater
levels. In terms of water usage, agricultural water consumption decreased from 70% to 40%
between 2000 and 2021, while water usage for ecological and environmental purposes has
steadily increased in recent years.
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2.2. Data Sources
2.2.1. Groundwater Storage Dataset

In our previous research, we introduced a numerical simulation technique aimed
at downscaling GRACE-derived groundwater storage anomalies data, which resulted
in the creation of the “Groundwater Storage Model”. This model parallels traditional
groundwater flow numerical models in its core functionality; it too is fundamentally a
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numerical model. The distinct feature of our model lies in its simulation of groundwater
storage rather than groundwater levels [29]. This method has been successfully applied
to the BTH region and downscaled the spatial resolution of GWSAs from 1◦ to 0.05◦.
This downscaling process not only captured temporal variations consistent with those
in the GRACE-derived GWSAs but also more precisely revealed spatial variations. For
example, in a transect across a 1◦ grid before downscaling, the GRACE-derived GWSA
is represented by homogenized pixels with a value of −34.46 cm EWH, while GWSA
varied from −22.98 to −39.05 cm EWH in the transect after downscaling. Compared to
that of the 1◦ GRACE-derived GWSAs, the average correlation coefficient (CC) between
the downscaled GWSAs and in situ groundwater level measurements increased by 0.06,
while the average root means square error (RMSE) decreased by 8.85%. For a more detailed
presentation and validation of downscaled results, please refer to Sun et al. [29].

On the basis of our previous study, we utilized total water storage anomaly (TWSA)
data from the Jet Propulsion Laboratory mass concentration blocks (JPL mascon), which
is a simple linear interpolation method used to address data gaps in the GRACE product.
While this approach is effective for short data gaps (1–2 months), it is unreliable for
longer gaps, such as the approximately one-year gap between the GRACE and GRACE-
FO missions [4,49]. Consequently, we did not present downscaled results for the period
between July 2017 and May 2018 in our previous study.

The objective of this study was to assess groundwater exchange in the BTH region
via a downscaled dataset for the period between 2003 and 2020. Downscaled GWSA
data from July 2017 to May 2018 were estimated using the same dynamic downscaling
methodology, with the boundary conditions derived from the previously reconstructed 1◦

TWSA dataset. Sun et al. [29,50] provided a comprehensive description of the principles
of downscaling models. The datasets used, including rainfall, evapotranspiration, TWSA,
soil moisture, and snow water equivalent data, can be obtained from the following link:
https://figshare.com/articles/dataset/Downscaled_GWSA_dataset/20406309, accessed
on 8 November 2023.

2.2.2. Comparison of the Reconstructions between the GRACE and GRACE-FO Data

The JPL and Center for Space Research of the University of Texas in Austin mascon
dataset (CSR mascon) is widely employed for GRACE TWSA reconstruction. In contrast
to spherical harmonics, mascon datasets offer a notable advantage in mitigating land-to-
ocean signal leakage, leading to enhanced signal amplitudes. Additionally, geophysical
data constraints are incorporated during processing, which necessitates minimal empirical
postprocessing, thus increasing the user-friendliness for nongeodetic users [51]. Figure 3e
reveals that both the JPL and CSR mascon datasets exhibit overall consistency in terms of
trends and seasonal variations. However, the TWSA simulated by the Global Land Data
Assimilation System Catchment Land Surface Model (GLDAS_CLSM), which neglects
groundwater and surface water components as well as deep groundwater storage and
human interventions, tends to underestimate groundwater storage changes [52].

Due to the target for our downscaling is the JPL mascon dataset, therefore, we com-
pared four reconstructed datasets (referred to as Humphrey, Mo, Li, and Deng) from January
2003 to June 2017 with the JPL mascon data. The details and methodologies for these four
reconstruction datasets are provided in Table 1. The TWSA dataset of Humphrey et al.
lacks seasonal cycles and information on the influence of human activities on terrestrial
water storage, which are primarily driven by long-term precipitation trends, resulting in
underestimation of groundwater storage changes [53]. Deng et al.’s TWSA data exhibit
the highest correlation with the JPL mascon product data but also exhibit the highest
median RMSE value of 7.2 cm for the equivalent water thickness (EWH) and a negative
Nash–Sutcliffe efficiency coefficient (NSE) relative to the JPL mascon product. This dif-
ference can be attributed to the baseline deduction, calculated as the average value of
each grid from January 1981 to June 2020 [54]. There is a significant difference between
the CSR mascon dataset reconstructed by Li, which is significantly larger than the TWSA

https://figshare.com/articles/dataset/Downscaled_GWSA_dataset/20406309
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dataset provided by the CSR organization [55]. In contrast, Mo’s reconstructed TWSA
data exhibited reasonable spatial consistency with the TWSA data provided by the JPL
mascon dataset, accurately representing the TWSA from July 2017 to May 2018 when
considering the overall regional average (Figure 3e) [52]. The median CC, RMSE, and
NSE of the Mo dataset are 0.97, 2.16 cm, and 0.84, respectively. Furthermore, empirical
cumulative distribution function analysis (Figure 3b–d) demonstrated that the quality of
the reconstructed Mo data surpassed that of the other three datasets. Consequently, we
employed Mo’s reconstructed TWSA data to bridge the data gap between the GRACE and
GRACE-FO missions.
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Figure 3. Comparison of different total water storage anomalies. (a) Represents the distribution of
RMSE, NSE, and CC between different reconstructed data and the GRACE observations of TWSA.
(b–d) Represent the empirical cumulative distribution functions (ECDF) of RMSE, NSE, and CC for
different reconstructed data. (e) Represents the time series of different TWSA.

