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Abstract: Crop leaf chlorophyll content (LCC) and fractional vegetation cover (FVC) are crucial
indicators for assessing crop health, growth development, and maturity. In contrast to the traditional
manual collection of crop trait parameters, unmanned aerial vehicle (UAV) technology rapidly
generates LCC and FVC maps for breeding materials, facilitating prompt assessments of maturity
information. This study addresses the following research questions: (1) Can image features based
on pretrained deep learning networks and ensemble learning enhance the estimation of remote
sensing LCC and FVC? (2) Can the proposed adaptive normal maturity detection (ANMD) algorithm
effectively monitor maize maturity based on LCC and FVC maps? We conducted the following
tasks: (1) Seven phases (tassel initiation to maturity) of maize canopy orthoimages and corresponding
ground-truth data for LCC and six phases of FVC using UAVs were collected. (2) Three features,
namely vegetation indices (VI), texture features (TF) based on Gray Level Co-occurrence Matrix,
and deep features (DF), were evaluated for LCC and FVC estimation. Moreover, the potential of
four single-machine learning models and three ensemble models for LCC and FVC estimation was
evaluated. (3) The estimated LCC and FVC were combined with the proposed ANMD to monitor
maize maturity. The research findings indicate that (1) image features extracted from pretrained
deep learning networks more accurately describe crop canopy structure information, effectively
eliminating saturation effects and enhancing LCC and FVC estimation accuracy. (2) Ensemble models
outperform single-machine learning models in estimating LCC and FVC, providing greater precision.
Remarkably, the stacking + DF strategy achieved optimal performance in estimating LCC (coefficient
of determination (R2): 0.930; root mean square error (RMSE): 3.974; average absolute error (MAE):
3.096); and FVC (R2: 0.716; RMSE: 0.057; and MAE: 0.044). (3) The proposed ANMD algorithm
combined with LCC and FVC maps can be used to effectively monitor maize maturity. Establishing
the maturity threshold for LCC based on the wax ripening period (P5) and successfully applying
it to the wax ripening-mature period (P5–P7) achieved high monitoring accuracy (overall accuracy
(OA): 0.9625–0.9875; user’s accuracy: 0.9583–0.9933; and producer’s accuracy: 0.9634–1). Similarly,
utilizing the ANMD algorithm with FVC also attained elevated monitoring accuracy during P5–P7
(OA: 0.9125–0.9750; UA: 0.878–0.9778; and PA: 0.9362–0.9934). This study offers robust insights for
future agricultural production and breeding, offering valuable insights for the further exploration of
crop monitoring technologies and methodologies.
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1. Introduction

As one of the world’s top three major cereal crops, maize is extensively cultivated in
various regions [1]. In agricultural production, crop maturity delineates the physiological
stage of maturation, with maize maturity typically discerned through the assessment of
indicators such as the milk line on maize kernels, moisture content, and leaf color. It serves
as a pivotal determinant for yield formation and concurrently represents a crucial trait for
assessing the growth stages of crops [2,3]. For agricultural decision makers, this parameter
is a crucial indicator for selecting superior varieties [4]. Therefore, the precise monitoring
of maize maturity is paramount for efficiently screening maize breeding materials and
ensuring the security of grain production [5].

The chlorophyll content in maize leaves (LCC) typically exhibits specific dynamic
changes, reflecting the turnover of photosynthetic activity and biochemical components [6].
The fractional vegetation cover (FVC) provides information about the spatial distribution
of crop growth and effectively characterizes the growth status of maize [7,8]. As maize
approaches maturity, photosynthesis slows, and nutrient transport decreases, reducing the
demand for chlorophyll. Consequently, the LCC gradually decreases, causing the leaves
to turn yellow. Simultaneously, vegetation begins to wither, causing a decrease in the
density and coverage area of surface vegetation, i.e., a reduction in the FVC. Therefore,
monitoring and analyzing these two parameters, LCC and FVC, effectively reflects the
degree of maturity in maize.

Conventional field environments are typically chosen as observation sites for monitor-
ing crop LCC, FVC, and maturity. However, traditional monitoring methods often involve
intricate field surveys and manual sampling [9]. This approach is not only time-consuming
and labor-intensive but also constrained by meteorological conditions and geographical
location, making it challenging to generalize methods for regional monitoring [10]. There-
fore, there is an urgent need to develop a monitoring method that is capable of rapidly
and efficiently capturing information on the LCC, FVC, and maturity of field crops. In
the past three decades, remote sensing technology has gained favor among researchers
in crop monitoring [11]. In particular, unmanned aerial vehicle (UAV) remote sensing
technology is preferred because of its low operational requirements and flexibility [12–14].
Based on these advantages, UAV remote sensing technology has been widely applied for
monitoring crop phenotypic parameters, such as leaf area index (LAI), LCC, plant height,
and biomass [15–20].

Numerous studies indicate that crop critical physiological and biochemical traits,
such as leaf water content, LCC, and FVC, rapidly decrease with increasing maturity.
Generally, crop physiological and biochemical trait parameter changes manifest as spectral
responses [21]. For instance, a reduction in crop LCC may increase reflectance in the red-
edge and near-infrared spectral bands. Therefore, maturity information can be extracted
from crop canopy spectral reflectance. Significant progress has been made in remote
sensing studies on extracting crop maturity information. In the field, spectral curve analysis
based on time series vegetation index (VI) has become widely adopted. Although various
algorithms, such as Fourier filtering [22] and asymmetric Gaussian functions [23], have
been employed to smooth noise generated from long time series, they require complete
vegetation index data for the entire growth period as input, introducing a notable degree
of latency.

In addition to the method based on time series VI, several studies have underscored
the potential of canopy spectral responses for inverting field crop parameters [11,24]. Sub-
sequently, methods are employed to derive crop maturity information based on these crop
parameters. This approach involves two main tasks: (1) estimating critical physiological
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and biochemical traits of crops (such as leaf water content, LCC, and FVC) based on remote
sensing and (2) determining maturity information based on these critical physiological and
biochemical traits of crops (such as leaf water content, LCC, and FVC).

