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Abstract: Playing a crucial role in ocean activities, internal solitary waves (ISWs) are of significant
importance. Currently, the use of deep learning for detecting ISWs in synthetic aperture radar (SAR)
imagery is gaining growing attention. However, these approaches often demand a considerable
number of labeled images, which can be challenging to acquire in practice. In this study, we propose
an innovative method employing a pyramidal conditional generative adversarial network (PCGAN).
At each scale, it employs the framework of a conditional generative adversarial network (CGAN),
comprising a generator and a discriminator. The generator works to produce internal wave patterns
as authentically as possible, while the discriminator is designed to differentiate between images
generated by the generator and reference images. The architecture based on pyramids adeptly
captures the encompassing as well as localized characteristics of internal waves. The incorporation of
upsampling further bolsters the model’s ability to recognize fine-scale internal wave stripes. These
attributes endow the PCGAN with the capacity to learn from a limited amount of internal wave
observation data. Experimental results affirm that the PCGAN, trained with just four internal wave
images, can accurately detect internal wave stripes in the test set. Through comparative experiments
with other segmentation models, we demonstrate the effectiveness and robustness of PCGAN.

Keywords: deep learning; internal solitary waves; stripe extraction; SAR; pyramidal conditional
generative adversarial network; small data

1. Introduction

Internal solitary waves in the ocean are captivating phenomena within the field of
oceanography, occurring beneath the ocean’s surface and widely present in stably stratified
oceans [1,2]. With amplitudes reaching up to 240 m [3], these waves carry substantial
energy and have significant impacts on offshore drilling operations [4,5]. Simultaneously,
they play a crucial role in the intricate interplay of energy within the marine ecosystem [6].
Hence, it is imperative to precisely ascertain the positions of oceanic internal waves.

Internal waves propagate beneath the ocean surface, and the marine environment
is complex and dynamic, making it challenging to directly obtain parameters of internal
waves. Utilizing multiple underwater gliders, as indicated in [7], allows for the reconstruc-
tion of three-dimensional regional oceanic temperature and salinity fields in the northern
South China Sea. Observations of oceanic internal waves can be conducted through tem-
perature and salinity profiles, providing corresponding parameters [8]. However, the data
on internal waves obtained through this method remains very limited. Fortunately, ISWs
induce convergence and divergence effects, leading to alterations in surface roughness and
sun-glint reflection. This phenomenon results in the manifestation of alternating bright
and dark stripes on satellite images. Since the early 1980s, this pattern has been detected
in synthetic aperture radar (SAR) [9,10]. SAR remains unaffected by cloud cover and can
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capture high-resolution ocean surface imagery ranging from a few meters to tens of meters,
irrespective of weather conditions, day or night [11]. Consequently, SAR has emerged
as a robust tool for monitoring oceanic internal waves [12]. Automated segmentation of
oceanic internal wave stripes within SAR images is necessary to ascertain the positions
of the stripes and subsequently investigate their propagation or invert the parameters of
oceanic internal waves.

Over the past few decades, there has been significant research into algorithms and
techniques aimed at the automated detection of internal wave signatures from SAR imagery,
employing fundamental image-processing methods. Rodenas and Garello [13] conducted
oceanic internal wave detection and wavelength estimations using wavelet analysis. They
introduced the creation of a suitable wavelet basis for the identification and localization of
nonlinear wave signatures within SAR ocean image profiles. Subsequently, the application
of continuous wavelet transform is employed to estimate energies and wavelengths within
soliton peaks from the identified internal wave trains. Ref. [14] employs a 2D wavelet
transform based on multiscale gradient detection for automated detection and orientation
of oceanic internal waves in SAR images. Furthermore, it introduces a coastline detection
approach to achieve sea-land separation, thereby enhancing the effectiveness of internal
wave detection within the SAR image context. Simonin et al. [15] introduce a framework
that combines wavelet analysis, linking, edge discrimination, and parallelism analysis
for the automated identification of potential internal wave packets within SAR images.
The framework has been demonstrated and tested using six satellite images of the East-
ern Atlantic, affirming its capability to determine the signature type and wavelength of
the internal wave. The study conducted by Zhang et al. [16] investigates the utilization
of compact polarimetric (CP) SAR in detecting and identifying oceanic internal solitary
waves (ISWs). CP SAR images are generated and 26 CP features are extracted from full-
polarimetric Advanced Land Observing Satellite (ALOS) Phase Array type L-band SAR
(PALSAR) images. The effectiveness of different polarization features in distinguishing
ISWs from the sea surface is evaluated using Jeffries and Euclidean distances. Expanding
upon this, an enhancement to the detection capabilities of ISWs is introduced through the
implementation of a K-means clustering algorithm utilizing compact polarimetric (CP)
features. Qi’s research [17] employed the Gabor transform to extract wave characteris-
tics. The study further utilized the K-means clustering algorithm for stripe segmentation
within SAR images. To distinguish the light and dark wave stripes from the background,
morphological processing techniques were applied.