In this study, GRACE-derived GWSA is used as the Dirichlet boundary condition
of the groundwater storage model. To address the differences between the reconstructed
TWSA of each grid and that observed by the GRACE mission, as shown in Figure 3a,
with the maximum RMSE between the reconstructed data of Mo and the JPL mascon data
reaching 6.8 cm EWH and the minimum reaching 0.8 cm EWH, we adjusted Mo’s predicted
TWSA for the period ranging from July 2017 to May 2018. This adjustment is based on
the absolute errors observed during the validation periods established by Mo, ranging
from April 2004 to June 2017 and June 2018 to December 2020. This correction enabled us
to derive a continuous TWSA series by combining JPL mascon data (April 2002 to June
2017 and June 2018 to December 2020) and Mo’s reconstruction data (July 2017 to May
2018). Finally, the GWSA was computed by subtracting the soil moisture anomaly and
snow water equivalent anomaly from the continuous TWSA. These GWSA values were
then employed as boundary conditions in our groundwater storage model in conjunction
with the actual observed values. Finally, we obtained a GWSA dataset from 2003 to 2020,
with a 0.05◦ spatial resolution, through a downscaling process.



Remote Sens. 2024, 16, 812 7 of 22

Table 1. Overview of different reconstruction data methods.

Source Mo et al. (2022) [52] Humphrey and
Gudmundsson (2019) [53] Deng et al. (2023) [54] Li et al. (2021) [55]

Study area Global Global Global Global

Method Bayesian convolutional
neural network

A simple statistical model
that considers the

residence times of local
TWS datapoints

Summation method,
empirical orthogonal

function bias correction,
and multiple

linear regression

Signal separation
and detrending

GRACE data JPL mascon JPL mascon JPL mascon CSR mascon

Forcing data

Precipitation, temperature,
cumulative water storage

change, and
ERA5L-derived TWSA

Precipitation and
land temperature

Soil moisture, snow depth,
precipitation, land

temperature, and glacier
mass change

Precipitation, land
temperature, sea surface

temperature, soil moisture,
evaporation, runoff, and
17 other tele-connected

climate indices

Time period April 2002–December 2020 January 1901–July 2019 January 1981–June 2020 July 1979–June 2020

Spatial resolution 1◦ × 1◦ 0.5◦ × 0.5◦ 1◦ × 1◦ 0.5◦ × 0.5◦

2.2.3. Ground-Based Measurements

In this study, monthly groundwater level data from 2003 to 2020 were analyzed to
compare the fluctuations in groundwater storage and groundwater levels. Groundwater
level data from 636 groundwater monitoring wells were obtained from public reports of the
China Geological Environment Monitoring Institute, primarily located in the BTH region
(Figure 1a). In this dataset, different observations have different starting times, and the periods
of available data vary from station to station. Within the study area, despite the classification
of deposits into four distinct types, aquifer types I and II are commonly aggregated to
form a shallow groundwater system, and similarly, aquifer types III and IV are grouped to
constitute a deep groundwater system. Those groundwater monitoring wells are categorized
accordingly into ‘shallow’ and ‘deep’ wells. This classification extends to the groundwater
flow fields, which are differentiated into shallow and deep layers. Consequently, for the
purposes of this study, we postulated that groundwater levels within aquifer types I and
II are equivalent, as are the water levels within aquifer types III and IV. Additionally, data
from 185 groundwater monitoring wells were obtained from the Beijing Hydrological Station,
mainly shallow groundwater level monitoring wells. These wells are mainly distributed in
the Beijing Plain region. Groundwater level data within each 1◦ or 0.05◦ grid were obtained
by averaging multiple groundwater monitoring measurements within each grid. Notably, we
refrained from converting groundwater level changes into groundwater storage changes due
to the inherent uncertainty associated with specific yield calculations.