For the first task, a common approach is to use VIs (such as the normalized differ-
ence vegetation index (NDVI) and greenness vegetation index (GVI)) in combination with
models to establish relationships with crop parameters for estimating field crop parame-
ters [25–27]. However, due to the significant differences in canopy structure among crops
at different growth stages, traditional VIs contain limited feature information and strug-
gle to comprehensively reflect the entire canopy structure of the crop growth period [28].
Additionally, VIs are insensitive to canopy changes under high crop cover conditions,
often leading to underestimation of high values [29]. Researchers have introduced texture
features (TF) based on VI images to address this issue and express crop canopy structure
differences [28,30,31]. However, the number and contribution of shallow texture features
extracted from VI images are limited [32]. In reality, the complexity of the field crop envi-
ronment substantially exceeds the scope covered by these shallow textural features [33].
In other words, there is a need to extract richer textural features to enhance crop canopy
structure information extraction. Many studies highlight the significant potential of deep
learning in extracting deep features from images [34]. Therefore, extracting deep features
(DF) from texture images using deep learning models has emerged as a viable approach to
enhance the estimation of crop parameters. Typically, when VI or shallow texture features
are used for crop parameter estimation, single-machine learning (ML) models, such as
random forest (RF) or support vector machine (SVM) models, are often constructed [35].
However, single-ML models struggle to fully capture the complex relationships between
measurements and features, leading to increased estimation bias, especially for increasingly
smaller values. Ensemble learning algorithms integrate multiple machine learning models,
providing stronger generalization and better resistance to overfitting, more effectively
leveraging the advantages of model fusion [17,36].

For the second task, which involves determining maturity information based on criti-
cal physiological and biochemical traits of crops, the most common approach is the fixed
threshold method. For example, some studies define maize grain maturity as a water
content less than 35%, while sunflower fruit maturity is considered when the water content
is greater than 40% [37,38]. Fiber fineness thresholds have also been employed to determine
cotton maturity [39]. In addition to these threshold methods, machine learning technologies
can be used to classify maturity via features such as the VI, LCC, and FVC. However, ma-
chine learning methods based on black-box rules cannot be used to comprehensively assess
crop maturity. To address this issue, scholars have proposed monitoring soybean maturity
based on crop parameter graphs combined with anomaly detection algorithms [40]. This
method offers sufficient insights into soybean maturity through crop parameter monitoring.
As a novel approach, whether this method can be applied to maize maturity monitoring has
not been determined and warrants further exploration. Growth parameters combined with
monitoring maize maturity is relatively scarce. These methodologies primarily involve the
inversion of crop parameters, followed by their correlation with maturity information. For
instance, some researchers collect UAV multispectral imagery and ground data, coupling
radiative transfer and empirical models to invert maize grain moisture content, thereby
monitoring maize maturity [41]. However, these relevant studies overlook the spatial
variation of maize physiological and biochemical parameters (such as FVC and LCC) in the
field, providing crucial information about maturity. In conclusion, the main focus of this
study is to propose a high-precision maize FVC, LCC, and maturity information extraction
model based on UAV remote sensing. This research is aimed at addressing the following
questions: (1) Can image features extracted from pretrained deep learning networks and
via ensemble learning enhance the estimation of remote sensing LCC and FVC data? (2)
Can the proposed adaptive normal maturity detection algorithm (ANMD) applied to LCC
and FVC maps be used to effectively monitor maize maturity? This study collected seven
phases of maize canopy orthoimages and ground-truth data for LCC, FVC, and maturity
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information. The conducted work included (1) UAV data collection for seven phases (tas-
sel initiation to maturity) of maize canopy orthoimages and corresponding ground-truth
data for the LCC and six phases of the FVC. (2) Three features—VIs, TFs, and DFs—
were tested for LCC and FVC estimation. Moreover, the potential of four single-machine
learning models and three ensemble models for LCC and FVC estimation was evaluated.
(3) The estimated LCC and FVC were combined with the proposed ANMD to monitor
maize maturity.

2. Datasets
2.1. Study Area

The research site is located in Xingyang city, Henan Province, China (Figure 1).
Xingyang city is situated between 34◦36′ and 34◦59′N and between 113◦7′ and 113◦30′E [42].
Xingyang city experiences a warm, temperate, continental monsoon climate, with an aver-
age annual temperature of 14.8 ◦C and an average annual precipitation of 608.8 millimeters.
The experimental site is dedicated to maize breeding and cultivates numerous varieties of
maize. The experiment involved seven phases of data collection, which were conducted on
the following dates in 2023: 27 July (tassel initiation stage, P1), 11 August (silking stage,
P2), 18 August (blistering stage, P3), 1 September (milk ripening stage, P4), 7 September
(waxy ripening stage, P5), 14 September (denting stage, P6), and 21 September (maturity
stage, P7).
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2.2. Field Experiments
2.2.1. LCC and FVC Acquisition

The LCC was measured using a portable SPAD-502 sensor (Soil and Plant Analyzer
Development, Tokyo, Japan). The procedure involved selecting the first and second fully
expanded leaves above the maize plants for measurement, considering both the tail and
middle sections in the non-vein areas. These measurements were repeated three times at
the center of each maize plot, and the mean was recorded as the final result. The results
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indicated that the maximum LCC occurred at P3, reaching 69.3 µg/cm2, while the minimum
value was observed at P7, measuring 11.5 µg/cm2 (Table 1).

Table 1. Field measurements of LCC and FVC.

