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Abstract: In response to the demand for high-precision point cloud mapping of subway trains in long
tunnel degradation scenarios in major urban cities, we propose a map construction method based
on LiDAR and inertial measurement sensors. This method comprises a tightly coupled frontend
odometry system based on error Kalman filters and backend optimization using factor graphs. In
the frontend odometry, inertial calculation results serve as predictions for the filter, and residuals
between LiDAR points and local map plane point clouds are used for filter updates. The global
pose graph is constructed based on inter-frame odometry and other constraint factors, followed
by a smoothing optimization for map building. Multiple experiments in subway tunnel scenarios
demonstrate that the proposed method achieves robust trajectory estimation in long tunnel scenes,
where classical multi-sensor fusion methods fail due to sensor degradation. The proposed method
achieves a trajectory consistency of 0.1 m in tunnel scenes, meeting the accuracy requirements for
train arrival, parking, and interval operations. Additionally, in an industrial park scenario, the
method is compared with ground truth provided by inertial navigation, showing an accumulated
error of less than 0.2%, indicating high precision.

Keywords: urban subway; multi-sensor integration; simultaneous localization and mapping;
degraded environments

1. Introduction

Urban rail transit, as a critical infrastructure and major livelihood project, plays a
pivotal role as the arterial system of urban transportation. After more than a century
of development, major metropolises around the world have evolved into cities on rails.
Traditional urban rail transit trains primarily rely on automatic block signaling technology
provided by the communication signal system to avoid collisions, enabling trains to be
isolated from each other on different sections. This system uses beacons to obtain dis-
continuous positions of trains, lacking efficiency and accuracy in real-time applications.
Moreover, it requires massive civil construction investment for building and continuous
maintenance, hindering the technological upgrade and widespread development of urban
rail transit. Therefore, it is crucial to use autonomous perception technology to achieve
environmental information in tunnel scenes and the pose information of trains.

With the development of intelligent and unmanned technologies, the field of rail tran-
sit is gradually introducing intelligent driving systems to enhance operational efficiency
and safety. However, commonly used Global Navigation Satellite Systems (GNSSs) in
autonomous driving provide flexibility and accurate positioning in open areas but are not
suitable for tunnel scenes in large urban subways. To obtain accurate pose data of trains
and surrounding environmental information, it is necessary to construct a high-precision
point cloud map of the train operating area, providing rich a priori information for posi-
tioning and environmental perception. Many previous works based on Mobile Mapping
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Systems (MMSs) have adopted this approach [1,2]. MMSs can provide direct georefer-
encing but require a series of post-processing and expensive measurement instruments.
Therefore, they are not suitable for real-time positioning of urban subway vehicles and
large-scale deployment.

With the continuous maturation of Simultaneous Localization and Mapping (SLAM)
technology, new opportunities have arisen for the construction of high-precision maps for
subway environments and applications based on high-precision maps. However, there is
currently a lack of methods for high-precision map construction for long subway tunnel
features in degraded scenes. The main technical challenges can be summarized as follows:

1. Cumulative Errors in Long Tunnel Environments: Subway tunnels in large cities
are often long and lack reference information like GNSSs for ground truth vehicle
pose estimation. This leads to increased positioning errors with distance, making
it challenging to meet the accuracy requirements for train pose estimation during
station stops.

2. Degraded Scenarios with Repetitive Features: Inside tunnels, the most observable
features are repetitive tunnel walls, tracks, and power supply systems. This presents
challenges for existing SLAM methods designed for urban scenes.

3. Lack of Loop Closure Opportunities: SLAM typically corrects accumulated drift over
detected loop closures. However, trains lack revisit locations, making loop closure
detection difficult.

4. Narrow-Field, Non-Repetitive Scan LiDARs: Solid-state LiDARs with limited fields
of view can easily fail in scenarios with insufficient geometric features.

To address these issues, we propose a system for the precise positioning and mapping
of rail vehicles in tunnel environments. This system tightly integrates multimodal informa-
tion from LiDARs and IMUs in a coupled manner. The main contributions of our work can
be summarized as follows:

1. We develop a compact positioning and mapping system that tightly integrates LiDARs
and IMUs.

2. In response to tunnel degradation scenarios, a high-dimensional, multi-constraint
framework is proposed, integrating a frontend odometry based on an error state
Kalman filter and a backend optimization based on a factor graph.