3. Methods
3.1. Equations for Calculating Groundwater Exchange

Groundwater flux exchange occurs between external cell j and adjacent internal cell i,
for instance, cells G11 and G18, as shown in Figure 1b. According to the principles of the
water balance and Darcy’s law, the change in groundwater flow in a given cell is equivalent
to the lateral flux with neighboring cells as well as any sources or sinks. At the nth time
step, the lateral flux between cells i and j can be obtained as follows:

Qn = km
hn

j − hn
i

∆x
∆y = km(hn

j − hn
i ) (1)

where Q is the estimated flow rate between cells i and j [L3T−1], k is the average hydraulic
conductivity of the aquifers [L3T−1], m is the average thickness of the aquifers [L], h is the
average hydraulic head [L], and hn

i is the average groundwater level of cell i at the nth time
step. In this study, it was hypothesized that the total water storage change in a cell can be
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represented by the change in the hydraulic head at the center of this cell. Moreover, ∆x and
∆y are the cell sizes along the x and y axes, respectively, and ∆x is assumed to be equal to ∆y.

Equation (2) introduces a concept known as the equivalent groundwater height (Gw),
which is defined as the multiplication of the specific yield and the groundwater level.

Gw = Syh (2)

where Sy denotes the average equivalent specific yield of a cell [dimensionless]. The ground-
water storage anomaly term, which is defined as the difference between groundwater
storage and the average groundwater storage (Gw) over the period from January 2004 to
December 2009, can be expressed as follows:

GWSAn = Gn
w − Gn

w = Sy(hn − havg) (3)

where havg is the average groundwater level in the cell from January 2004 to December 2009.
The change in groundwater storage from the GRACE-derived GWSA can be expressed

as follows:
∆GWSn = GWSAn+1 − GWSAn = Sy(hn+1 − hn) (4)

where ∆GWS is the temporal change in the groundwater storage anomaly, which is repre-
sented by the equivalent water height [LT−1].

Transmissivity (T) is hydraulic conductivity multiplied by aquifer thickness in hydro-
geology, that is T = k·m. Therefore, according to Equations (1) and (4), the average flux
change between neighboring cells i and j can be expressed as follows:

∆Qn = Qn+1 − Qn =
km
Syi

(β × ∆GWSn
j − ∆GWSn

i ) (5)

where β is the ratio of Sy to two adjacent cells and can be defined as:

β =
Syi

Syj
(6)

Let:
εn

ij = β × ∆GWSn
j − ∆GWSn

i (7)

where ε is the flux-change coefficient. Equations (5) and (7) show that there is a close
and direct relationship between ∆Qn and εn

ij. Because the hydrogeological parameters in
Equation (5) are positive, the flux-change coefficient εn

ij can also be used to demonstrate the
patterns of flux change ∆Qn.

3.2. Seasonal Trend Decomposition via the Loess Method

To reduce the impact of non-climatic factors on the groundwater storage flux vari-
ability, we detrended the acquired data. This detrending process involved decomposing
the groundwater storage flux time series of each pixel into three components using sea-
sonal trend decomposition using the Loess (STL) method. These components include the
long-term trend term (Slong-term), seasonal trend term (Sseasonal), and residuals (Residuals),
collectively capturing the integrated vertical variability from the shallowest aquifer to the
deepest aquifer.

Stotal = Slong−term + Sseasonal + Residuals (8)

The locally weighted regression-based STL method was employed to detect nonlinear
patterns in trend estimation, which is known for its robustness and computational effi-
ciency [51,56]. In this study, we retained the long-term trend component while removing
the seasonal trend component and residuals.

3.3. Sen’s Slope and Mann–Kendall Test Methods

Sen’s slope method [57] is a nonparametric and robust statistical technique used to
assess trends in time series variables. This method is unaffected by missing data but
does necessitate statistically independent variables. Sen’s slope approach is known for
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its exceptional performance in accurately identifying trends and resisting the influence of
outliers. Within the context of this study, we applied Sen’s slope method to compute the
trends in groundwater exchange at the raster scale.

Slope = Median(
Qm − Qn

m − n
)(∀ m > n) (9)

where Qm and Qn denote the time series variable of the groundwater exchange in months
m and n, respectively. When the slope > 0, groundwater exchange increases during a given
period; conversely, its change follows a declining trend.

The Mann-Kendall (MK) trend test [58,59] is a nonparametric trend test method
that has been frequently used to analyze continuous increasing or decreasing trends and
significance levels of time series data. For a time series X = x1, x2, x3. . ., xn, the MK trend
statistic S can be calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (10)

Here, the following applies:

sgn(xj − xi) =


1(xj > xi)
0(xj = xi)
−1(xj < xi)

(11)

where n is the number of data used, xi and xj are the ith and jth data points of the time
series (j > i), respectively, and sgn is the sign function. Next, the variance in S, Var(S), can
be calculated as follows:

Var(S) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(12)

where m is the number of data series containing at least one duplicate dataset, and ti is the
frequency of the ith data series.

Then, the Zs statistic can be calculated for the range of S as follows:

Zs =


S−1√
Var(S)

i f (S > 0)

0 i f (S = 0)
S+1√
Var(S)

i f (S < 0)

(13)

A positive Zs value indicates an increasing trend in the time series data, a negative Zs
value indicates a decreasing trend in the time series data, and a value of zero indicates a
lack of trend in the time series data. For

∣∣∣Zs

∣∣∣> Z1− α
2

, the null hypothesis can be rejected,
and the time series dataset has a significant trend at level α. Z1− α

2
can be calculated from

the standard normal distribution, and α is the considered confidence level for the statistical
test. In this research, the confidence level was set to 5% (α = 0.05). In this test, if |Zs| > 1.96,
then the null hypothesis can be rejected, which indicates that there is a significant trend in
the time series data at the confidence level of 5%.