Stage
LCC FVC

Num Max Min Mean Num Max Min Mean

P1 (7.27) 80 61.5 47.4 53.98 80 0.895 0.620 0.784
P2 (8.11) 80 66.7 54.0 60.87 80 0.935 0.709 0.846
P3 (8.18) 80 69.3 53.9 60.57 80 0.948 0.656 0.830
P4 (9.1) 80 64.2 28.9 47.60 80 0.966 0.641 0.860
P5 (9.7) 80 53.6 18.3 38.75 80 0.909 0.515 0.743
P6 (9.14) 80 47.8 17.6 31.01 80 0.930 0.346 0.702
P7 (9.21) 80 40.2 11.5 22.43 - - - -

Total 560 69.3 11.5 45.03 480 0.966 0.346 0.797

The maize LAI was also measured using an LAI-2200C Plant Canopy Analyzer (LI-
COR Biosciences, Lincoln, NE, USA). Prior to measurement, light intensity was measured
in an open-backlight area. Subsequently, LAI measurements were obtained parallel and
perpendicular to the maize rows. The LAI measurements were converted into the FVC
using Equation (1). In this equation, G, θ, and Ω represent the spherical direction of the
leaf projection factor, solar zenith angle, and clumping index (G = 0.5, θ = 0, and Ω = 1),
respectively. Table 1 presents the analysis results of the maize field FVC dataset, revealing
that the maximum FVC value at P4 was 0.966, while the minimum occurred at P6 with a
value of 0.346.

FVC = 1 − e−G×Ω× LAI
cos (θ) (1)

2.2.2. UAV Imagery

In this study, the selected UAV model was the DJI Phantom 4 Multispectral Drone (DJI
Technology Co., Ltd., ShenZhen, China), which has a visible light sensor and five single-
band sensors (R, G, B, RedEdge, and NIR). Image acquisition occurred between 11:00 a.m.
and 2:00 p.m. Before takeoff, the parameter settings were adjusted according to the experi-
ment and experimental field environment. The flight altitude was approximately 30 meters,
with a longitudinal overlap of approximately 80% and a lateral overlap of approximately
80%. After the images were acquired, DJI Terra software V4.0.1 version (DJI, Shenzhen) was
used for high-precision stitching, generating digital orthophoto maps (DOM). Subsequently,
the DOM samples underwent georeferencing and radiometric calibration processing. A
vector map (Figure 1c) of the study area was created using ArcGIS (ArcGIS, ERSI, Inc.,
Redlands, CA, USA), and multispectral image information was extracted in batches using
ENVI software 5.6.1 version (Exelis Visual Information Solutions, Boulder, CO, USA).

3. Methods

The specific steps of the technical workflow in this study (Figure 2) are outlined
as follows:

1. Data Collection: At this stage, data collection was conducted, including obtaining
data for seven phases of maize LCC, six phases of maize FVC, and seven phases of
UAV-based maize multispectral DOMs.

2. Feature Extraction: Feature extraction was performed based on vegetation index maps
involving three key features: (a) VIs, (b) TFs based on Gray Level Co-occurrence
Matrix (GLCM), and (c) DFs.

3. Regression Model Construction: The three types of extracted features were input into
preselected single-model regression models and ensemble models to estimate LCC
and FVC.
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4. Maize maturity monitoring: Utilizing the ANMD, thresholds for LCC and FVC
that correspond to mature maize at P5 were determined. These thresholds were
subsequently applied during P5–P7 to monitor maize maturity.
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3.1. Regression Techniques

Least absolute shrinkage and selection operator (LASSO) is a regularization method
that is commonly utilized in linear regression [43]. Introducing an L1 regularization
term, which is the sum of the absolute values of the parameters, into the loss function
encourages the model coefficients to shrink toward zero. A unique feature of LASSO is that
its regularization term induces sparsity in the model coefficients, automatically achieving
feature selection by compressing the coefficients of features with minimal impact on the
response variable to zero. LASSO has proven to be particularly powerful in handling
high-dimensional data and feature selection.

Multiple linear regression (MLR) is a widely employed statistical and machine learning
model for modeling the relationship between multiple independent variables and one
dependent variable. Unlike simple linear regression, MLR considers the influence of
multiple independent variables on the dependent variable, making it more suitable for
reflecting complex relationships in the real world [44,45].

K-nearest neighbors regression (KNR) is a nonparametric regression method. The
core idea of KNR is to predict the target variable by considering the k-nearest neighbors’
response variables to the predicted data point. During the prediction process, the mean
or weighted mean is used to estimate the value of the target variable. KNR is suitable for
handling complex nonlinear relationships, as it makes no strong assumptions about the
model form, providing flexibility.



Remote Sens. 2024, 16, 784 7 of 23

CatBoost is a machine learning framework based on gradient boosting trees that
is known for its efficient handling of categorical features without the need for one-hot
encoding or label encoding. Employing a rank-based algorithm improves the training
speed and performance of the model. CatBoost regression effectively handles missing
values without requiring additional preprocessing [46].

Ensemble learning integrates the predictions of multiple base models to construct a
meta-model, enhancing overall performance. Unlike individual models, ensemble learn-
ing frameworks leverage the strengths of different models, improving generalization and
mitigating overfitting to some extent [47,48]. The authors divided the original models
into meta-models and base models for combined regression. Different ensemble models
have different operating mechanisms. However, whether through voting or weighting,
they operate based on the collaboration of multiple models. Even in scenarios with large
datasets and limited computational resources, ensemble models can enhance overall per-
formance by synthesizing the advantages of different base models. Here, we select several
commonly used ensemble model frameworks, including stacking, blending, and bagging
ensemble learning.