3. Leveraging geometric information from sensor measurements, we mitigate accumu-
lated pose errors in degraded tunnel environments by introducing absolute pose,
iterative closest point (ICP), and Landmark constraints.

4. The algorithm’s performance is validated in urban subway tunnel scenarios and
industrial park environments.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces the specific algorithms used in our system. Section 4 presents experimental
results. Finally, Section 5 concludes the paper and outlines future research directions.

2. Related Work

Train positioning based on query/response systems, commonly referred to as a “Balise
transmission system”, is a prevalent method in rail transportation. Typically, it comprises
onboard interrogators, ground beacons, and trackside electronic units. Ground beacons
are strategically placed along the railway line at specific intervals. As a train passes each
ground beacon, the onboard interrogator retrieves stored data, enabling point-based train
positioning [3,4]. However, this method provides only point-based positioning, leading
to conflicts between beacon spacing and investment requirements. Consequently, hybrid
positioning methods have been widely adopted, involving distance accumulation through
wheel encoders and error correction using query/response systems. Nevertheless, this
approach can introduce significant cumulative errors in scenarios involving changes in
wheel diameter, slipping, or free-wheeling. Furthermore, onboard interrogators rely on
ground beacons and trackside electronic units, making trains incapable of self-locating in
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cases of ground system failures. Given the substantial capital investment required and
the issues related to low positioning efficiency and the inability of onboard equipment
to self-locate, researchers have explored solutions using onboard sensors [5–7] or feature
matching-based methods [8].

In the field of intelligent transportation, both domestic and international scholars
have proposed numerous methods for constructing point cloud maps [9–16]. Among these
methods, LIO mapping stands out as a real-time technique for 3D pose estimation and
mapping. This method successfully achieves tight coupling between IMUs and LiDAR
technology. However, it comes with a high computational cost and lacks backend global
pose optimization, resulting in substantial cumulative errors over long distances [14].
LiDAR-inertial odometry and mapping (LIOM), on the other hand, presents a method for
correcting distortion in LiDAR point clouds using IMUs and employs nearest-neighbor
techniques for semantic segmentation of point clouds in urban road conditions to mitigate
the influence of moving objects. Nevertheless, its frontend adopts a loosely coupled design,
leading to reduced performance in feature-sparse degraded scenarios [15]. VINS-MONO
introduces a tightly coupled method that combines vision and IMUs, offering advantages
such as high real-time performance and insensitivity to external parameters. However,
it exhibits insensitivity to measurement scales, rendering it unsuitable for tunnel areas
with suboptimal lighting conditions [16]. With the rapid advancement of LiDAR hardware,
solid-state LiDARs have gained renown for their cost-effectiveness and compliance with
automotive regulations, making them widely adopted in autonomous driving and robotics
technologies [17–19]. However, their limited field of view makes them susceptible to failures
in degraded environments lacking distinctive features [20]. To address this limitation,
integrating LiDAR with other sensors proves effective in enhancing the system’s robustness
and accuracy [21–24].

In the realm of rail transportation, O Heirich and others from Germany have pro-
posed a synchronous mapping and localization method based on track geometry informa-
tion [25]. However, it exhibits low accuracy and is unsuitable for relocalization. In China,
Y Wang et al., for instance, have introduced a mapping and localization method for outdoor
rail transportation scenes based on a tightly coupled LiDAR-vision-GNSS-IMU system [26].
This method offers advantages such as high accuracy and robustness. Nevertheless, it
necessitates GNSS integration and has not been optimized to address the specific challenges
posed by long subway tunnel degradation scenarios.

Therefore, this paper addresses the need for high-precision offline point cloud map
construction in subway tunnel environments with degraded features. It presents a mapping
method designed for long-distance feature-degraded scenarios, relying on a tightly coupled
LiDAR-IMU frontend inter-frame odometry and backend global graph optimization. First,
it introduces a framework that incorporates an error state Kalman filter (ESKF)-based
frontend odometry and a factor graph-based backend optimization. This framework
facilitates the establishment of frontend point-plane residual constraints using local maps
updated after backend pose refinement. Second, to tackle the challenges posed by degraded
tunnel features, this paper introduces absolute pose constraints, iterative closest point (ICP)
constraints, and Landmark constraints to the backend factor graph constraints, effectively
reducing pose accumulation errors. Finally, the algorithm’s performance is validated in rail
transit tunnel scenarios.