3.4. Quantifying the Relative Contributions of Climate and Human Activities to Groundwater
Storage Changes

To quantify the impact of climate and human factors on the variations in groundwater
storage, we employed a residual analysis approach. This method helped us determine the
relative influence of these two factors on GWS. Residual analysis is a widely used tech-
nique in studies investigating changes in vegetation [60,61]. This approach allows for the
separation of anthropogenic and climatic influences on a given variable. The fundamental
concept behind residual analysis involves utilizing climate data to establish a time series
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for a variable driven by climatic factors. The difference between the observed and modeled
variables is considered to represent the component driven by anthropogenic factors. In the
study of Liu et al. [62], precipitation and temperature were considered the primary cli-
matic factors affecting variations in groundwater storage. They established a multivariable
regression model using the GWSA and climate variables, specifically precipitation and
temperature anomalies, to quantify the impacts of climate and human factors on ground-
water storage changes. In our research, we also built a multivariable regression model but
used different climate variables, namely, precipitation and evapotranspiration anomalies.
This choice is based on the direct influences of precipitation and evapotranspiration on
most groundwater storage changes, and precipitation and evapotranspiration are the main
driving factors in the downscaling model [29]. To this end, we matched precipitation and
evapotranspiration anomalies to the GWSA data, all at a spatial resolution of 0.05◦. The val-
ues resulting from this process, which we refer to as the reconstructed monthly GWSA,
represent the GWSA time series driven primarily by climatic factors. Furthermore, the
residuals of the fitted equation, obtained by subtracting the monthly original GWSA from
the reconstructed monthly GWSA, as calculated using Equation (14), could be regarded as
the GWSA changes driven by anthropogenic factors, i.e., those not attributable to climatic
influences. To evaluate the relative contributions of climate and anthropogenic factors
to groundwater storage changes, we estimated the linear slopes of the original GWSA,
climate-driven GWSA, and anthropogenic-driven GWSA time series using a least squares
fitting method. The ratio of the linear slopes of the climate- and anthropogenic-driven
GWSA time series to the original GWSA time series, represents the relative contributions
of these factors to groundwater storage changes. The equation is as follows:

GWSAac = GWSAor − GWSAcc (14)

GWSAcc = a × P + b × ET (15)

where GWSAcc, GWSAac, and GWSAor denote the monthly climate-driven GWSA, anthropogenic-
driven GWSA, and original GWSA, respectively, and P and ET denote the monthly precipitation
and evapotranspiration anomalies, respectively. The coefficients a and b are regression coefficients
estimated through a linear fitting at the grid scale, which were combined with the monthly
precipitation and evapotranspiration anomalies to reconstruct the climate-driven GWSA time series
via fitting (Equation (15)). Additionally, the methods for defining the relative contributions of
climate change and human activities to groundwater storage changes are listed in Table 2.

Table 2. Definition of the relative contributions of climate change and human activities to groundwater
storage changes.

GWSAor
Slope Drivers

Driver Division Contribution Rate (%)

GWSAcc Slope GWSAac Slope cc ac

>0
cc & ac >0 >0 Slopecc/Slopeor Slopeac/Slopeor

cc >0 <0 100 0
ac <0 >0 0 100

<0
cc & ac <0 <0 Slopecc/Slopeor Slopeac/Slopeor

cc <0 >0 100 0
ac >0 <0 0 100

Notes: cc = climatic contribution; ac = anthropogenic contribution; Slopecc, Slopeac and Slopeor denote the slopes of
the climate-driven, human activity-driven and original GRACE GWSA time series, respectively.

4. Results
4.1. Groundwater Storage Change Patterns

Figure 4a shows the monthly GWSA variations from 2003 to 2020. From 2003 to
2007, groundwater storage remained relatively stable, without a significant declining trend,
while continuous declines were observed since 2008. After 2015, there was a notable
shift in the GWS decline rate, accompanied by a gradual increase in seasonal fluctuations
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throughout the year. Considering seasonal patterns, Figure 4b shows the average GWSA
changes during the different seasons (spring: March–May; summer: June-August; autumn:
September–November; winter: December–February). Notably, GWS experiences significant
decreases in spring and summer with a rate of 1.05 cm EWH and 1.21 cm EWH, and ground-
water storage does not increase with seasonal rainfall. Furthermore, the interannual trend
in GWS shows a continuous decline with 1.12 cm EWH/a, which is strongly correlated with
the trend observed in GWS in December (Figure 4c), the correlation coefficient has reached
above 0.98. This suggests a significant change in the annual water cycle. Figure 5 shows
the spatial distribution of the groundwater storage changes in December 2020. Consider-
able declines in groundwater storage are obvious in the Piedmont plain, especially from
south to north. In the central–eastern plains, such as in Cangzhou, Xingtai, and Handan,
groundwater storage is severely decreasing due to deep exploitation. The smallest declines
in groundwater storage occurred in the coastal areas and in the northern mountainous
areas of the study area.
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4.2. Groundwater Flux Exchange in 1◦ Grids