3.2. Adaptive Normal Maturity Detection Algorithm

Figure 3 shows the grayscale histograms of ground-measured LCC and FVC during
P3, P4, and P5. In P3 and P4, when the maize plants were immature, the ground-measured
LCC and FVC exhibited a normal distribution. However, during P5, the expression of
early-maturing traits in the maize varieties led to differences in the distributions of LCC
and FVC. The LCC and FVC of most immature maize plots fall within the high-value
range and follow a normal distribution. In contrast, the mature maize in specific zones
showed a trend toward low values, deviating from the original normal distribution. There-
fore, based on these characteristics, we propose the ANMD algorithm for monitoring
maize maturation.
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Below, we illustrate this technique using the example of monitoring maturity based
on the LCC measurements obtained at P5 (Figure 4). (1) The algorithm starts by read-
ing the ground-measured LCC for maize and presenting it on a statistical distribution
histogram. Different bin widths (BWs) yield different frequency distribution histograms.
Therefore, the algorithm explores various BWs to obtain the optimal distribution. Consid-
ering the convergence performance of the algorithm, we define the range of BWs using
the Freedman–Diaconis and Scott rules [49]. (2) Each histogram exhibits different kurtosis



Remote Sens. 2024, 16, 784 8 of 23

and skewness values, which are crucial measures of histogram normality. Therefore, we
use the combination of kurtosis and skewness as the evaluation criterion for normality.
The combination that reaches the minimum absolute value is considered the most normal
distribution. Groups deviating from a normal distribution were considered distant from
the median and distributed at the tails of the histogram. Iterative removal of tail values was
performed to approach the most normal distribution, and corresponding thresholds were
recorded. This process is repeated for different BWs. (3) The algorithm seeks the optimal
threshold corresponding to the “most normal distribution”, which serves as the decision
value for determining whether the maize is mature.

BW(Freedman − Diaconis) =
2 ∗ Min

(
IQR, σ

3
)

n
1
3

(2)

BW(Scott) = 3.5σ ∗ n
−1
3 (3)

where IQR is the interquartile range of the sample, σ is the standard deviation, and n is the
number of input samples.
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3.3. Feature Extraction
3.3.1. Vegetation Indices

Physiological parameters, such as leaf water content and color in the crop canopy,
undergo dynamic changes at different growth stages. Due to these characteristics, the
canopy reflectance of crops varies across different growth stages. Individual band infor-
mation contains limited detail, and the establishment of VIs effectively integrates spectral
information [50]. Therefore, it is possible to characterize vegetation information based on
the differences in these band combinations. This study selected eight widely used VIs from
a pool of 49 VIs for estimating LCC and FVC. The specific selections are outlined in Table 2.
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Table 2. Vegetation indices.

Name Calculation Reference

NDVI (NIR − R)/(NIR + R) [51]
NDRE (NIR − RE)/(NIR + RE) [52]

LCI (NIR − REG)/(NIR + RED) [53]
EXR 1.4R − G [54]

OSAVI 1.16 (NIR − R)/(NIR + R + 0.16) [55]
GNDVI (NIR − G)/(NIR + G) [56]

VARI (G − R)/(G + R − B) [57]
MTCI (NIR − REG)/(REG − RED) [53]

3.3.2. GLCM Texture Features

Image TFs can slightly characterize the canopy structure of crops. In this study, we
extracted eight texture features based on GLCM, including mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation. The mean represents
the regularity of the texture information in remote sensing images; variance measures the
average contrast in the image, with smaller values indicating a more uniform distribution
of pixel values; homogeneity reflects the uniformity of local grayscale in the image; contrast
represents the depth of furrows and wrinkles in the image; dissimilarity measures image
dissimilarity; entropy quantifies the randomness of the image; second moment indicates
the image’s moments; and correlation assesses the image’s correlation. Considering the
maize planting environment and the pixel size of the UAV images, we used a window size
of 3 × 3 to extract the TF. For detailed information on the TFs, please refer to Table 3.

Table 3. Texture features.

Name Calculation

Mean ∑N
i=1 ∑N

j=1 p(i, j)× i
Variance ∑N

i=1 ∑N
j=1 p(i, j)× (i − mean)2

Homogeneity ∑N
i=1 ∑N

j=1 p(i, j)× 1
1+(i−j)2

Contrast ∑N
i=1 ∑N

j=1 p(i, j)× (i − j)2

Dissimilarity ∑N
i=1 ∑N

j=1 p(i, j)×
∣∣∣i − j

∣∣∣
Entropy −∑N

i=1 ∑N
j=1 p(i, j)× logp(i, j)

Second Moment ∑N
i=1 ∑N

j=1 p(i, j)2

Correlation ∑N
i=1 ∑N

j=1
(i−mean)(j−mean)×p(i,j)2

variance
Note: i and j represent the row number and column number, respectively, of the image; p (i, j) is the relative
frequency of two adjacent pixels.

3.3.3. Deep Features

ResNet50 successfully addresses the vanishing and exploding gradient issues during
deep neural network training by introducing an innovative residual connection structure.
The ResNet50 architecture incorporates multiple convolutional layers to extract information
at various scales. The computational operations performed by these convolutional layers
effectively model spatial relationships within the images, allowing ResNet50 to discern
different levels of detail in agricultural land cover. Consequently, it excels in capturing
deep features related to crop surface coverage with enhanced proficiency [58]. These
deep features mitigate the estimation errors caused by the complex canopy structure of
the environment and crops. Therefore, ResNet50 has significant potential for accurately
estimating LCC and FVC. ResNet50 extracts transformed features through five stages. The
input stage uses the selected texture feature maps as input to the model. Stage 0 to Stage 4
(S0–S4) transform the original feature tensor through different transformations. In these
stages, we obtain DFs with dimensions of 64, 256, 512, 1024, and 2048 (Figure 5).
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3.4. Performance Evaluation

To assess the accuracy of the LCC and FVC estimates, this study employed the coef-
ficient of determination (R2), root mean square error (RMSE), and average absolute error
(MAE) as evaluation metrics.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (6)

where, yi represents the actual measured values, ŷi denotes the estimated mean, and n
represents the number of samples. A model is considered more accurate for identical
sample data if it exhibits higher coefficients of determination and lower root mean square
error values.
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Regarding the precision of maize maturity monitoring, a comparative analysis con-
trasts the surveyed maize maturity data by ground-based professional breeders with the
predicted maturity data. Subsequently, the accuracy is computed by incorporating a con-
fusion matrix. Three key metrics, namely, overall accuracy (OA), producer accuracy (PA),
and user accuracy (UA), are selected to assess maturity monitoring accuracy (Table 4). OA
quantifies the model’s capability to detect instances across all categories accurately. UA
refers explicitly to the model’s ability to identify mature or immature corn regions correctly.
PA pertains to the proportion of accurately matched instances to the ground truth within
all monitored categories.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Producer accuracy =
TP

TP + FN
(8)

User accuracy =
TP

TP + FP
(9)

Table 4. Confusion matrix.

