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Abstract

:

Robust segmentation in adverse weather conditions is crucial for autonomous driving. However, these scenes struggle with recognition and make annotations expensive, resulting in poor performance. As a result, the Segment Anything Model (SAM) was recently proposed to finely segment the spatial structure of scenes and to provide powerful prior spatial information, thus showing great promise in resolving these problems. However, SAM cannot be applied directly for different geographic scales and non-semantic outputs. To address these issues, we propose SAM-EDA, which integrates SAM into an unsupervised domain adaptation mean-teacher segmentation framework. In this method, we use a “teacher-assistant” model to provide semantic pseudo-labels, which will fill in the holes in the fine spatial structure given by SAM and generate pseudo-labels close to the ground truth, which then guide the student model for learning. Here, the “teacher-assistant” model helps to distill knowledge. During testing, only the student model is used, thus greatly improving efficiency. We tested SAM-EDA on mainstream segmentation benchmarks in adverse weather conditions and obtained a more-robust segmentation model.
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1. Introduction


The semantic segmentation [1,2,3,4,5,6,7] of road scenes is important for autonomous driving [5], particularly during scene data analyses and behavior decision-making [8]. This technology also has good applications in motion control planning [9,10] and multi-sensor fusion processing [11]. Furthermore, over the past decade, we have seen tremendous advancements in semantic segmentation technology [7,12,13,14,15]. Currently, intelligent semantic segmentation algorithms can even outperform humans in recognizing clear scenes [15]. However, these works mostly ignore the deterioration of image quality caused by adverse weather conditions such as fog, rain, and snow [16]. This leads to an obvious performance decline. Unfortunately, the reliable and safe operation of intelligent systems requires the underlying recognition processes to be highly robust under these adverse conditions. Thus, this issue is receiving increasing attention now.



Adverse weather conditions bring two main challenges to semantic segmentation. Firstly, important objects become blurred, which leads to higher uncertainty in the outputs of these intelligent algorithms. Although some studies have tried to restore these images [17] and have attempted to convert them into images with clear scenes, a domain gap still exists. Secondly, annotating these scenarios is more difficult than annotating clear ones, making it expensive to use supervised algorithms. Therefore, many studies have adopted unsupervised domain adaptation (UDA) strategies [18,19,20] in an attempt to transfer segmented knowledge from a clear annotated source domain to adverse weather scenes (the target domain). However, in the transfer process, a domain gap in the UDA methods inevitably leads to information loss, resulting in imprecise segmentation in the target domain scenario.



Recently, the Segment Anything Model (SAM) [1] has attracted much attention as it uses massive amounts of data to pre-train and conduct self-supervised learning, acquiring an extremely strong generalization ability. Such a generalization ability enables SAM to be directly applied to various vision-based tasks without task-oriented training, including camouflaged object detection [21] and image in-painting [22]. Concretely, SAM can finely segment all objects in an image, thus providing powerful prior spatial structure information. Even in adverse conditions, SAM remains robust [23]. Thanks to SAM’s generalization ability, SAM-DA [24] can make predictions from nighttime images and has a large number of samples for training, which greatly improves the performance of the model. Thus, we can assume that applying SAM’s spatial structure information to UDA methods, i.e., adding a powerful supervision signal to the UDA framework, will be beneficial.



However, currently, SAM cannot be integrated directly into the UDA framework for three main reasons: (1) As mentioned above, SAM is not a task-oriented model, and a well-designed access plugin is needed to adapt it to semantic segmentation tasks. (2) Limited by its computing power, SAM is difficult to mount on the platform of a vehicle. (3) The operational speed of SAM is very slow and is insufficient when applied to real scenarios. For problem (1), the SSA [25] method can be used to fuse the spatial structure information generated by SAM with the semantic information generated by a segmentation model. However, the SSA method exacerbates the problem of slow operation, taking 40–60 s to complete segmentation for just one image, and its original semantic branch has not been trained to adapt to adverse weather conditions, resulting in inaccurate information and, therefore, producing unsatisfactory results. For problems (2) and (3), some scholars put forward Fast-SAM [26] and Faster-SAM [26], which have greatly improved the operational efficiency of SAM and can be deployed from mobile terminals, thus further adding significance to the research in this paper, as is shown in Figure 1.