Figure 1a shows that groundwater flows from the front of the Taihang and Yanshan
Mountains to the plain area in the BTH region. To comprehend the groundwater exchanges
across the various regions, according to the direction of groundwater flow on the boundary,
nine grid pairs (Table 3) were selected to calculate groundwater exchanges (referred to as
east, west, south, and north), representing groundwater flux transfers between mountain-
ous and plain areas, plain and coastal areas, and among different plain areas. In Table 3,
the j grid corresponds to the outside grid, while the i grid corresponds to the inside grid of
each boundary. According to previous research, the specific yield in the Piedmont plains
ranges from 0.025 to 0.28 (average value of 0.152), from 0.025 to 0.16 (average value of
0.093) in the central plains and from 0.025 to 0.075 (average value of 0.05) in the coastal
plain aquifer [19,30,55]. The hydraulic conductivity exhibits similar spatial distributions,
and transmissivity is determined based on previous research results [46]. The specific
yield ratio (β) between the Piedmont plain and the mountainous area was uniformly set
to 5. The β values at the southern and eastern boundaries were set to 0.6 and 0.5, respec-
tively. The specific parameters for each grid are listed in Table 3. With these preliminary
parameters in place, groundwater exchanges based on the GWSA at a spatial resolution
of 1◦ were calculated by Equation (5). Then, the calculated groundwater exchanges were
decomposed using the STL method, and the trend term was used to calculate the change
rate of groundwater exchange.

Table 3. Hydrogeological parameters in the estimation of flux change.

Parameters North West South East

outside (j) G11 G19 G20 G23 G29 G36 G43 G25 G32
inside (i) G18 G26 G27 G24 G30 G37 G44 G32 G33

β 5 5 5 5 5 5 5 0.6 0.5
T (m2/d) 4000 800 4800 5200 6000 4400 4000 400 100

Syi 0.06 0.04 0.08 0.08 0.15 0.06 0.05 0.04 0.03

Groundwater in BTH has largely been depleted since the prolonged drought from
1999–2007, while the implementation of the South-to-North Water Diversion Project in
December 2014 has greatly altered the water supply pattern of cities in North China [63].
Therefore, groundwater exchange was divided into three periods—2003–2007, 2008–2014,
and 2015–2020—for estimating groundwater exchange dynamics more comprehensively.
Figure 6a shows the patterns of the groundwater exchange direction for the different
grid pairs. Figure 6b–e shows the average groundwater exchange across the different
boundaries, including mountainous and plain areas (Figure 6b,c), the interior of the plain
areas (Figure 6d), and the plain and coastal areas (Figure 6e). The gray lines denote the
actual quantity of groundwater exchange, and the blue lines indicate the trend variations.
Table 4 provides the trend change rates of groundwater exchange between the different
periods, computed using Sen’s slope method, along with the significance test results.

Table 4. Change rate of groundwater exchange between grids during the different periods
(m3/month) in Figure 6.

Regions 2003–2007 2008–2014 2015–2020

North 190 102 * 142 *
West −602 * 87 * 517 *
South 0 −1 * −11 *
East −2 * 0 −2 *

Note: * indicates significance.
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Since the mountainous plains along the northern and western boundaries are rich in
groundwater, groundwater exchange in these areas is notably faster. Across the northern
boundary, groundwater exchange showed an increasing trend during each period, with the
highest exchange rate of 190 m3/month occurring from 2003 to 2007, while the western
boundary showed a significant downward trend during this period, with an average
rate of decrease of 602 m3/month. After 2008, the groundwater exchange rate gradually
increased. In the interior of the plain area (southern) and between the plain and coastal
areas (eastern), there was no substantial change during the different periods. The southern
boundary showed a slight decreasing trend from 2008 to 2014 and 2015 to 2020, while
the eastern area showed a decreasing trend during the different periods. The amount of
water discharged into the Bohai Sea is uncertain, but due to the relatively low hydraulic
conductivity of coastal aquifers and the low horizontal hydraulic gradient in the coastal
plains, it is considered that the amount of water discharged into the Bohai Sea is very
small [30]. The small amount of groundwater exchange in the plain and coastal areas also
proves this point.