3. Materials and Methods

Common options for positioning, mapping, and target perception sensors include
GNSS, IMU, LiDAR, and cameras. However, the tunnel’s suboptimal lighting conditions
significantly affect cameras, and their contribution to improving mapping accuracy in
tunnel scenes is limited [27,28]. Additionally, GNSS signals cannot be received under-
ground. Therefore, this study primarily employs LiDAR and IMU units as the main
sensors. LiDAR can be further categorized into mechanical LiDAR and solid-state LiDAR.
Mechanical LiDAR, with its large size and high cost, contrasts with solid-state LiDAR,
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which is lightweight, cost-effective, and more suitable for mass applications. However,
solid-state LiDAR also introduces new challenges to algorithms, including a small field of
view (FOV) that leads to degradation in scenes with fewer features. Due to differences in
the LiDAR’s scanning method, traditional point cloud feature extraction algorithms need
adaptation based on the scanning method. Moreover, compared to the rotational scanning
of mechanical LiDAR, the laser point sampling time of solid-state LiDAR varies and is
challenging to compensate for using kinematic equations. All these factors pose challenges
to the mapping and positioning applications of solid-state LiDAR [20]. This paper proposes
a universal frontend odometry that eliminates the commonly used point cloud feature
extraction module. The algorithm is agnostic to the scanning method and principles of the
LiDAR. The workflow of the algorithm is illustrated in Figure 1 and can be broadly divided
into five modules: hardware drivers, data preprocessing, frontend odometry, backend
graph optimization, and map maintenance.
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3.1. Frontend Odometry

The frontend odometry module is responsible for calculating the relative pose rela-
tionship between consecutive LiDAR frames, providing pose constraints between adjacent
LiDAR frames. As LOAM-series frontend odometry relies on the computation of point-to-
line features [29], and the extraction of line-plane features in solid-state LiDAR is related to
the LiDAR’s scanning method. This paper adopts the idea from FastLio, proposing a tightly
coupled frontend odometry that does not depend on traditional point cloud curvature
calculation for extracting line features [18,30]. The algorithm is modified to suit the rail
transportation environment and the requirements of offline map construction.

The algorithm is based on an ESKF filter for the tightly coupled LiDAR-IMU method [30].
During initialization, the system is required to remain stationary for a period, utilizing
collected data to initialize the gravity vector, IMU biases, and noise, among other parame-
ters. When the algorithm is running, raw data from the LiDAR are input into the LiDAR
point cloud preprocessing module. Invalid points and points in close proximity are filtered
out, and the remaining points are sorted based on sampling time in ascending order. This
sorting facilitates distortion compensation based on IMU preintegration results. The prein-
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tegration method is then used to perform inertial navigation on the raw IMU data. Based
on the inertial navigation results, motion distortion in the point cloud is compensated, and
the prediction phase of the ESKF filter is executed. The temporal flow of LiDAR and IMU
data is illustrated in Figure 2 [20,31].
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Figure 2 depicts two scans of the LiDAR, denoted as T1 and T2, with the starting time
as the start and the ending time as the end. During a scan, the pose transformation of the
LiDAR within the time interval Tstart

1 to Tend
1 is represented by P1 and R1. Therefore, all

point clouds within the time interval Tstart
1 to Tend

1 are transformed to the Tend
1 moment

to compensate for the motion distortion in the original point cloud. Simultaneously, the
frontend odometry needs to output the inter-frame pose transformation between two scans.
In the prediction phase of the ESKF filter, the inertial navigation results P1−2 and R1−2
within the time interval Tend

1 to Tend
2 are directly used as the filter’s prediction input.

The state variables and kinematic equations used in the ESKF filter are represented
by Equations (1) and (2), where all variables are denoted with superscript “I” for the IMU
coordinate system and “G” for the Earth coordinate system.

x =
[
RG

I pG
I vG

I bω ba Gg
]

(1)

.
pG

I = vG
I

.
vG

I = RG
I (am − ba − na) + Gg

G .
g = 0

.
R

G
I = RG

I ⌊ωm − bω − nω⌋∧.
bω = nbω.
ba = nba

(2)

pG
I —position in the Earth coordinate system; vG

I —velocity in the Earth coordinate sys-
tem; RG

I —rotation matrix of the attitude in the Earth coordinate system; am—accelerometer
measurement; ba—accelerometer bias; na—accelerometer noise; Gg—gravity vector;
ωm—gyroscope measurement; bω—gyroscope bias; nω—gyroscope noise; nbω

—gyroscope
bias random walk noise; nba —accelerometer bias random walk noise.