To address the above issues, we propose a SAM-enhanced UDA method called SAM-EDA as shown in Figure 2, aiming to improve segmentation performance by utilizing the SAM knowledge while maintaining its original operational speed. Specifically, we plugged SAM (or its variants) into a mean-teacher’s self-training domain adaptation architecture [19,27], dynamically carrying out SAM-enhanced learning on the target domain, as well as knowledge distillation.



The whole architecture and pipeline consist of three sub-modules: (1) the student model, (2) the teacher-assistant (TA) model, and (3) the SAM-teacher model. However, only the student segmentation model will be published for evaluation. In a single training iteration, the TA and SAM-teacher models generate semantic segmentation masks (called “semantic prompts”) and spatial structure masks on the target domain, respectively, and, then, use the pseudo-label fusion algorithm mentioned in Section 2.2 for fusion. Due to SAM’s strong generalization ability, this step can produce pseudo-labels that are more consistent with real scene distributions, so the student model can completely explore the target domain knowledge, similar to the method of supervised learning. After completing the training, neither the SAM-teacher nor TA models remain, thus maintaining the speed of the existing semantic segmentation network.



The contributions of this article can be summarized as follows:




	(1)

	
We propose a simple, but effective semantic filling and prompt method for SAM masks, which utilizes the output of existing semantic segmentation models to provide SAM with class information and explore methods to address the scale of the SAM segmentation results;




	(2)

	
To the best of our knowledge, we are the first to incorporate SAM into an unsupervised domain adaptation framework, which includes the SAM-teacher, teacher-assistant, and student models, achieving knowledge distillation in the case of completely inconsistent structures and output spaces between SAM and the main segmentation model, effectively improving its adaptability in adverse scenarios;




	(3)

	
Our method is applicable to different UDA frameworks and SAM variants, providing useful references for the application of large models in local professional fields.










2. Method


2.1. Unsupervised Domain Adaptation (UDA)


In order to perform an unsupervised domain adaptation for semantic segmentation, we utilized a student network   f θ   and a teacher-assistant network   g ϕ   based on the mean-teacher [19,27] pipeline. Given a set of labeled source domain data    {  (  X S i  ,  Y S i  )  }   i = 1   N S    (where   Y S i   is the pixel-wise semantic label of   X S i  ), the student network directly learns from the source domain data using the cross-entropy loss function:


   L i  S , c l s / s e g   = H  (  f θ   (  X S i  )  ,  Y S i  )   



(1)






  H  (  y ˜  , y )  = −  ∑  h = 1  H    ∑  w = 1  W    ∑  c = 1  C    y  h w c   log      y ˜   h w c    



(2)







However, models trained only on the source domain often lack generalization; thus, knowledge from the target domain needs to be extracted with   N T   unlabeled images    {  (  X T k  )  }   k = 1   N T   . In our UDA pipeline, the teacher-assistant network   g ϕ   needs to make predictions using the target domain images and needs to generate pseudo-labels    {  (   Y ˜  T k  )  }   k = 1   N T   , so the learning loss function based on the pseudo-labels can be denoted as   L k T  , which is similar to the supervised   L i  S , c l s / s e g   :


   L k T  = H  (  g ϕ   (  X T k  )  ,   Y ˜  T k  )   



(3)







The pseudo-labels generated by   g ϕ   are often inaccurate (especially during the early stages of training), so it is necessary to set a dynamic weight  λ  to balance the impact of noise in the pseudo-labels. Generally,  λ  is set as the confidence pixel ratio exceeding a certain threshold  τ :


   λ T k  =    ∑  p = 1   H × W      max  c ′    g ϕ    (  X T k  )   ( p ,  c ′  )   ≥ τ     H × W    



(4)







Finally, the total loss function of our UDA architecture is the weighted sum of source domain loss and target domain loss:


   min θ   1  N S    ∑  i = 1   N S    L i S  +  1  N T    ∑  k = 1   N T     λ T   L k T    