4.3. Groundwater Flux Exchange in Different Administrative Districts

To further investigate groundwater exchange at various boundary positions within
a small-scale area, we utilized downscaled GWSA data with a spatial resolution of 0.05◦.
Adopting the Beijing Plain area as an example, which is surrounded by mountains on three
sides and bordered to the south by the Hebei Plain, along the direction of groundwater flow
perpendicular to the groundwater contour line at the boundary between the mountainous
and the plain, we selected four boundary directions—north (I), east (II), west (III), and south
(IV)—and analyzed the groundwater exchange patterns along each direction. Boundaries I,
II, and III represent the exchange of groundwater between the mountainous areas and the
Beijing Plain area, while boundary IV represents the exchange of groundwater between
the Beijing Plain and the Hebei Plain in the different administrative districts (Figure 5).
Similarly, we initially set β to 5 for boundaries I, II, and III between the mountainous
areas and plain area and to 0.95 for boundary IV. The transmissivity and specific yields
were refined for each direction. Specifically, the transmissivity values were as follows:
1600~4800 m2/d (I), 4800 m2/d (II), 1200~4800 m2/d (III), and 2000 m2/d (IV). Similarly,
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the specific yield values were set to 0.05~0.16 (I), 0.2 (II), 0.05~0.12 (III), and 0.05 (IV).
Figure 7 shows the GWSA variations between the different boundaries, demonstrating a
consistent decreasing trend from 2003 to 2020. There is a slight difference in the variation
in groundwater storage between the internal and external grids at the different boundaries.
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(I–IV) represent groundwater storage anomalies in the inside and outside grids for the north, east,
west, and south directions, respectively.

According to the groundwater level contours for the Beijing Plain area, as shown in
Figure 8a, groundwater in the Beijing Plain was replenished from boundaries I, II, and
III toward the inside of the plain area, while boundary IV was the main lateral discharge
boundary. The GWSA in December 2020 showed that groundwater storage was depleted
most severely in the southeastern region. Figure 8b–e shows the groundwater exchange
across the different boundaries. The groundwater exchange capacity between the mountain-
ous and plain areas is higher than that within the plain areas, and boundary III exhibited
the maximum exchange capacity. From the perspective of the groundwater exchange
rate, boundaries I, II, and III exhibited a significant downward trend between 2003 and
2007, while boundary III exhibited the highest decrease rate of 123 m3/month. Boundary
IV showed a slight increase of 3 m3/month. Since 2008, the groundwater exchange rate has
gradually increased across boundaries I, II, and III, with the highest rate increases occurring
from 2015 to 2020. Boundary IV exhibited a low, continuous declining trend since 2008.
Table 5 provides the trend change rates of groundwater exchange between the different
periods in the boundary of I, II, III, and IV.

Table 5. Change rate of groundwater exchange across the different boundaries over the different
periods (m3/month) in Figure 5.

Regions 2003–2007 2008–2014 2015–2020

I −35 * 82 * 117 *
II −21 * 48 * 59 *
III −123 * 123 * 203 *
IV 3 * −1 * −2 *

Note: * indicates significance.
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Figure 8. (a) The contour of groundwater and groundwater storage anomalies in the Beijing Plain
for December 2020, as well as the locations of groundwater exchange along the different direc-
tions. The gray and blue lines in (b–e) indicate the average changes in groundwater exchange and
groundwater exchange trend, respectively, across I, II, III, and IV boundaries.

4.4. Groundwater Flux Exchange between Different Hydrogeologic Regions

Figure 9 shows the groundwater exchange among the various hydrogeologic regions,
including the Taihang Mountains to the Piedmont plains (TM-PP), the Piedmont plain to the
eastern–central plain (PP-ECP), and the eastern–central plain to the coastal areas (ECP-SEA),
as shown in Figure 5. The gray shadow in Figure 9 indicates the groundwater exchange
between each grid cell on the boundary, the gray lines denote the average exchange
quantity, and the blue line indicates the flux change trend. Notably, there were considerable
variations in flow exchange among the different grid points, with the most significant
fluctuations occurring within the Taihang Mountains and plains. Between 2003 and 2007, a
pronounced downward trend was observed, with the most substantial decrease occurring
between the Taihang Mountains and Piedmont plains, at a rate of 522 m3/month. Similarly,
since 2008, the exchange of groundwater storage has shown an increasing trend. There was
no significant change in groundwater exchange from the Piedmont plain to the central and
eastern plains or from the central and eastern plains to coastal areas.
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indicates the range of maximum and minimum values of groundwater exchange across all grid cells
at the boundaries.

5. Discussion
5.1. Causes of Groundwater Exchange Changes

Table 6 provides a comparison of groundwater exchange between the different regions.
The results indicated that the calculated groundwater exchange between the mountainous
and plain areas exhibited a decreasing trend from 2003 to 2007, regardless of whether it
is calculated by the 1◦ or 0.05◦ GWSA data. The change in groundwater exchange at the
northern boundary increased by 190 m3/month, which was calculated by the 1◦ GWSA
data. From 2003 to 2007, the study area experienced a continuous drought period, with
the average rainfall in Beijing accounting for only 80% of the annual average rainfall and
increasing variability and extended groundwater extraction, which led to a continuous
decrease in groundwater resources [63]. Due to drought, the natural recharge from the
mountainous areas decreased, which is the main reason for the decrease in groundwater
exchange during this period. In addition, the changes in land use and vegetation cover
in the mountainous areas, as well as the reduction in runoff caused by reserve regulation
and storage, exerted a significant impact on the reduction in lateral runoff along the front
of the mountain [30]. The increase in groundwater exchange in the northern region of
Yanshan Mountain may be due to the continuous decrease in the groundwater level in the
mountainous plain, which causes a decrease in saturated aquifer thickness and an increase
in the hydraulic gradient and the water flow velocity [40].