In the map maintenance module, a sliding window is maintained based on the current
position of the LiDAR, and a local map is output for scan-to-map matching. The raw LiDAR
point cloud undergoes motion compensation and voxel filtering down-sampling. The ESKF
filter establishes the point-to-plane constraint relationship. Using kd-tree nearest-neighbor
search, the five nearest points (P1 P2 P3 P4 P5) to the current point (P) are selected
from the local map. This decision is primarily based on the structural characteristics of
the point cloud within the tunnel environment. Opting for five points in the plane-fitting
process ensures accurate fitting of the ground plane and other features present in the tunnel,
such as installed signs and road edge planes. Choosing more than five points might result
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in a scarcity of plane points, leading to significant solving errors, while selecting fewer than
five points could result in larger residuals in the fitted plane, causing fitting inaccuracies.
The plane equation is then fitted using Principal Component Analysis (PCA) as follows [32]:

Each dimension of the data is subtracted by its mean value. After transformation, the
mean value of each dimension becomes zero. Compute the covariance matrix for the three
coordinates. The covariance matrix C is defined as follows:

C =

 cov(x, x)cov(x, y)cov(x, z)
cov(y, x)cov(y, y)cov(y, z)
cov(z, x)cov(z, y)cov(z, z)

 (3)

where cov(x, x) represents the covariance between the x and y coordinates, and cov(x, x)
is the variance of the x coordinate. The covariance calculation is defined by Equation (4),
where xi, yi are the coordinates of the centered points:

cov(x, y) =
∑n

i=1 xiyi

n − 1
(4)

The eigenvalues and eigenvectors of the covariance matrix C are computed. The
calculated eigenvalues, sorted in descending order, are denoted as λ1, λ2, λ3, with cor-
responding eigenvectors ξ1, ξ2, ξ3. Clearly, the eigenvectors ξ1, ξ2 corresponding to the
two largest eigenvalues form a set for the plane to be fitted, while ξ3 represents the normal
vector of the fitting plane, with components a, b, c. If the fitting plane passes through the
point P(x0, y0, z0), the equation of the fitted plane is given by Equation (5):

a(x − x0) + b(y − y0) + c(z − z0) = 0 (5)

The curvature-based feature extraction method has the advantage of rapidly extracting
line and surface features, but it is challenging to achieve comprehensive and accurate
feature extraction in long tunnel scenarios lacking distinct features. This method is prone
to degradation in the driving direction. To prevent the ESKF filter from diverging in scenes
with fewer features, a method for constructing plane point constraints is proposed. This
method uses the following two conditions to determine whether a point can be used to
construct a constraint relationship as a planar point:

1. The distance from each of the five points (P1 P2 P3 P4 P5) to the fitted plane is
less than 0.1 m.

2. The threshold is set to s = 1 − 0.9 × pd
pl , where pd is the distance from point P to the

fitted plane, and pl is the distance from point P to the center of the LiDAR. As pd is much
smaller than pl between any two frames, to filter measurement errors from exceptional
plane points, the constructed plane constraint is considered valid only when s ≥ 0.9.

Finally, the ESKF filter is updated based on the point-to-plane residual constraints,
and the optimal estimate of the state variables is output as the output of the inter-frame
frontend odometry. The covariance matrix is updated, and the ESKF filter is iterated.

3.2. Backend Graph Optimization

In the context of the backend optimization problem based on the pose graph, each
node in the factor graph represents a pose to be optimized. The edges between any two
nodes represent spatial constraints between the corresponding poses, including relative
pose relationships and their associated covariances. The relative pose relationships between
nodes can be computed using frontend odometry, IMU pre-integration, frame-to-frame
matching, and other methods. Given the utilization of the tightly coupled LiDAR-IMU
approach in the frontend odometry, frame-to-frame IMU pre-integration constraints are
not employed in the backend optimization.