With the evolution of neural networks, machine-learning-based models for internal
wave detection have been extensively explored in recent years. Machine learning has
the capability to automatically extract deep features, providing a more convenient and
effective approach. For instance, Wang et al. [18] developed a method for detecting oceanic
internal waves, employing a deep learning framework known as PCANet. This method
combines binary hashing, principal component analysis (PCA), and block-wise histograms.
Following this, a linear support vector machine (SVM) classification model is utilized to
accurately identify the locations of oceanic internal waves using a rectangular frame. In the
study by Bao et al. [19], the Faster R-CNN framework is employed to achieve the detection
of oceanic internal waves within SAR images. This model adeptly navigates the challenge of
misidentifying features like ship wakes, prone to aliasing, while simultaneously accurately
delineating regions responsible for generating internal waves.

However, the aforementioned deep learning-based methodologies are limited to
detecting the positions of oceanic internal waves through rectangular bounding boxes;
these approaches are unable to characterize the precise locations of the distinct stripes.

Ref. [20] presents a comprehensive algorithm designed to detect and identify oceanic
internal waves. To address the pervasive speckle noise in SAR images, the initial step
involves the application of the Gamma Map filtering technique. Subsequently, the clas-
sification of SAR images and identification of those containing oceanic internal waves
are accomplished through feature fusion and SVM. Ultimately, the Canny edge detection
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method is employed for the detection and recognition of oceanic internal wave stripes
within the SAR images. Within the framework proposed by Vasavi [21], U-Net is applied to
carry out feature extraction and segmentation tasks, delving into wave parameters such as
frequency, amplitude, latitude, and longitude. Following this, the Korteweg-de Vries (KdV)
solver is applied, taking the internal wave parameters as inputs and providing density
and velocity plots corresponding to the internal waves as outputs. Li et al. [22] applied a
modified U-Net framework to extract ISW-signature information from Himawari-8 images
in challenging imaging scenarios. They opted for α-balanced cross-entropy as the loss
function, deviating from the traditional cross-entropy, and achieved remarkable results.
Zheng et al. [23] proposed an algorithm utilizing the SegNet architecture for segmenting
oceanic internal waves. This approach proficiently detects the presence of oceanic internal
waves within SAR images and determines the specific positions of both light and dark
stripes. In [24], an algorithm for segmenting oceanic internal waves’ stripes was introduced,
relying on Mask R-CNN. Additionally, they employed a separation and matching approach
within the sector region (SMMSR). This method not only accomplishes the localization
of internal waves but also allows for the extraction of crucial parameters, encompassing
the width and directional angle, associated with every discernible light and dark stripe.
In [25], Middle Transformer U2-net (MTU2-net) was introduced as an innovative model,
combining a transformer and a unique loss function to enhance its ability to detect ISWs.

The aforementioned intelligent detection methods operate through a training process.
The majority of machine-learning-based approaches for internal wave detection rely on
substantial training datasets to ensure precise detection outcomes. However, obtaining a
large number of labeled internal wave images remains a challenge. In addition to traditional
data augmentation methods, there have been studies focused on training neural networks
with a small number of samples. For instance, in [26], different-sized convolutional kernels
were employed to extract features from a small sample set comprehensively. Ref. [27]
employs a random forest-like strategy, achieving superior classification accuracy without
overfitting, even with much smaller training datasets than commonly studied in deep
learning literature for image classification tasks. In [28], a multi-scale model was applied
to detect oil spills on the sea surface, achieving accurate detection results with very few
training samples. In [29], a training strategy involving mutual guidance was used to create
a powerful hyperspectral image classification framework trained on a small dataset.

Inspired by these methods, we apply the concept of training on a small dataset to
the task of internal wave detection. Given the finer and less distinct features of oceanic
internal wave stripes, we introduce a pyramidal conditional generative adversarial network
(PCGAN) to achieve stripe segmentation of oceanic internal waves with limited training
data. PCGAN is composed of a series of adversarial networks at different scales. At each
scale, it undergoes training from coarse to fine using observed internal wave images and
detection maps. At each scale, PCGAN includes an adversarial network consisting of a
generator and a discriminator. The generator’s role is to capture the characteristics of the
observed image and produce an internal wave detection map that closely mimics reality.
Meanwhile, the discriminator is tasked with differentiating between real images and those
generated by the generator. Each generator’s output becomes the input for the subsequent,
more detailed-scale generator, as well as the current-scale discriminator. The training
process is independently conducted at each scale, following the structure of a Conditional
Generative Adversarial Network. This article’s primary contributions can be outlined
as follows:

(1) We introduce a pioneering Pyramidal Conditional Generative Adversarial Networks
(PCGAN) structure designed for internal wave stripe extraction. This model inte-
grates lightweight networks for both generators and discriminators.

(2) We independently train adversarial network structures at every scale, allowing a
cascade of internal wave features to flow from coarse to fine in the data processing.

(3) We enhance the model’s capability to extract finer details of internal wave stripes
from the images by incorporating upsampling.
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(4) We manually labeled a diverse set of internal wave images to train and validate the
model’s performance across various characteristics.

The subsequent sections are organized as follows: Section 2 provides a detailed overview
of the model architecture and training specifics of PCGAN. In Section 3, we present the
experimental configurations and assessments conducted. Following that, Section 4 delves into
a comprehensive discussion of the results of the experiments. Lastly, Section 5 summarizes
the conclusions derived from the presented approach and its effectiveness.