Since 2008, rainfall in the study area has gradually increased, with an increase in
mountain runoff. Moreover, the groundwater level in the plain area has continued to
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decrease, and the hydraulic gradient in the mountain plain area has continued to increase.
From 2015 to 2020, the implementation of the South-to-North Water Diversion Water
Supply and Ecological Replenishment Project led to a rise in groundwater levels in large
and medium-sized cities and major river influence zones in the western Piedmont alluvial
fan. However, the existing ecological water replenishment method is relatively extensive,
and the groundwater level continues to decrease by 2~4 m/year at the edge of the alluvial
fan [64]. Therefore, the continuous increase in the hydraulic gradient is still the main reason
for the increase in groundwater exchange in the Piedmont area.

Table 6. Comparison of groundwater exchange between the different regions (m3/month).

Regions 2003–2007 2008–2014 2015–2020

TM-PP
West −602 * 87 * 517 *

III −123 * 123 * 203 *
TM-PP −522 * 94 * 435 *

YM-PP
North 190 * 102 * 142 *

I −35 * 82 * 117 *
II −21 * 48 * 59 *

PP-ECP
South 0 −1 * −11 *

IV 3 * −1 * −2 *
PP-ECP 0 0 0

EPC-SEA
East −2 * 0 −2 *

EPC-SEA 0 0 0
Note: * indicates significance.

The trend in groundwater exchange within the plain area is consistent, but the opposite
trend occurs between the Taihang Mountains and the plain area. This may occur because the
plain area receives less rainfall recharge and experiences slower groundwater circulation
than the Piedmont area, resulting in a certain lag in groundwater exchange. Coastal
areas have the lowest hydraulic gradient and the lowest groundwater exchange capacity.
Although the results differ between the 1◦ and 0.05◦ spatial resolutions, the overall change
trend is not significant.

5.2. Comparison between Groundwater Flux Exchange and the Groundwater Level Changes

The lateral flow from the mountainous areas depends on the horizontal permeability,
saturation zone thickness, and local hydraulic gradient [30]. The variation in groundwater
levels serves as an indicator of groundwater circulation dynamics. Specifically, the differ-
ence in the groundwater level reflects the magnitude of the hydraulic gradient along the
flow direction within a certain distance. With increasing hydraulic gradient, the rate of
groundwater exchange along this direction increases. In this research, we conducted a com-
parative analysis between the groundwater level changes and groundwater flux exchange
along the border between the Beijing Plain and the Hebei region. To achieve this goal, we
selected 14 monitoring wells (the red observation wells in Figure 1a). In Figure 10, the red
and blue scatter points illustrate the average fluctuations in groundwater levels within
monitoring wells along the seven inner and seven outer boundaries, respectively. The data
reveal that the average groundwater level at the inner boundary is consistently lower than
that at the outer boundary. This observation supports the conclusion that groundwater
flows from Beijing to Hebei along border IV. The magenta line illustrates the trend in the
groundwater level differences between the inner and outer boundaries, calculated using
the STL method, while the blue line denotes the trend in groundwater flux exchange at the
IV boundary of the Beijing Plain area.

An increase in the change rate of the groundwater level difference represents an in-
crease in the hydraulic gradient along boundary IV. An increase in groundwater exchange
is accompanied by an increase in the hydraulic gradient. From 2003 to 2007, the ground-
water level difference increased by 0.01 m/month, and groundwater exchange increased
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by 3 m3/month. However, from 2008 to 2014, the groundwater level difference decreased
by 0.05 m/month, and groundwater exchange decreased by 1 m3/month. Interestingly,
the change in the groundwater flux trend did not consistently conform with the change
in the groundwater level trend from 2015 to 2020. Based on the 14 selected groundwater
monitoring wells, since 2015, with the implementation of the South-to-North Water Di-
version Project and increased progress in groundwater suppression efforts, the shallow
groundwater level in Beijing has continued to rise. The average increase in groundwater
level at the inner boundary reaches 0.65 m, with a maximum increase of 6.94 m, while
the average decrease at the outer boundary reaches 0.37 m, with a maximum decrease of
3.10 m. The average groundwater level difference increased by 0.019 m/month between
the inner and outer boundaries, which indicates that the hydraulic gradient at this bound-
ary is continuously increasing during this period. On the other hand, the groundwater
flow exchange decreased by 2 m3/month. This indicates that there are certain differences
between the shallow and deep groundwater quantity changes, as monitoring wells mainly
capture the changes in shallow groundwater levels, while the groundwater exchanges
calculated by GRACE data reflect the overall changes, which may result in discrepancies.
In addition, there is a delay in the change in GRACE-derived groundwater storage relative
to the change in groundwater levels.
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level (GWL(outside)) to a lower groundwater level (GWL(inside)).