Confusion Matrix
Predicted

Matured Immature

Actual
Matured TP FN

Immature FP TN

In this context, we define true positives (TP) as cases where the actual and predicted
values are mature. Similarly, true negatives (TN) are instances where the actual value and
predicted value are also immature. The definitions apply to other scenarios. FN represents
instances where the true condition is maturity, but the prediction erroneously indicates
immaturity. FP denotes instances where the true condition is immaturity, but the prediction
incorrectly suggests maturity.

4. Results
4.1. Statistical Analysis of LCC and FVC

We constructed box plots to better understand the dynamic variations in LCC and
FVC in maize across different growth stages (Figure 6). The results indicate a consistent
increase in maize LCC from stages P1 to P3, followed by a gradual decrease from stages P4
to P7 (Figure 6a). In contrast, the maize FVC exhibited a distinct pattern, with a noticeable
decrease occurring only at stage P5 (Figure 6b). This discrepancy is attributed to the notion
that even though the maize LCC decreases at stage P4, the maize has not yet matured. In
other words, this decrease may be related solely to changes in leaf color, with minimal
variation in leaf area. Overall, due to the specific characteristics of the breeding field, both
LCC and FVC tended to increase during the early growth stages. As the expression of early
maturity traits unfolds in the subsequent stages, significant differences in LCC and FVC
become evident.
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4.2. Feature Correlation Analysis
4.2.1. Correlation Analysis of the Vegetation Indices

To better understand the relationship between LCC or FVC and VI, we conducted a
correlation (r) analysis (Figure 7). The results revealed negative correlations between LCC
and OSAVI and VARI and positive correlations with the remaining indices. Notably, LCC
exhibited the highest correlation with NDRE (0.904), while the correlation was lowest with
VARI (−0.537) (Figure 7a). On the other hand, FVC demonstrated positive correlations with
most VIs (excluding the GNDVI and VARI). Specifically, the FVC had a greater correlation
with OSAVI (0.730) and a lower correlation with the MTCI (0.415). Consequently, we
selected the NDRE and OSAVI as the VIs for estimating LCC and FVC, respectively.
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4.2.2. Correlation Analysis of GLCM Texture Features

We constructed the TFs of the NDRE and OSAVI images based on the correlations
between the VIs. Subsequently, a correlation analysis was conducted. The results indicated
(Figure 8) that the correlations of LCC and FVC with the eight GLCM TFs tended to be in the
range of [−0.871, −0.892] and [−0.679, 0.729], respectively. Notably, LCC exhibited greater
correlations with the mean (0.892), entropy (0.872), and correlation (−0.871) (Figure 8a).
Consequently, we opted to use the overlay of these three GLCM texture feature maps as
input for the ResNet50 model for LCC. Similarly, FVC had stronger correlations with the
mean (0.729), variance (0.712), and homogeneity (0.672) (Figure 8b).
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4.2.3. Correlation Analysis of Deep Features

We obtained a substantial number of deep features transformed by ResNet50. Specif-
ically, the extracted features were converted into a one-dimensional array, resulting in
2048×4×4 features. Subsequently, correlation analysis was conducted, and correlation
plots were generated between the deep features and LCC and FVC (Figure 9 displays only
a subset of representative samples due to the abundance of deep features). The results
indicate that the extracted features exhibit a maximum positive correlation with LCC at
0.950, and the maximum absolute negative correlation is −0.907 (Figure 9a). Compared to
those of VI and TF, |r| increased by approximately 0.045. For FVC, the highest positive
correlation with features was 0.759, and the highest absolute negative correlation was
−0.717 (Figure 9b). Compared to those of VI and TF, |r| increased by approximately 0.030.
This finding suggested that the features obtained after ResNet50 processing may have a
stronger association with LCC and FVC.
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4.3. LCC and FVC Estimation and Mapping
4.3.1. LCC and FVC Estimation

Before estimation, we partitioned the data into a training set (336 samples) and a test
set (224 samples) in a 6:4 ratio. Subsequently, the selected 1 VI, 3 TFs, and 2048×4×4 DFs
were individually input into four single and three ensemble models to estimate LCC and
FVC. Table 5 presents the results of LCC estimation using 21 different strategies. The overall
performance of LCC estimation appears favorable (R2: 0.790–0.930; RMSE: 3.974–6.861; and
MAE: 3.096–5.634). With different feature inputs, we investigated the impact of individual
models and ensemble models on the estimation results. When the VI was used as the
input, stacking performed the best (R2: 0.893; RMSE: 4.906; and MAE: 3.995); when TF was
used as the input, blending achieved the highest estimation accuracy (R2: 0.883; RMSE:
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5.122; and MAE: 4.119); and when DF was used as the input, stacking showed the best
performance (R2: 0.930; RMSE: 3.974; and MAE: 3.096). The scatter plots for these three
strategies (Figure 10) also indicate that DF+ stacking has superior estimation performance.

Table 5. LCC estimation results.