2. Materials and Methods
2.1. Basic GAN and Its Variants

The foundational GANs model, initially presented by Goodfellow et al. in 2014 [30],
operates as a framework for training deep generative models through a two-player minimax
game. The primary objective of GANs is to train a generator distribution, denoted as pG, to
closely align with the distribution of real data, represented by pdata. In the context of GANs,
the model entails the learning of a generator network G responsible for generating samples
by transforming a latent noise vector z into a corresponding sample G(z). This generator
is subjected to training through an adversarial interplay with a discriminator network D,
which is designed to discriminate between samples originating from the authentic data
distribution pdata and those generated by the distribution pG. The core objective of the
original GANs is articulated through the following objective function:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log (1 − D(G(z)))]. (1)

Conditional Generative Adversarial Networks (CGAN) [31] are a modification of
the basic GAN that integrates conditional information to effectively guide the generation
process. In CGAN, both the discriminator and generator are augmented with conditional
vectors, denoted as y, which can encompass auxiliary details like class labels or image
descriptions. This inclusion empowers the generator to produce samples with enhanced
accuracy by considering specific conditions. The objective function of CGAN can be
represented as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x | y)] +Ez∼pz(z)[log (1 − D(G(z | y)))]. (2)

The error function of conventional GANs might face challenges during training, stem-
ming from their potential discontinuity concerning the generator’s parameters. As an
alternative, the Wasserstein Generative Adversarial Network (WGAN) [32] adopts the
Earth-Mover distance, also known as Wasserstein-1 distance, denoted as W(q, p). This dis-
tance metric is loosely defined as the minimal cost needed to transport mass for converting
the distribution q into the distribution p, where the cost is determined by the product of
mass and transport distance. Subject to reasonable assumptions, W(q, p) exhibits continuity
everywhere and differentiability almost everywhere.

The WGAN loss function is formulated through the Kantorovich-Rubinstein duality
to achieve:

min
G

max
D

V(D, G) = Ex∼pdata(x)[D(x)]−Ez∼pz(z)[D(G(z))]. (3)

Since its introduction in 2014, GAN and its variants have achieved notable success
in generative image modeling and demonstrated exceptional performance in semantic
segmentation [33–36]. Adversarial learning has also been shown to be suitable for small-
data training [37–39]. To obtain an effective method for high-precision internal wave
detection in practical scenarios, the latter part of the current section presents an approach
to detect internal wave stripes using a Pyramidal Conditional Generative Adversarial
Network (PCGAN) trained with a restricted amount of data.
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2.2. The PCGAN for the Extraction ISW

Firstly, the initial internal wave remote sensing image is denoted as I0, the corre-
sponding labeled image as S0, and the internal wave identification map generated by our
PCGAN is represented as Ŝ0. Both S0 and Ŝ0 are binary images, where 0 indicates the
presence of internal waves, and 1 indicates the absence of internal waves at the oceanic
surface. Pyramidal representations spanning multiple scales are constructed for I0, S0, and
Ŝ0, commencing from the primitive scale.

We first represent the image I0, S0 in the form of an image pyramid by up and
downsampling. Here, In and Sn denote the representations obtained after n successive
downsamplings of the original images. In each downsampling step, the image size is
reduced to 1/r of the previous level, where the coefficient r is typically set to 2. Correspond-
ingly, I+m and S+

m are obtained by upsampling the original image, and their image sizes are
rm times those of I0 and S0. The collection of representations across N + M + 1 scales forms
the pyramidal representation set used in the PCGAN for internal wave detection, adopting
a coarse-to-fine strategy.

Our proposed approach introduces a pyramid-based conditional generative adversar-
ial network, a hierarchical structure composed of a series of discriminators and generators
operating at various scales. Here, Dn and Gn denote the discriminator and generator at
the n-th downsampling layer, respectively. The corresponding generated image by Gn is
denoted as Ŝn. Symmetrically, at the m-th upsampling layer, they are denoted as D+

m , G+
m ,

and Ŝ+
m . Illustrating the PCGAN architecture (Figure 1), the core structure is represented in

the central pyramidal section. Arrows on both sides indicate the flow of data from coarse to
fine, while the upper corners depict the general structure of the generator and discriminator
at each scale. The internal wave remote sensing image I0 and its corresponding labeled
image S0 serve as the input, while the internal wave detection map Ŝ+

M represents the result
generated by the entire PCGAN framework.

G1 D1

G0 D0

GM
+ DM

+

↑

+

In

Gn
^Sn+1

^Sn

D
n

^S
n or S

n

In

Score X
n

I1

^SN

I0 ^S1

IM
+

^S0

^SM
+

GN DN

IN SN

S1

S0

SM
+

Figure 1. The fundamental structure of PCGAN for stripe extraction in oceanic internal waves,
with a brief showcase of the generator and discriminator at the corners. Arrows on both sides
illustrate the data flow from coarse to fine. Blue represents the generators, while orange represents
the discriminators.
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At every scale, taking the internal wave remote sensing image In and the previously
generated internal wave detection map Ŝn+1 as inputs, the generator Gn produces the
current-scale generated internal wave detection map Ŝn. Simultaneously, discriminator
Dn is presented with inputs in the form of either the pair (In, Sn) or (In, Ŝn), leading to the
generation of respective discrimination scores Xn. The generator aims to produce results
that are as realistic as possible to deceive the discriminator, while the discriminator’s goal
is to distinguish between the generated detection results and the reference internal wave
detection map.