5.3. Contribution of Anthropogenic and Climate Factors

Figure 11a,b show the proportional impacts of human activities and climate change
on the shifting pattern of groundwater storage in the BTH region from 2003 to 2020. Areas
where groundwater storage depletion is attributed solely to human activities,
i.e., AC = 100%, are primarily concentrated in the plains of the BTH region, especially in
the northern section. Groundwater storage reduction resulting from the combined effects
of human activities and climate change encompasses approximately 19% of the total area
of the BTH region (as shown in Figure 11c). This reduction is predominantly observed
in the Baoding mountainous region and the southern part of Zhangjiakou. In each grid
cell, human factors contributed more than 90.9% to the decrease in groundwater storage,
with an average contribution of 98.2%. In contrast, climate factors contributed from 0% to
9.1%, with an average contribution rate of approximately 1.8%. Notably, when comparing
the influence of human impacts to that of climate change, the latter exhibited negligible
dominance over groundwater storage variation. Consequently, climate factors alone cannot
account for the entirety of groundwater depletion in the BTH region between 2003 and
2020. Instead, human activities play a pivotal role in driving groundwater depletion in the
BTH region.
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5.4. Limitations of This Research

At present, there are several limitations to this study. First, the soil and snow water
data derived from global hydrological models carry inherent uncertainties. Consequently,
these uncertainties propagate through the process of estimating GRACE-derived ground-
water storage anomalies, affecting their accuracy. Second, factors influencing groundwater
exchange in mountainous areas extend beyond meteorological influences to include per-
meability, the thickness of the saturation zone, and the interaction between bedrock and
aquifers [30]. Our study has not exhaustively examined each of these factors individually.
Third, when applying our research methods, the estimation of groundwater exchange is
contingent upon the flux change coefficient and various other parameters. Due to their
heterogeneous nature, these parameters present challenges in measurement, leading to
significant uncertainties. For practical applications, precise assessment of hydraulic con-
ductivity (k), aquifer thickness (m), and specifically the specific yield (Sy) is essential to
refining the estimates of flux-change coefficients [43]. Therefore, the outcomes of this
study necessitate a solid understanding of hydrogeological principles and the backing of a
comprehensive hydrogeological conceptual model within the study area. Our method does
not aim to supplant established studies in groundwater hydrology. Future research will be
required to validate the reliability of our results from multiple perspectives.

6. Conclusions

Although GRACE satellite data are reliable for assessing water resource changes
across North China, they have experienced limited use in studying lateral groundwater
flux changes, and their coarse spatial resolution restricts their application in smaller areas.
In response to these limitations, a previously proposed dynamic downscaling method was
adopted in this study to refine the GRACE-derived groundwater storage anomalies to a
finer resolution of 0.05◦. Combining Darcy’s law with the principles of the water balance
equation, we investigated groundwater flux exchange in the study area using downscaled
GRACE data. The key findings are as follows:

(1) Between 2003 and 2007, groundwater storage in the study area remained relatively sta-
ble. However, groundwater storage has consistently decreased since 2008, especially
in spring and summer, but increased seasonal rainfall has not led to a corresponding
increase in groundwater storage. The decrease in groundwater storage gradually
increased in the Piedmont plain, and it became even more severe from south to north.

(2) The groundwater exchange trends in the mountain front area calculated using 1◦ and
0.05◦ GWSA data were basically consistent. Naturally, the 0.05◦ GWSA data could
better reflect the characteristics of groundwater exchange in small areas. Ground-
water exchange exhibited a decreasing trend from the mountain area to the coastal
areas. Groundwater exchange in the western Taihang Mountains was greater than
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that in the northern Yanshan Mountains and gradually decreased from south to north.
From 2003 to 2007, groundwater exchange between the mountainous and plain areas
decreased, and since 2008, it has shown an increasing trend. The change in groundwa-
ter exchange between the plain areas and coastal areas was relatively small, and the
change trend was the opposite of that in the mountain plain area, which may be due
to the lag in the lateral horizontal exchange between the mountain areas and plain
areas and coastal areas.

(3) The change rate of groundwater exchange between the inner and outer boundaries and
the change in the groundwater level difference were not always consistent. This may
be attributed to the groundwater level in the monitoring wells being affected by local
groundwater extraction or replenishment, resulting in a certain delay between the
groundwater level and storage changes.

(4) Anthropogenic activities accounted for more than 90.9% of the decrease in groundwa-
ter storage, with an average contribution of 98.2%. Climate factors played a secondary
role, with contributions ranging from 0% to 9.1% and an average contribution rate
of approximately 1.8%. Compared to human influences, climate change exhibited
minimal independent control over groundwater storage variations.
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