Name Model
LCC-Calibration LCC-Validation

R2 RMSE MAE R2 RMSE MAE

VI

MLR 0.842 6.077 4.863 0.828 6.236 5.107
LASSO 0.842 6.077 4.863 0.828 6.236 5.107

KNR 0.850 5.921 4.823 0.845 5.989 4.912
CatBoost 0.907 4.647 3.759 0.874 5.418 4.279
Bagging 0.874 5.415 4.235 0.856 5.674 4.602
Blending 0.923 4.237 3.423 0.890 4.969 4.011
Stacking 0.920 4.314 3.470 0.893 4.906 3.995

TF

MLR 0.822 6.441 5.394 0.814 6.513 5.454
LASSO 0878 5.332 4.091 0.819 6.376 5.069

KNR 0.858 5.672 4.579 0.816 6.432 5.259
CatBoost 0.875 5.412 4.458 0.855 5.788 4.833
Bagging 0.904 4.733 3.831 0.869 5.413 4.310
Blending 0.905 4.715 3.837 0.883 5.122 4.119
Stacking 0.892 5.012 3.970 0.871 5.377 4.229

DF

MLR 0.822 6.447 5.331 0.790 6.861 5.634
LASSO 0.922 4.259 3.407 0.900 4.735 3.879

KNR 0.850 5.917 4.812 0.839 6.00 4.917
CatBoost 0.888 5.124 4.062 0.879 5.233 4.216
Bagging 0.892 5.012 3.97 0.871 5.377 4.229
Blending 0.941 3.700 2.915 0.924 4.221 3.293
Stacking 0.945 3.586 2.792 0.930 3.974 3.096
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Similarly, the results of FVC estimation (Table 6) indicate that the ensemble models
demonstrate higher accuracy across the three features. When the VI is used as the input,
blending yields the best performance, with an R2 of 0.636, an RMSE of 0.065, and an MAE
of 0.052. When TF is used as the input, blending also performs well, with an R2 of 0.674, an
RMSE of 0.061, and an MAE of 0.050. Moreover, when DF is used as an input, the stacking
model exhibits the best performance (R2: 0.716; RMSE: 0.057; and MAE: 0.044).

Table 6. FVC estimation results.

Name Model
FVC-Calibration FVC-Validation

R2 RMSE MAE R2 RMSE MAE

VI

MLR 0.543 0.064 0.050 0.540 0.073 0.057
LASSO 0.543 0.064 0.050 0.540 0.073 0.057

KNR 0.586 0.062 0.047 0.566 0.071 0.055
CatBoost 0.632 0.058 0.045 0.599 0.068 0.054
Bagging 0.619 0.060 0.046 0.578 0.070 0.055
Blending 0.654 0.056 0.044 0.636 0.065 0.052
Stacking 0.651 0.056 0.044 0.631 0.065 0.052

TF

MLR 0.519 0.066 0.051 0.503 0.076 0.059
LASSO 0.545 0.064 0.050 0.539 0.073 0.057

KNR 0.580 0.062 0.048 0.570 0.071 0.055
CatBoost 0.615 0.060 0.046 0.601 0.068 0.054
Bagging 0.543 0.064 0.050 0.542 0.073 0.057
Blending 0.762 0.046 0.036 0.674 0.061 0.050
Stacking 0.698 0.052 0.041 0.615 0.067 0.053

DF

MLR 0.545 0.064 0.050 0.526 0.074 0.058
LASSO 0.698 0.052 0.041 0.615 0.067 0.053

KNR 0.720 0.050 0.038 0.577 0.070 0.055
CatBoost 0.659 0.055 0.044 0.593 0.069 0.054
Bagging 0.586 0.062 0.047 0.566 0.071 0.055
Blending 0.874 0.035 0.026 0.697 0.060 0.048
Stacking 0.801 0.042 0.032 0.716 0.057 0.044

We visualized the estimation results in scatter plots, as shown in Figure 10. When the
DF is selected as the feature for estimating LCC, the overall predicted values are closer
to the 1:1 line, indicating higher estimation accuracy. However, a saturation effect occurs
when VIs and TFs are used as features for estimating FVC. Interestingly, the use of DF
mitigates this saturation effect. This observation suggested that, similar to LAI estimation,
FVC estimation is prone to saturation effects.

4.3.2. LCC and FVC Mapping

We opted for the best-performing strategy (DF + stacking) to generate LCC and FVC
maps for stages P1–P7. As depicted in Figure 11, the LCC gradually increases from stages
P1 to P3 and then decreases from stages P4 to P7. The FVC plateaued at P4, initiating a
decrease. Due to the characteristic parameters of crops, the changes in LCC during the same
period are more pronounced than those in FVC. These results align with the ground-based
measurements and analyses presented in Figure 6.
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4.4. Maize Maturity Monitoring

Based on the analysis of LCC and FVC for stages P3 to P5, we applied the ANMD
algorithm to the data for P5. The results (Figure 12) depict that the yellow area (early-
maturing maize varieties) deviates from a normal distribution. In contrast, the green
area (regular varieties) demonstrated a normal distribution, consistent with ground-based
analyses. In this case, we obtained the threshold values corresponding to LCC and FVC for
P5 as 32.865 and 0.572, respectively.
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Utilizing the obtained thresholds for maturity monitoring during P5 yielded high OA
(LCC: 0.9875; FVC: 0.9750). Consequently, we applied the P5 thresholds to subsequent
periods. The results indicated that the monitoring OA ranged from 0.9625 to 0.9812, whereas
for FVC monitoring during the same period, the overall accuracy ranged from 0.9125 to
0.9688. These findings suggested that our proposed method for monitoring maize maturity



Remote Sens. 2024, 16, 784 17 of 23

demonstrated excellent performance. The detailed monitoring results are provided in
Table 7.

Table 7. Mature monitoring accuracy.