2.3. Discriminator Architecture of PCGAN

Figure 2 illustrates the structural design of the discriminator Dn of PCGAN. The
structure consists of five convolutional blocks, with the final block containing only a
convolutional layer. In the preceding four blocks, batch normalization (BN) is applied after
the convolutional layer, followed by activation using the LeakyReLU function.

^Sn or Sn

In

Dn

Score Xn

Figure 2. The structural design of the discriminator Dn of PCGAN.

The discriminator Dn takes either the produced pair (In, Ŝn) or the real pair (In, Sn)
as the input and produces a discrimination score Xn. The score Xn is determined by
computing the mean from the feature map produced by the last convolutional layer of Dn.
Additionally, it serves as an indication of the likelihood that the image pair originates from
a real image, with values closer to 1 indicating a higher probability of being from a real
image. At each scale, the discriminator strives to assign a high score to the genuine image
Sn, classifying it as real, and a low score to the generated image Ŝn, categorizing it as fake,
thereby distinguishing between the two.

2.4. Generator Architecture of PCGAN

The structure of the generator Gn of PCGAN is illustrated in Figure 3. It takes the
observed remote sensing image In at the current scale along with the extraction result
Ŝn+1 generated by the generator Gn+1 at the previous scale as inputs. Then, the detection
map Ŝn+1 is upsampled by a factor of r, resulting in Ŝ↑

n+1, having identical dimensions

as In. Subsequently, the pair (In, Ŝ↑
n+1) is concatenated along the channel dimension

and then processed by the convolutional network Cn. Similar to the discriminator, the
convolutional network Cn is composed of five convolutional modules. Each module consists
of a convolutional layer, a BN layer, and an activation layer. The convolutional network’s
output is pixel-wise blended with Ŝ↑

n+1, meaning that the grayscale values of features are
combined. This process yields the output of the generator Gn for stripe extraction of the
internal wave, denoted as:

Ŝn = Ŝ↑
n+1 + Cn(In, Ŝ↑

n+1) = Gn(In, Ŝn+1). (4)

Here, the upward arrow ↑ indicates the image after upsampling. At the coarsest scale,
to ensure consistency in channels, ŜN+1 is set as a blank image of the same size as IN .
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By utilizing the detection image from the previous layer Ŝn+1, the generator aims to
enhance its expressive capacity and generate internal wave detection images that are as
realistic as possible, thereby obtaining better scores in the discriminator.

In

Cn

Gn

^Sn+1

^S
^Sn

n+1

+

+Upsample Concatenate Blend

Figure 3. The structural design of the generator Gn of PCGAN.

2.5. The Training Process of PCGAN

The model PCGAN is trained hierarchically from the coarsest scale to the finest scale,
with a CGAN trained at each scale. Once the training at a previous scale is completed, the
generated internal wave detection images Ŝn+1 are utilized for training at the next scale.
The loss function is based on WGAN-GP (Wasserstein GAN with gradient penalty) and
incorporates an L1-norm regularization term, formulated as follows:

L(Gn, Dn) = LWGAN(Gn, Dn) + LL1(Gn) + LGP(Dn), (5)

where 
LWGAN(Gn, Dn) = E

[
Dn(In, Ŝn)

]
−E[Dn(In, Sn)],

LL1(Gn) = λ1E
[∥∥Sn − Ŝn

∥∥
1

]
,

LGP(Dn) = λ2E
[
(
∥∥∥∇S̃n

Dn(In, S̃n)
∥∥∥

2
− 1)2

]
,

where λ1 and λ2 are balancing parameters, the specific values for these parameters will
be discussed in Section 3.4. Furthermore, S̃n is a random variable sampled uniformly
from either Sn or Ŝn. LWGAN refers to the error function of WGAN, which provides more
stable training compared to the logarithmic formulation in Equation (2). LL1 represents the
L1-norm regularization term, which imposes a penalty based on the pixel-wise dissimilarity
between the ground truth Sn and the produced Ŝn. LGP denotes the gradient penalty term,
which prevents the gradients of the model from vanishing or exploding.

The training process of PCGAN, as shown in Algorithm 1, accepts ocean internal
wave images along with their corresponding stripe label images as input, and outputs
the trained generators and discriminators at various scales. For example, given a training
image and its corresponding label image pair (I0, S0), and the scale number is set to
upsample and downsample once, we first generate an image pyramid (I1, S1), (I0, S0), and
(I+1 , S+

1 ). Training starts from the coarsest layer. Firstly, the output of G1 is computed by
Ŝ1 = G1(I1, Ŝ2), where Ŝ2 is set to be a fully zero image with the same size as I1. And D1
takes (I1, Ŝ1), (I1, S1) as input. Next, update the parameters of D1 and G1 sequentially
according to Equation (5). Secondly, concatenate Ŝ1 and I0 as the input to G0 to obtain the
output Ŝ0 = G0(I0, Ŝ1). Update D0 and G0 using Equation (5). Finally, similar to other
scales, generate Ŝ+

1 = G+
1 (I+1 , Ŝ0) and then train D+

1 and G+
1 sequentially. Following this,

the pair (I0, S0) repeats the training process, iteratively updating the parameters of PCGAN.
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After completing the designated training epochs, the next image pairs in the training set
will undergo the same training steps as (I0, S0).