Addressing the challenges of solving high-dimensional constraints, this paper pro-
poses a framework with high dimensionality and multiple constraints, as illustrated in Fig-
ure 1. The framework leverages ESKF in the frontend odometry to provide high-frequency
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position updates. In the backend, a graph optimization constraint-solving approach is
employed, integrating various constraints. The ESKF frontend odometry provides high-
frequency position updates, and the backend uses graph optimization constraints that fuse
various constraints. The key constraints integrated into the factor graph include frame-to-
frame odometry factors, absolute pose factors, ICP factors, and Landmark factors, forming
the factor graph depicted in Figure 3. In the optimization process after adding each new
keyframe, the initial values for solving are provided by the frontend odometry.
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To batch optimize historical keyframe poses x = {x0 x1 x2 · · · xi}, this paper employs
a factor graph optimization method, where each keyframe pose xi is a vertex in the graph.
Through the computation of frontend odometry and point cloud matching results, edges
are constructed between adjacent keyframe poses or any two keyframe poses. Additionally,
for extra observations such as absolute pose constraints or Landmark constraints, edges
connecting vertices are added to the factor graph.

3.2.1. Frame-to-Frame Odometry

The inter-frame constraints for adjacent keyframes in the backend graph optimization
are provided by the frontend odometry module. To select keyframes for optimization, the
current frame xi+1 is compared to the state of the previous keyframe xi. When the pose
change exceeds a threshold, the current frame is chosen as a keyframe. In the factor graph,
the newly selected keyframe xi+1 is associated with the previous state node xi. LiDAR
scans between two keyframes are discarded to maintain a relatively sparse factor graph
while balancing map density and memory consumption, suitable for map construction.
Ultimately, the relative pose transformation ∆Ti,i+1 between xi and xi+1 is obtained. In
practical testing, considering the field of view of the LiDAR and ensuring offline mapping
accuracy in degraded scenarios, the thresholds for positional and rotational changes to
identify keyframes are set to 0.5 m and 1 degree, respectively.

3.2.2. Absolute Pose Factors

In degraded scenarios, relying solely on long-term pose estimates from IMU and Li-
DAR will accumulate errors. To address this issue, the backend optimization system needs
to incorporate sensors providing absolute pose measurements to eliminate cumulative
errors. Absolute pose correction factors mainly include two types:

1. GPS-Based Factors

Absolute poses are obtained from GPS sensors in the current state and transformed
into the local Cartesian coordinate system. As shown in Figure 3, an absolute pose factor has
already been introduced at keyframe x1. After adding new keyframes and other constraints
to the factor graph, due to the slow growth of accumulated errors from the frontend
odometry, introducing absolute pose constraints too frequently for backend optimization
can lead to difficulty in constraint solving and poor real-time algorithm performance.
Therefore, a new GPS factor is added to keyframe x3 only when the position change
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between keyframe x3 and keyframe x1 exceeds a threshold. The covariance matrix of
the absolute pose depends on the precision of the sensor used and the quality of satellite
signal reception.

2. Control Point-Based Factors in GPS-Limited Environments

In environments lacking satellite signals, such as tunnels, GPS sensors cannot be
directly used for pose correction. In such cases, control points’ absolute coordinates are
obtained in advance using surveying equipment like total stations. When the LiDAR moves
near the relevant control points, the target perception algorithm outputs the control points’
relative coordinates in the LiDAR coordinate system. Using Equation (6), the LiDAR’s
absolute pose coordinates are then determined. The covariance matrix of the absolute pose
depends on the covariance of the target positions output by the Kalman tracking algorithm
in the perception algorithm.

Ppoint = R × Prel + Plidar (6)

where Ppoint—absolute coordinates of the control point; R—rotation matrix representing
the LiDAR’s pose; Prel—relative coordinates of the control point in the LiDAR coordinate
system; Plidar—absolute coordinates of the LiDAR.

In the actual process, absolute pose factors are only introduced into the system for
global optimization when the pose covariance output by the frontend odometry is signifi-
cantly larger than the received absolute pose covariance.

3.2.3. ICP Factors

The ICP factor involves solving the relative pose transformation between point clouds
corresponding to any two keyframes using the ICP algorithm. In the factor graph shown
in Figure 3, when keyframe xn is added to the factor graph, a set of ICP constraints is
constructed between keyframes x3 and xn. The backend optimization factor graph adds
ICP factors in the following two situations:

1. Loop Closure Detection

When a new keyframe xi+1 is added to the factor graph, it first searches for the
keyframe xk in the Euclidean space that is closest to xi+1. An ICP factor is added to the
factor graph only if xk and xi+1 are within a spatial distance threshold ∆d and a temporal
separation greater than a threshold ∆t. In practical experiments, due to the difficulty of
forming loop constraints in the unidirectional movement of subways, loop constraints are
constructed in platform areas of both up and down directions on the same route.