Name Stages OA UA PA

LCC
P5 0.9875 0.9583 1.0000
P6 0.9625 0.9634 0.9634
P7 0.9812 0.9933 0.9868

FVC
P5 0.9750 0.9778 0.9362
P6 0.9125 0.8778 0.9634
P7 0.9688 0.9740 0.9934

Following the results evaluation, we visualized the outcomes in the sampling area
(Figure 13). Observations reveal that during P5, there are fewer mature areas. However,
by P6, the distribution of mature areas becomes more diverse. By P7, the entire region
generally exhibited maturity. Additionally, note that during the same period, the maturity
monitoring outcomes based on LCC and FVC slightly differed. Overall, our monitoring
approach demonstrated an effective performance across different periods.
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To acquire comprehensive maturity information for the entire field area, we generated
a maturity map for the entire region (Figure 14). Using P5 as an example, we applied the
maturity threshold derived from the P5 maize LCC to all plots (a total of 780) and created
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an overall map. The visual representation of the mapping results aligns with the visual
appearance of the bottom-left base map (Figure 14a).
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5. Discussion
5.1. Impact of Different Features and Models on LCC and FVC Estimation

The estimation of crop parameters based on empirical methods has long been favored
by researchers, with VI being the most common “feature” used for estimation. However,
the effectiveness of VI monitoring for crop parameter estimation is often compromised
in complex agricultural environments [59]. Additionally, inherent characteristics of crop
parameters, such as the LAI and FVC, can lead to saturation or reduced estimation ca-
pabilities. To address this issue, scholars have introduced TF to mitigate the saturation
phenomenon [60]. When crops reach a high canopy cover, the changes in canopy structure
are not as pronounced as those in the early growth stages over a considerable period [61,62].
Shallow texture features may not effectively capture such changes. Our experimental
results also demonstrated this trend (Figure 10). Numerous studies indicate that deep
learning can better explore the latent deep features in images. However, most studies tend
to investigate the combined effects of deep learning models with original data imagery
for estimating crop parameters [40,61,63–66]. Overlooking the contribution of the deep
information contained in texture images. Our research results suggest promising prospects
for exploring stable features in crop parameter estimation using DFs derived from GLCM
texture maps (Figure 10c,f).

This approach also introduces several challenges: (1) faced with complex and diverse
features, a more powerful estimation model may be needed; and (2) even under the same
spatiotemporal conditions, the LCC and FVC of the same crop may exhibit heterogeneity.
Therefore, ensuring that a given model performs well in estimating both parameters is
challenging. When using vegetation indices (VIs) as features for estimating LCC, the
estimation performance of CatBoost was shown to be superior to that of Lasso. This finding
indicates that nonlinearity dominates the relationship between VIs and LCC. In reality,
most relationships between crop parameters and canopy features exhibit both linear and
nonlinear relationships [40]. This finding implies that a single model may not be fully
effective at fitting complex agricultural data. In contrast, ensemble models can effectively
integrate single models using a hierarchical structure, reducing the risk of overfitting,
mitigating the impact of data biases, and improving predictive capabilities [67,68]. This
outcome was also evident in our experiments. Using LCC estimation as an example, the
ensemble models demonstrated better performance regardless of which feature was utilized
as the input (stacking + VI; blending + TF; and stacking + DF). Additionally, we found that
bagging, as an ensemble model, did not consistently maintain good estimation performance,
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which may be related to Bagging’s use of average weighting, which is susceptible to the
influence of outliers or extreme values.

5.2. Monitoring and Analysis of Maize Maturity

Previous research has indicated that leaf color and the degree of leaf shedding are
crucial indicators for monitoring crop maturity [69]. Compared to assessing crop maturity
based solely on VI, evaluating crop maturity based on crop LCC and FVC with distinct
physical significance is more convincing and interpretable. Maize plots that mature pre-
maturely in the study area disrupt the established balance and act as “outliers”. This
novel approach has been applied in soybean breeding material selection but has not been
attempted in maize experimental fields. Additionally, whether multispectral imagery can
be combined with this method still needs to be determined. Therefore, this study is aimed
at further exploring and analyzing this issue. We conducted maturity monitoring during
P5, which achieved high monitoring accuracy (OA based on LCC monitoring: 0.9875; OA
based on FVC monitoring: 0.9750). Furthermore, we extended the obtained thresholds to
P6 and P7, yielding high-precision feedback, as detailed in Table 7. This finding demon-
strates that the maturity threshold established in the initial period is transferable for the
same field. Compared with traditional methods, this new method successfully overcomes
lag-associated issues by using time-series approaches to monitor crop maturity.

Table 7 validated the potential of using the parameters LCC and FVC to monitor maize
maturity. Overall, the effectiveness of monitoring through LCC appears superior. This
superiority could be related to the senescence period of maize, which is a distinctive stage
in the crop growth process. During this phase, leaf yellowing, which is typically caused
by chlorophyll degradation due to aging, occurs. While a reduction in LCC may impact a
plant’s photosynthetic capacity, leaf area does not significantly decrease because leaves are
still present. Therefore, during this stage, the FVC may still be in a relatively high state.
The result is that some mature maize may be overlooked, thereby diminishing monitoring
effectiveness. Additionally, we observed that during P5, the FVC monitoring performance
was good for many maize plots but deteriorated during P6, when the number of mature
plots (with low FVC values) increased, introducing bias in estimating low FVC values.
The proposed method holds promise for canopy crop maturity monitoring, but its specific
application requires further exploration. This finding also suggested that, despite the
excellent performance achieved by the ensemble model combining deep texture features
from GLCM texture maps, there is still room for improvement. Using VIs, TXs, and DFs for
model training to enhance estimation could be a potential avenue for improvement.