(5)








2.2. Semantic Prompt Fusion and Learning


After standard UDA loss computation, we employed SAM [1] (or its variant) to make additional predictions on the target domain image   X T k  . Taking the standard SAM as an example, the input image was first patchified, automatically calculating the points of each patch as prompts. Then, SAM used a ViT-based [28] encoder and decoder head to obtain a feature embedding and a mask embedding. Finally, a mask decoder head identified several masks M without semantic information. Let   h φ   denote SAM-series used in our pipeline. This process can be described as follows:


     M j    j = 1   N k m   =  h φ   (  X T k  )   



(6)







The distribution of M closely matches real-world scenarios, but it requires semantic information from pseudo-label    Y ˜  T  , referred to as a “semantic prompt”. For a single mask   M j  , the class ID can be obtained by calculating the most-frequent category ID within the corresponding region in    Y ˜  T  :


   M j  c l s   =   arg max  c   ( c o u n t   (  M j  ⊙   Y ˜  T k  )   p = c   )   



(7)







However, existing dataset label systems are often restricted to the broadest instance-level labels (such as cars, buses, buildings, etc.), while SAM’s segmentation has multi-scale outputs (e.g., window, car, etc.). This leads to some errors when preserving the SAM segmentation masks (see Section 4.2), meaning that certain parts of the SAM output are not fully representative of their objects, which makes it difficult to avoid using general rules. To mitigate this, we calculated the weights for each mask   M j   based on the maximum occupied pixel’s class ID proportion:


   W j  c l s   =   sum ( c o u n t   (  M j  ⊙   Y ˜  T k  )   p = c   )    M j     



(8)







Then, due to holes being present in small objects when using the SAM and the potential confusion between similar classes (such as roads and sidewalks), it is important to preserve some pixels to identify key classes. Taking the Cityscapes dataset [12] as an example, we selected a set of classes among   [ 0 ,   19 ]  , denoted as set K, through empirical judgment. The final obtained pseudo-label is a combination of the masks   M j  , along with the inclusion of key class pixels from    Y ˜  T  :


       Y ¯  T k  =   ⋃  j = 1   n k m      M j  c l s   ∪    Y ˜  T k   [ c =  c d  ]       c d  ∈ K     



(9)







For the mask filled using Equation (7), the weights are determined using Equation (8). For the remaining parts, the weights (which will participate in the loss function) were uniformly set to 1. The final weight matrix is as follows:


       W ¯  T k  =   ⋃  j = 1   n k m      W j  c l s   ∪  1 ⊙   Y ˜  T k   [ c =  c d  ]       c d  ∈ K     



(10)







Thus, we can obtain the pseudo-labels enhanced by SAM, which can be used to construct a loss function similar to that in Equation (1), namely    L M  = H  (  f θ   (  X T k  )  ,   Y ¯  T k  )   . Consequently, the final loss function is


   min θ   1  N S    ∑  i = 1   N S    L i S  +  1  N T    ∑  k = 1   N T    (  λ T   L k T   +  W T k   L M   )   



(11)









3. Results


3.1. Implementation Details


3.1.1. Adverse Condition Semantic Segmentation Dataset


We used the Cityscapes dataset [12] as the source domain for training, which includes 2975 training images. The candidate target domain includes four different datasets—ACDC [16], Foggy Driving [29] and Foggy Driving Dense [30], Rainy Cityscapes [31], and Dark-Zurich (DZ) [32]—covering images with adverse conditions such as foggy, rainy, snowy, and nighttime scenes. Among them, ACDC contains 1600 images for training and 400 images for validation. Dark-Zurich contains 2416 training images and 151 test images. All datasets were labeled according to the Cityscapes standard, which includes 19 categories.