Algorithm 1 Training of PCGAN for Stripe Extraction of Oceanic Internal Waves

Input: Remote sensing images and their corresponding labeled internal wave images
constitute the training set

1: for all training epochs do
2: Create image pyramid and initialize ŜN+1 to 0
3: for all scales do
4: Take the previously generated Ŝn+1 and the image In as input.
5: Generate Ŝn using Equation (4)
6: Maintain the parameters of Gn and optimize Dn utilizing Equation (5)
7: Maintain the parameters of Dn and optimize Gn utilizing Equation (5)
8: end for
9: end for

Output: A collection of trained models at every scale.

3. Experiments and Results
3.1. Data Preparation

Figure 4 depicts a flow chart outlining the standard process of extracting ISW informa-
tion from a SAR image [40]. The image, captured at 21:56 UTC on 8 March 2019, undergoes
preprocessing steps from SAR image correction to geometric correction. Following this,
the enhanced image is processed, leading to the manual extraction of the position informa-
tion of ISWs. However, manual extraction is time-consuming. Our proposed PCGAN is
designed to address the final step in Figure 4, employing machine learning techniques to
automatically extract the accurate position of the wave crest of ISWs from local images.

Figure 4. The extraction process of ISW information from SAR images. The red boxes in the first three
images indicate the specific location in the last two images.

To achieve this goal, the original SAR images are obtained from the northern section
of the South China Sea, globally acknowledged as the “natural experimental field” for
investigating oceanic Internal Solitary Waves [41]. Figure 5 shows the distribution of
internal waves in the region from 2010 to 2020 in June and July [40]. Specifically, we use
Sentinel-1A/B SAR images with the interferometric wide swath (IW), featuring an image
width of 250 km and a spatial resolution of 20 m.

From the original SAR images, we initially compiled a dataset consisting of 86 local
images containing internal waves for model training and validation. The dimensions of
these images varied from 150 to 950 pixels in width and height. To ensure consistency, all
these images were uniformly resized to 512 × 512 pixels and subsequently subjected to
manual annotation.

From Figure 6 depicted below, we have selected four pairs of images for model training
using a limited sample size. Each pair comprises the original SAR image containing internal
waves and its corresponding labeled image, which serves as the ground truth for our
training process.
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Figure 5. The distribution of internal waves (represented by red lines) in the northern region of the
South China Sea from June to July in the years 2010 to 2020.

(a) (b) (c) (d)

Figure 6. PCGAN’s training set, comprising four pairs of images with distinct features. (a) high
contrast, (b) low contrast, (c) minor coda, (d) more coda.

The upper row of images in Figure 6 highlights the diverse features of internal waves,
illustrating their distinctive characteristics. This inherent diversity within the images con-
tributes to a comprehensive and diverse training process. Among these images, Figure 6a
presents a heightened color contrast, whereas Figure 6b showcases a lower contrast. In
Figure 6c, there exists a minor coda presence, whereas Figure 6d displays more prominent
coda interference (‘coda’ means the secondary or trailing part of the stripes that follows
the primary wave); however, only the most pronounced portion is annotated in the label
image. This ensures that the model also prioritizes the primary wave within the internal
wave image.

Eighty-two (82) additional images, featuring distinct content but matching the size
of the four images in the training set, were compiled to form the initial test set. To further
validate the effectiveness and generalization of the model, an extra 40 images from the South
China Sea and Andaman Sea were incorporated into the test set. Importantly, these images
were not resized, ensuring that they differ in image size from the training set. Subsequently,
all image pairs in both the testing and training datasets underwent normalization, scaling
their values to the range of [0, 1].

3.2. Experimental Environment and Basic Parameters

On a 64-bit Ubuntu 18.04.6 system, we utilized the PyTorch 1.12.1 machine learning
framework for implementing and testing the model. The setup included the CUDA toolkit
9.1.85 software and an NVIDIA A100 GPU.

PCGAN underwent a training regimen comprising 5000 epochs, with each scale
iteration set to 1. For the training of individual generators (Gn) and discriminators (Dn),
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we harnessed the Adam optimizer, employing β1 = 0.5 and β2 = 0.999. A learning rate of
0.0005 was designated for each network, while a minibatch size was 1.

At each scale, both the generator and discriminator convolutional neural networks
consist of five convolutional layers. These convolutional layers have a filter size of 3 × 3,
a stride of 1, and padding set to TRUE, ensuring that the dimensions of the input and
output images remain unchanged. The kernel depth and activation functions for each
convolutional layer are detailed in Table 1, which categorizes them into the initial layer
(Layer 1), the middle layers (Layers 2 to 4), and the final layer (Layer 5).

Table 1. The kernel depth and activation functions for each convolutional layer.

Layers Initial Layer Middle Layers
Final Layer

Generator Discriminator

Kernel depth 64 32 c = 3 1
Activation functions LReLU LReLU Tanh null

Here, the generator and discriminator share the same parameters in the initial layer
and the middle layers. They only differ in the final layer, where the generator’s kernel depth
is set to c, which needs to match the input image’s channel. In our task, the input In is an
RGB three-channel SAR image, so c is set to 3. LReLU represents the Leaky ReLU function.