5.3. Experimental Uncertainty and Limitations

In the present experiment, we operated the UAV utilizing a standardized flight route,
and multispectral imagery was concurrently collected. Despite efforts to maintain consis-
tent wind directions and solar zenith angles, achieving complete uniformity has proven
challenging, introducing inherent uncertainties into the experimental setup. Furthermore,
the experiment involved repeated measurements of various crop parameters, and man-
ual measurements were subject to inherent errors. Throughout the maize growth cycle,
consistent procedures were implemented by trained personnel, albeit with constraints
in comprehensively covering all subplots. Additionally, factors such as pest infestations,
diseases, and drought could influence crop maturation, suggesting the possible necessity
of introducing additional parameters to enhance the monitoring of maize ripening.

In this study, we attempted to synergize the monitoring effects of both LCC and
FVC, but the results indicated that the overall accuracy of these methods did not surpass
the effectiveness of using LCC alone. We speculate that although LCC and FVC provide
crop maturity information at different levels, capturing their differentiated information
might require specific stages. This differential information holds significant potential in
the synergistic monitoring of crop maturity using LCC and FVC, which might necessitate
high-frequency experimental studies. Even though we validated the substantial potential
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of the proposed method in maize fields, conducting additional experiments under more
diverse conditions is essential. For instance, experiments covering different image types
and crop types under field conditions could further assess the universality of the method.
Such comprehensive experiments could better reveal the limitations of this technology,
providing a more reliable foundation for future applications.

6. Conclusions

Our primary focus in this study was to propose a monitoring technique for maize
ripening based on UAV multispectral remote sensing. Through a comprehensive analysis
of the maize canopy DOMs, ground-measured LCC, and FVC data, we investigated the
potential of deep texture features and ensemble learning for estimating maize LCC and
FVC. Maize ripening is monitored based on the estimated LCC and FVC maps. The key
findings of this study are presented as follows:

(1) Using image features derived from pretrained deep learning networks proves to be
more effective at accurately describing crop canopy structure, thereby mitigating satu-
ration effects and enhancing the precision of LCC and FVC estimations (as depicted in
Figure 10). Specifically, employing DFs for LCC estimation yields a notable increase
in R2 (0.037–0.047) and a decrease in RMSE (0.932–1.175) and MAE (0.899–1.023) com-
pared to the utilization of the VIs and TFs. Similarly, the application of DFs for FVC
estimation significantly improved the R2 values (0.042–0.08) and reduced the RMSE
(0.006–0.008) and the MAE (0.004–0.008).

(2) Compared with individual machine learning models, ensemble models demonstrate
superior performance in estimating LCC and FVC. Implementing the stacking tech-
nique with DFs for LCC estimation yields optimal performance (R2: 0.930; RMSE:
3.974; and MAE: 3.096). Similarly, when estimating FVC, the Stacking + DF strategy
achieves optimal performance (R2: 0.716; RMSE: 0.057; and MAE: 0.044).

(3) The proposed ANMD, combined with LCC and FVC maps, has proven to be effective
at monitoring the maturity of maize. Establishing the maturity threshold for LCC
based on the wax ripening period (P5) and successfully applying it to the wax ripening-
mature period (P5–P7) achieved high monitoring accuracy (overall accuracy (OA):
0.9625–0.9875; user’s accuracy: 0.9583–0.9933; and producer’s accuracy: 0.9634–1).
Similarly, utilizing the ANMD algorithm with FVC also attained elevated monitoring
accuracy during P5–P7 (OA: 0.9125–0.9750; UA: 0.878–0.9778; and PA: 0.9362–0.9934).
This approach provides a rapid and effective maturity monitoring technique for future
maize breeding fields.

Author Contributions: Conceptualization, J.H. and J.Y.; data curation, J.H., H.F. (Hao Feng), Q.W.,
J.S., J.W., Y.L., H.F. (Haikuan Feng), H.Y., W.G., H.Q., Q.N. and J.Y.; funding acquisition, J.H. and
J.Y.; methodology, J.H. and J.Y.; software, J.H.; validation, J.H.; writing—original draft, J.H. and
J.Y.; writing—review and editing, J.H., H.F. (Hao Feng), Q.W., J.S., J.W., Y.L., H.F. (Haikuan Feng),
H.Y., W.G., H.Q., Q.N. and J.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (42101362,
32271993, 42371373), the Henan Province Science and Technology Research Project (232102111123,
222103810024), and the Joint Fund of Science and Technology Research Development program
(Cultivation project of preponderant discipline) of Henan Province (222301420114).

Data Availability Statement: The raw/processed data required to reproduce the above findings
cannot be shared at this time as the data also form part of an ongoing study.

Conflicts of Interest: Author Qilei Wang was employed by the company Henan Jinyuan Seed
Industry Co.The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.



Remote Sens. 2024, 16, 784 21 of 23

References
1. Diao, Z.; Guo, P.; Zhang, B.; Zhang, D.; Yan, J.; He, Z.; Zhao, S.; Zhao, C.; Zhang, J. Navigation line extraction algorithm for corn

spraying robot based on improved YOLOv8s network. Comput. Electron. Agric. 2023, 212, 108049. [CrossRef]
2. Khan, A.; Hassan, T.; Shafay, M.; Fahmy, I.; Werghi, N.; Mudigansalage, S.; Hussain, I. Tomato maturity recognition with

convolutional transformers. Sci. Rep. 2023, 13, 22885. [CrossRef] [PubMed]
3. Kumar Yadav, P.; Alex Thomasson, J.; Hardin, R.; Searcy, S.W.; Braga-Neto, U.; Popescu, S.C.; Martin, D.E.; Rodriguez, R.; Meza,

K.; Enciso, J.; et al. Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery. Comput.
Electron. Agric. 2023, 204, 107551. [CrossRef]

4. Li, S.; Sun, Z.; Sang, Q.; Qin, C.; Kong, L.; Huang, X.; Liu, H.; Su, T.; Li, H.; He, M.; et al. Soybean reduced internode 1 determines
internode length and improves grain yield at dense planting. Nat. Commun. 2023, 14, 7939. [CrossRef] [PubMed]
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