2. Low-Speed or Stationary Conditions

In degraded scenarios, the IMU zero offset estimates in the frontend odometry can
accumulate significant errors during prolonged low-speed or stationary vehicle conditions,
leading to drift in the frontend odometry. Therefore, additional constraints need to be
added in such scenarios to avoid pose drift during prolonged stops. Subway trains typically
stop only at platforms in tunnel scenes, where point cloud features are abundant, providing
sufficient geometric information for ICP constraint solving. When the system detects
low-speed or stationary states, it re-caches every keyframe in this state. Whenever a new
keyframe xi+1 is added to the factor graph, a constraint relationship is established between
xi+1 and the keyframe xk, which is the furthest in time from the current keyframe.

When the conditions for adding ICP factors are met, the system searches for the n
closest keyframes in the historical keyframes to establish a local point cloud map. This local
point cloud map is then used for ICP constraint solving with xi+1, ultimately obtaining
a set of relative pose transformation relationships between xi+1 and xk. The covariance
matrix of the ICP factor is calculated based on the goodness of fit output during the ICP
solving process.
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3.2.4. Landmark Factors

The establishment and solving of Landmark factors adopt the Bundle Adjustment
(BA) optimization concept commonly used in visual SLAM. As shown in Figure 3, when
keyframes x0, x1, and x2 all observe the same landmark point L1, and since the absolute
coordinates of L1 remain constant, constraint relationships between x0—x1, x1—x2, and
x0—x2 can be established based on Equation (7).

PL1 = R0 × Pr0 + Pl0 (7)

where PL1—absolute coordinates of landmark point L1, not directly solved during the
process; Ri—attitude rotation matrix of the LiDAR in keyframe xi; Pri—relative coordinates
of the landmark point in keyframe xi in the LiDAR coordinate system; Pli—absolute
coordinates of the LiDAR in keyframe xi.

Therefore, the key to adding Landmark factors lies in how to obtain real-time observa-
tions of the position and attitude of the same landmark point. The selection of landmark
points is crucial, ensuring continuous observations over a short period and maintaining
relatively constant shape and size during the observation to avoid abrupt changes in
the object’s center of mass. In urban scenes, road signs are chosen as landmark points,
while in tunnel scenes of rail transportation, mileposts alongside the track are selected as
landmark points.

3.3. Map Update

After completing the global optimization for each keyframe, it is necessary to update
the stored global map based on the optimized keyframe poses. Furthermore, considering
the LiDAR’s position in the map, a local feature map is extracted from the global map. This
local feature map serves as input to the frontend odometry for scan-to-map matching. In the
process of updating the local feature map, this paper implements a position-based sliding
window approach. It involves extracting information from the nearest n sub-keyframes to
the current LiDAR position, focusing on plane point clouds. Subsequently, the concatenated
map undergoes voxel filtering and downsampling to reduce computational load during
the matching process.

4. Experimental Results and Discussion

Considering the difficulty in obtaining real-time ground truth poses in the tunnel
environment of rail transportation, the proposed offline mapping method with a tightly
coupled frontend and graph optimization backend was experimentally validated in both
urban road outdoor scenes and rail transportation scenes.

Taking into account the challenge of obtaining real-time ground truth poses in the
tunnel environment of rail transit, the mapping method proposed in this paper, featur-
ing a tightly coupled frontend and a graph optimization backend, has not only been
experimentally validated in subway scenarios but has also been compared with RTK+IMU
integrated navigation in industrial park building obstruction environments. This additional
comparison aims to further assess the cumulative error of the proposed method.

4.1. Experimental Equipment

The mapping data acquisition system uses the RS-LiDAR-M1, an automotive-grade
solid-state LiDAR. It operates with a 905 nm wavelength laser, providing a maximum range
of 200 m and an accuracy ranging within ±5 cm. The LiDAR has a horizontal field of view
of 120◦ with a resolution of 0.2◦, a vertical field of view of 25◦ with a resolution of 0.2◦, and
the ability to output up to 750,000 points per second in single-echo mode. The selected
IMU model is the STIM300, with an accelerometer resolution of 1.9 µg, bias instability of
0.05 mg, gyroscope resolution of 0.22◦/h, and gyroscope bias instability of 0.3◦/h. The
sensor installation and layout diagrams for the subway environment and the industrial
park environment are illustrated in Figure 4a,b, respectively.
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Figure 4. Physical installation and arrangement of sensors. (a) Sensors on the train. (b) Sensors on
the autonomous driving platform vehicle.