3.3. Evaluation Criteria

To assess the efficacy of the proposed model and make comparisons with other mod-
els, we use four commonly used evaluation indicators for segmentation models: MIoU,
F1-Score, MACC, and FWIoU. MACC calculates the average of all class accuracies (6).
The F1-Score, calculated as the harmonic mean of Recall and Precision (as shown in
Formulas (7) and (8)), is a widely employed performance metric in binary classification
tasks. MIoU (Mean Intersection over Union) measures the overlap between the predicted
segmentation regions by the model and the actual labels. The process involves calculating
the Intersection over Union (IoU) for each class, which in our task includes the internal wave
class and the background class. Subsequently, the average of IoUs across these two classes
is computed (as Formula (10)). FWIoU (Frequency Weighted Intersection over Union) is an
enhanced metric derived from MIoU, which considers the occurrence frequency of each
class. It is the weighted average of the IoUs for these two classes (11).

MACC =
1
2
(

TP
TP + FN

+
TN

TN + FP
), (6)

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, (7)

F1-Score = 2 · Recall · Precision
Recall + Precision

, (8)

Frequency =
TP + FN

TP + TN + FP + FN
, (9)

MIoU =
1
2
(

TP
TP + FN + FP

+
TN

TN + FN + FP
), (10)

FWIoU = Frequency · TP
TP + FP + FN

(11)

+ (1 − Frequency) · TN
TN + FP + FN

.

Here, the number of pixels correctly recognized as “internal wave” is denoted by TP
(true positive), while FN (false negative) represents the pixels erroneously missed and
not identified as “internal wave”. FP (false positive) corresponds to the number of pixels
misclassified as “internal wave” by the model, although they are labeled as “non-internal
wave” in the ground truth dataset. Lastly, TN (true negative) represents the accurate
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identification of pixels as “non-internal wave”, indicating the background pixels that were
correctly classified.

3.4. Selection of Balancing Parameters

To determine the optimal balance parameters for the input image, we also conducted
a series of preliminary experiments. The L1-norm constraint parameter (λ1) and the weight
assigned to the gradient penalty in the WGAN-GP loss term (λ2) were set to 5, 10, and
20, respectively. The model underwent training with the identical training dataset, and
subsequent evaluation was carried out on the test dataset. Table 2 displays the average
MIoU values corresponding to these parameter combinations on the test set. The highest
values is highlighted in the cell with a gray background.

Table 2. Average MIoUs of different balancing parameters.

λ2

λ1
5 10 20

5 0.6080 0.5641 0.5861
10 0.6130 0.6315 0.6189
20 0.5771 0.5950 0.6036

Based on the metrics, we opted to set the values of both balance parameters to 10
during the subsequent training process.

3.5. Selection of the Number of Upsample and Downsample Layers

To ascertain the ideal count of upsampling and downsampling layers, we conducted a
series of preliminary experiments. Table 3 presents the training duration and MIoU values
for the model with different configurations, where the upsampling and downsampling lay-
ers are set to 0, 1, and 2. Both the testing and training datasets comprise 256 × 256 images,
with the model trained for 5000 epochs. It can be observed that while the two-layer upsam-
pling shows a slight advantage in evaluation metrics over the one-layer upsampling, its
training time is nearly four times that of the one-layer upsampling model. Moreover, due to
memory constraints, the model with two upsampling layers can only handle images of half
the size compared to the one-layer model. Therefore, we opt for one layer of upsampling.

Table 3. Performance metrics and training duration across different scales.

Downsample Layer Upsample Layer MIoU Training Time (min)

0
0 0.5398 50.29
1 0.5803 241.44
2 0.5851 1033.20

1
0 0.6177 85.13
1 0.6238 273.94
2 0.6278 1073.79

2
0 0.6128 108.19
1 0.6224 295.12
2 0.6274 1127.28

After determining the number of upsampling layers, we reverted the dimensions
of both the training and testing set back to the original 512 × 512 size. Table 4 displays
the average model MIoU scores under different downsampling layer configurations. The
highest values is highlighted in the cell with a gray background. As the number of down-
sampling layers increases, the size of the internal wave images to be identified, denoted as
IN , becomes progressively smaller, making it challenging to provide meaningful overall
information. In such a context, the increasing number of downsampling layers N does not
significantly enhance the model’s detection capability.
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Table 4. Fixed upsampling layers at one, different MIoU scores for various downsampling layers.

Downsample Layer Upsample Layer MIoU

0

1

0.6012
1 0.6003
2 0.6289
3 0.6102

Therefore, guided by the outcomes of the preliminary experiments, we fix the number
of upsampling layers M to 1, and choose 2 for the number of downsampling layers N.

3.6. Experimental Results and Comparative Analysis

In this segment, we conducted a performance comparison between PCGAN and four
other methods, encompassing two traditional approaches: Adaptive Thresholding (AT) [42]
and Canny edge detection [43], as well as two deep learning methodologies: Conditional
Generative Adversarial Network (CGAN) and U-Net [44]. For a fair comparison, we
utilize the identical training set, comprising only four pairs of images as depicted in
Figure 6, to separately train these three deep learning models. Additionally, we use
identical hyperparameters and conduct training for 5000 epochs.

Table 5 presents an assessment of the performance of AT, Canny, CGAN, U-net,
and PCGAN on individual internal wave images, employing the metrics outlined in
Section 3.3. Furthermore, Figure 7 visually presents the detection outcomes for four distinct
test scenarios, providing insights into the comparative performance of the detection models.
Figure 8 illustrates the recognition results of four internal wave images with different sizes,
all from the Andaman Sea and featuring multiple wave crests within a single image. Table 6
provides the average metrics across all test images of the same size and compares the
performance of the five methods. Table 7 presents the average metrics for an additional set
of 40 images from the Andaman Sea and the South China Sea with varying sizes across
three deep learning methods. In the table, the highest values for each metric are highlighted
in cells with a gray background.