4.2. Subway Tunnel Scene

Given the degraded nature of tunnel scenes, where the number of feature points in
LiDAR point clouds for matching is limited and prone to misalignment, the covariance of
point-to-plane residuals needs to be increased when detecting degradation in the frontend
odometry. Simultaneously, in the ESKF filter, the covariance of IMU inertial solutions is
reduced. During the backend optimization process, considerations include addressing drift
in low-speed stationary train scenarios and selecting appropriate landmarks.

4.2.1. Low-Speed Stationary Scenario

During the map data collection process, the train normally stops in the platform area,
which is rich in features. There are enough planar feature points for inter-frame matching
and the addition of ICP constraints, as shown in Figure 5. Features such as the tunnel wall
and the train stop sign can be used for matching.
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Figure 5. Point cloud effect in normal station platform parking (underground subway parking).

However, in situations where the train is stationary in the curved section of the tunnel
or when the ICP factor is turned off in the algorithm, significant drift can occur when there
is a large change in train speed during stationary periods, as illustrated in Figure 6. The
output trajectory exhibits a backward movement when the train is stationary, emphasizing
the need to avoid abrupt acceleration, deceleration, and stops in severely degraded scenes
during map data collection.
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Figure 6. Drift in train parking trajectory in tunnel. The trajectory exhibits a phenomenon of moving
backward within the red circle.

4.2.2. Landmark Selection

Due to the limited number of extractable landmarks in subway tunnel scenes, the
intensity information of point clouds and the arrangement of signs inside the tunnel
are considered. The recognition of hundred-meter markers is chosen as a landmark for
constraints, as shown in Figure 7. Since the hundred-meter markers are made of metal, the
intensity information is substantial, allowing for direct extraction of relevant point clouds
based on intensity filtering. The final step involves extracting the centroid coordinates of
the relevant point clouds and incorporating them into the factor graph for optimization
and solving.
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4.2.3. Landmark Selection

In the subway tunnel scenario, quantitative analysis is challenging due to the lack
of ground truth. Therefore, the evaluation is based on multiple data collections in the
same subway tunnel scene, comparing the consistency of trajectories and focusing on
the assessment in platform areas and tunnel sections. The three-dimensional point cloud
results of the mapping are shown in Figures 8 and 9. In the original point cloud, the tracks
and tunnel walls are clearly visible, indicating that our algorithm achieves high accuracy in
local areas.
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Figure 9. Mapping results of subway tunnel curve.

To evaluate the consistency of data collected, we used the trajectory from the initial
mapping session as ground truth and analyzed the error in the overlap between the trajec-
tories of subsequent mapping sessions. To address the challenge of ensuring a consistent
starting point for each data collection, we utilized the evo tool to align the trajectories
of multiple sessions, as illustrated in Figure 10. Developed by Michael Grupp, the evo
tool is a Python package designed for assessing odometry and SLAM results. It provides
functionalities, including aligning and comparing trajectories, computing errors, and gen-
erating visualizations, facilitating a comprehensive evaluation of localization and mapping
performance. The maximum Absolute Pose Error (APE) recorded was 0.1 m, with an
average of 0.04 m and a Root Mean Square Error (RMSE) of 0.05 m.
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Additionally, due to the significant distance between subway stations in tunnels, map-
ping within the tunnels involves a higher number of keyframes and the use of unsampled
point clouds for stitching. This results in elevated computational and memory requirements
for offline map construction. To address these challenges, we propose a multi-map stitching
approach, creating a map for each platform interval and then concatenating maps from
multiple intervals. Since subway platforms exhibit rich features, we choose to stop and
concatenate maps at these locations. We record the last frame pose of the previous map as
the initial pose for the current map and manually adjust constraints at the platform using
the interactive SLAM method to reduce cumulative errors [33].

4.3. Industrial Park Building Obstructed Environment

To simulate tunnel environments as much as possible and provide a comparison
with RTK + IMU combined navigation positioning as ground truth, the experiments were
conducted in an industrial park scene. In this scene, the LiDAR’s horizontal field of view
was obstructed by buildings, but it still received satellite positioning signals. The sensors
were mounted on the roof of the vehicle, as shown in Figure 4a. The addition of GPS factors
in the backend optimization was constrained only at the starting and ending positions of the
trajectory. The ground truth trajectory during mapping was provided by a high-precision
RTK + IMU combined navigation device, and the established point cloud map is shown in
Figure 11. In the 3D point cloud map, vehicles and signs are clearly visible, indicating that
our algorithm has high precision in local areas.

We compared the keyframe trajectories output by our algorithm after backend opti-
mization with the ground truth provided by the combined inertial navigation (RTK + IMU)
to quantitatively evaluate the accuracy of the mapping algorithm. The trajectory curves in
the x, y, and z directions are plotted in Figure 12. The blue curve represents the ground
truth trajectory provided by the RTK + IMU combined navigation device, and the gray
dashed line represents the keyframe trajectory output by the mapping algorithm. It can be
observed that the trajectory error is small in the horizontal direction, while in the vertical
direction, the altitude error from the RTK + IMU combined navigation is relatively larger
compared to the errors in the horizontal direction. The altitude trajectory curve output by
our mapping algorithm is smoother and generally consistent with the ground truth trend.

In the quantitative assessment of algorithm accuracy, we selected the APE of the tra-
jectory as the evaluation metric, focusing only on position error and neglecting orientation
error. Therefore, the calculated APE results are in units of meters. The computed APE
results are shown in Figures 13 and 14.
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Due to the inclusion of GPS factors only at the starting and ending points during the
backend optimization process and the use of trajectory alignment methods, the APE is
larger at the starting point. The increased error at turning points is attributed to calibration
errors between the LiDAR and IMU, with the calibration error causing more noticeable
APE as the turning speed increases. Additionally, partial occlusion by buildings results in
a decrease in the accuracy of the RTK + IMU combined navigation used as ground truth,
further contributing to an increase in APE values.

The statistical results of APE in Figure 14 are as follows: maximum value (max) = 0.88 m,
minimum value (min) = 0.04 m, mean = 0.23 m, and root mean square error = 0.26 m. The
quantitative analysis results demonstrate the algorithm’s high trajectory accuracy.

4.4. Discussion

In comparison to mainstream SLAM algorithms, such as Fast-LIO [18,30], our pro-
posed frontend odometer and backend optimization framework focuses on mapping. This
approach addresses the challenges of pose estimation in degraded tunnel environments.
The design of our framework is specifically tailored to the structural characteristics of
tunnel scenes and the operational requirements of trains in tunnel intervals, resulting in
high-precision point cloud construction.

In the subway mapping and localization process, the absence of a GNSS as ground
truth may result in cumulative errors. Additionally, during the initial wake-up phase of the
train, without GNSS signals for providing the initial position, the system faces challenges
in initialization.

To address these limitations, we propose utilizing visual recognition of mileposts and
their unique identifiers alongside the tracks. The unique identifiers of mileposts can be
leveraged for calibrating subway positions. Moreover, incorporating visual methods can
enhance the success rate of initialization, thus increasing the robustness of the subsequent
localization system.

5. Conclusions

In this paper, we proposed a high-precision point cloud map construction method
based on LiDAR and IMU. The approach utilizes a tightly coupled frontend odometry with
an ESKF for inter-frame pose estimation, and a backend global pose optimization employing
graph optimization theory. Absolute pose factors, ICP factors, and Landmark factors are
incorporated into the optimization process based on real-world scenarios. In the context of
long urban subway tunnels, the algorithm introduces detection for degraded scenes in the
frontend odometry and emphasizes the inclusion of ICP factors in low-speed stationary
situations and the selection of Landmark points in the backend graph optimization.

The algorithm’s performance is evaluated by assessing the consistency of trajectories
using different data collected on the same route, with a particular focus on platform and
tunnel areas. The trajectory alignment error is consistently below 0.11 m. No degrada-
tion anomalies were observed throughout the entire tunnel section. Additionally, in the
experimental setup in an industrial park scenario, the optimized trajectory is compared
with the ground truth provided by the integrated navigation system, yielding an RMSE
of 0.26 m for the APE and an accumulated error of less than 0.2%. It is evident that the
proposed algorithm achieves high-precision map construction in tunnels and obstructed
environments. The next step will be to address the pose initialization problem in degraded
environments, particularly in long tunnel scenarios.
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