Table 5. The performance of internal wave detection on nine representative images in the test set.

Approach Metrics I II III IV V VI VII VIII IX

AT

MACC 0.9776 0.9762 0.8894 0.8796 0.9093 0.8498 0.8741 0.9563 0.9738
F1-Score 0.1918 0.1752 0.0736 0.0527 0.0790 0.1010 0.0980 0.1192 0.2459

MIoU 0.5418 0.5361 0.4636 0.4531 0.4751 0.4508 0.4624 0.5098 0.5569
FWIoU 0.9700 0.9694 0.8819 0.8700 0.8944 0.8334 0.8580 0.9487 0.9556

Canny

MACC 0.9839 0.9848 0.9801 0.9763 0.9797 0.9650 0.9655 0.9833 0.9746
F1-Score 0.2722 0.2694 0.1720 0.2055 0.3207 0.3045 0.3017 0.1997 0.2244

MIoU 0.5707 0.5702 0.5371 0.5454 0.5853 0.5722 0.5714 0.5471 0.5505
FWIoU 0.9767 0.9784 0.9728 0.9669 0.9664 0.9498 0.9506 0.9760 0.9561

CGAN

MACC 0.9946 0.9966 0.9946 0.9918 0.9842 0.9797 0.9392 0.9907 0.9830
F1-Score 0.6253 0.7561 0.6758 0.4636 0.1193 0.5179 0.3203 0.1806 0.4273

MIoU 0.7247 0.8022 0.7524 0.6468 0.5238 0.6645 0.5645 0.5450 0.6273
FWIoU 0.9899 0.9936 0.9905 0.9843 0.9687 0.9676 0.9245 0.9832 0.9675

U-Net

MACC 0.9945 0.9956 0.9951 0.9910 0.9877 0.9867 0.9841 0.9879 0.9796
F1-Score 0.5934 0.6404 0.7676 0.5572 0.5471 0.5591 0.5518 0.4827 0.1416

MIoU 0.7082 0.7333 0.8091 0.6886 0.6821 0.6873 0.6825 0.6530 0.5279
FWIoU 0.9896 0.9916 0.9915 0.9844 0.9774 0.9753 0.9728 0.9822 0.9600

PCGAN

MACC 0.9941 0.9944 0.9954 0.9922 0.9870 0.9840 0.9835 0.9919 0.9812
F1-Score 0.6638 0.6599 0.7171 0.6867 0.6372 0.5155 0.5845 0.5587 0.5390

MIoU 0.7454 0.7434 0.7770 0.7575 0.7272 0.6656 0.6981 0.6897 0.6749
FWIoU 0.9897 0.9905 0.9923 0.9871 0.9781 0.9719 0.9727 0.9867 0.9677
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(a) (b) (c) (d)

Image

Mask

AT

Canny

CGAN

U-Net

PCGAN

Figure 7. Under four scenarios depicting high contrast (a), low contrast (b), minor coda presence
(c), and more significant coda interference (d), the recognition results of five detection models (AT,
Canny, CGAN, U-net, PCGAN).



Remote Sens. 2024, 16, 787 14 of 19

(a) (b) (c) (d)

Image

Mask

CGAN

U-Net

PCGAN

Figure 8. Results of detecting internal waves in four representative images using three machine-
learning methods (CGAN, U-Net, and PCGAN) with various image sizes. (a): 316 × 436 pixels;
(b): 668 × 664 pixels; (c): 328 × 820 pixels; (d): 400 × 552 pixels.

Table 6. The mean metrics for test images with the same size across the five methods.

Method MACC F1-Score MIoU FWIoU
AT 0.9307 0.1154 0.4966 0.9174

Canny 0.9755 0.2034 0.5459 0.9626
CGAN 0.9735 0.2719 0.5759 0.9612
U-Net 0.9855 0.3065 0.5964 0.9734

PCGAN 0.9849 0.4177 0.6315 0.9739

Table 7. The mean metrics for test images with different sizes across the three deep learning methods.

Method MACC F1-Score MIoU FWIoU
CGAN 0.6176 0.2577 0.5435 0.8919
U-Net 0.6099 0.2985 0.5735 0.9244

PCGAN 0.7593 0.4538 0.6307 0.9314
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Figure 9 displays box plots illustrating the four evaluation metrics discussed in
Section 3.3 for the five detection methods. While our method may have a slightly lower
maximum value compared to CGAN and U-Net, it outperforms other models in terms of
both mean performance and stability.

PCGAN U-Net Canny CGAN AT
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0.4
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0.6

0.7

0.8
F1-Score

PCGAN U-Net Canny CGAN AT

0.45
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0.55
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PCGAN U-Net Canny CGAN AT
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PCGAN U-Net Canny CGAN AT

0.84

0.86

0.88

0.90

0.92
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Figure 9. Boxplots of the five detection methods (AT, Canny, CGAN, U-net, and PCGAN) across four
evaluation metrics (F1-Score, MIoU, MACC, and FWIoU). The box signifies the middle 50% of the
data, while the orange line inside represents the median. Whiskers extend to illustrate the overall
extent of the dataset, and dots denote certain outliers.

4. Discussion
4.1. Descriptive Assessment

Figure 7 showcases SAR images with distinct features along with the detection results
obtained using five different models. In (a), there is a high contrast between the stripes
and the background, while in (b), the stripes are similar to the background, resulting in
low contrast. In (c), in addition to simple stripes, there is a minor coda presence, and in (d),
there is a more pronounced coda wave interference.

In these scenarios, as depicted in Figure 7c, compared to other models, PCGAN
captures finer details of internal waves, exhibiting a closer resemblance to the mask image.
For Figure 7b, where the features of the internal wave image are less pronounced, other
models perform poorly, while PCGAN provides a notably superior detection result. In
Figure 7a,d, even in situations where CGAN and U-Net yield subpar results, PCGAN still
produces detection results that closely align with the reference data.

In Figure 8, the recognition results of internal wave images with four different sizes
are demonstrated under three distinct deep learning methods. These images all contain
multiple wave crest lines. It can be observed from the figure that, in terms of recognition
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completeness and continuity, PCGAN is noticeably superior to the other two methods,
exhibiting a closer resemblance to the reference data.

This qualitative evidence supports the superior performance of PCGAN over other
approaches to comprehensiveness and stability.

4.2. Measurable Assessment

The performance metrics for nine internal wave images across the five segmentation
methods are displayed in Table 5. In each column, the evaluation criteria with the highest
scores are shaded in gray. Overall, the table indicates that PCGAN achieves higher values
across the assessment metrics.

Table 6 provides the mean performance metrics of the five detection models, providing
a comprehensive overview of their collective performance across the entire set of test
images of the same size. PCGAN exhibits slightly lower MACC than U-Net, which can be
attributed to the fact that internal wave stripes are often narrow and occupy only a small
fraction of the entire image, potentially compromising the efficacy of the MACC metric. For
the remaining three metrics, PCGAN consistently achieves higher average scores compared
to the other four detection models.

Table 7 presents the average metrics for 40 images of different sizes under three deep
learning methods, with 20 from the South China Sea and 20 from the Andaman Sea. From
the results, it can be observed that PCGAN outperforms the other two models in all four
evaluation metrics. This demonstrates the superior generalization capability of PCGAN,
enabling it to handle images from different maritime regions and varying sizes effectively.

The data utilized for generating the boxplots in Figure 9 encompass all test images.
Although PCGAN did not perform the best in terms of the maximum values across the
four evaluation metrics, it consistently demonstrates higher median evaluation scores and
greater overall detection robustness. This provides quantitative evidence that PCGAN
improves internal wave detection across a range of contexts.

Through the above discussion, both visual and numerical assessments have validated
the advantages of the pyramid architecture, reducing the model’s demand for extensive
training data. Remarkably, PCGAN demonstrated exceptional proficiency in internal
wave detection even with just four training data pairs. Consequently, PCGAN stands as
an effective solution for addressing internal wave detection with constraints on training
data availability.

5. Conclusions

In this research, a Pyramidal Conditional Generative Adversarial Network (PCGAN)
was designed to facilitate the learning of an internal wave stripe extraction model, even
when the training dataset is limited. The PCGAN possesses strong capabilities for extracting
wave stripes due to the following features:

(1) Pyramid Structure: The PCGAN incorporates a pyramid structure, integrating multi-
ple scales of conditional generative adversarial networks. This architecture ensures a
stable and efficient training process.

(2) Data Flow: The model employs a data flow from coarse to fine across different scales,
enabling it to effectively capture both global and local information.

(3) Upsampling Enhancement: The introduction of upsampling significantly enhances the
model’s ability to extract fine features, particularly effective in capturing wave crests.

(4) Parameter Optimization: To achieve optimal performance, a series of preliminary
experiments were conducted to fine-tune the model parameters.

Subsequently, the model’s performance on the training set was showcased and com-
pared with other models. The experimental results conclusively affirm that, even when
trained with only four sets of training data, the well-trained PCGAN excels in accurate
stripe extraction of oceanic internal waves. Furthermore, it demonstrates robust stability
and generalization capabilities.
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Furthermore, there are areas for potential improvement in future research. For instance,
enhancing the continuity of stripe generation and reducing noise in image generation, as
well as enhancing the capability to recognize internal waves in remote sensing images
from larger areas and more complex environments. Subsequent studies will also explore
the use of extracted internal wave stripes for investigating internal wave propagation and
inverting parameters.
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Abbreviations
The following abbreviations are used in this manuscript (arranged in the order as they appear in
the text):

ISW Internal solitary wave
SAR synthetic aperture radar
PCGAN pyramidal conditional generative adversarial network
CGAN conditional generative adversarial network
CP compact polarimetric
ALOS Advanced Land Observing Satellite
PALSAR Phase Array type L-band SAR
PCA principal component analysis
SVM support vector machine
KdV Korteweg-de Vries
SMMSR separation and matching approach within the sector region
GAN Generative Adversarial Network
WGAN Wasserstein Generative Adversarial Network
BN batch normalization
GP Gradient Penalty
IW interferometric wide swath
MIoU Mean Intersection over Union
IoU Intersection over Union
FWIoU Frequency Weighted Intersection over Union
AT Adaptive Thresholding
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