3.1.2. SAM-EDA Parameters


For the UDA architecture, we used DAFormer [19] as the baseline. Both the teacher-assistant and student models were SegFormer [7] with an MiT-B5 backbone. We followed DAFormer to set the EMA parameter   α = 0.99   and the confidence threshold   τ = 0.968  . For the SAM mask generator, we used the largest SAM-ViT-H [1,28] and set the prediction IoU threshold   δ  i o u    to 0.8. We also set the stability score threshold   δ  s t a    to 0.8 and the minimum mask region   r min   to 50 pixels. The settings of the SAM parameters directly affect the quality and quantity of segmentation masks and determine the geographical scale. All the experiments were conducted on a Tesla v100 graphic card with 32 GB of graphic memory, equipped with CUDA 10.2 and cudnn 7.6.5.





3.2. Performance Comparison


We compared our methods with prominent UDA methods for four kinds of adverse conditions, as well as with the segmentation method SSA [25] combined with SAM application. For foggy scenes, we compared CuDA-Net [20] and FIFO [33]; for nighttime scenes, we compared VBLC [34] and GCMA [35]. These methods are all specialized for specific scenes. As for universal domain adaptation methods, we compared DAFormer [19], CumFormer [36], and the SSA method combined with SAM. For the SSA method, we provide the results using different extractors (ViT-B, ViT-L, and ViT-H). All performance comparisons are shown in Table 1 and Figure 3. We not only provide comprehensive performance comparisons for each method, but also present their runtime and memory consumption. All evaluation metrics were calculated on the validation sets of each dataset. In Table 2, we show the improvement of our method to different UDA strategies. In Table 3 and Figure 4, we show the influence of different fusion methods between SAM-generated masks and original pseudo labels. In Table 4, we show the performance of replacing the original SAM to its variants.



We found that, in bright scenes, such as foggy, rainy, and snowy ones, the SAM-enhanced algorithm outperformed the UDA algorithms. The SSA method performed better than DAFormer, and some methods even outperformed CumFormer, which was newly proposed by the authors, but our SAM-EDA was better than the SSA method. This is because SAM demonstrated strong generalization in bright scenes, providing sharper contour branches. Additionally, the teacher-assistant model can generate relatively accurate pseudo-labels, contributing to better fusion. For night scenes, however, the SAM itself has a significant bias (which will be shown in Section 4.2, thereby reducing the overall performance. However, our SAM-EDA still outperformed the two SSA algorithms for night scenes. Since we only kept the student model, the testing speed and memory consumption were the same as the fast SegFormer. In Figure 3, we show the qualitative comparison. Due to space limitations, we only show the results of ACDC. Based on our method, more-precise segmentation results were obtained in categories such as poles, traffic lights, and traffic signs with obvious shapes.





4. Discussion


4.1. SAM-EDA for Different UDA Methods


We used the pseudo-labels generated by the teacher-assistant model as semantic prompts for filling in SAM’s masks. In fact, SAM-EDA is suitable for any UDA segmentation method that utilizes pseudo-labels for self-training. We conducted ablation experiments on the ACDC-Fog validation set. Table 2 demonstrates the enhancement of different methods by SAM-EDA. We found that SAM-EDA can not only improve classic UDA methods (e.g., DACS [37], ProDA [18], and DAFormer [19]), but also improve methods specific to adverse scenes (CuDA-Net [20] and CumFormer [36]) by approximately 3%, indicating that SAM’s information is generalizable. This shows that SAM-EDA is a good plugin, and through data-side processing, complex knowledge distillation or fine-tuning operations can be avoided, thus taking advantage of both SAM and domain-specific models.




4.2. Influence of Different Pseudo-Label Fusion Methods


Different semantic prompt fusion methods matter. We chose as many comprehensive fusion strategies as possible and present them in Figure 4. From left to right are the target domain image, the original pseudo-label generated by the teacher-assistant model, the original masks generated by SAM, the pseudo-label fused using the IoU method [38], the SSA method [25], our SAM-EDA method, and SAM-EDA’s weight. From top to bottom are the four adverse-condition scenes. Among the three label fusion strategies, the simplest one is to directly assign the class that has the largest intersection over union (IoU) between the mask and category ID layer [38], which was successfully applied in weakly supervised semantic segmentation and saliency detection. However, this approach led to many holes (black areas in the fourth column of Figure 4). This is because the semantic segmentation task is at the “category level”, while the SAM masks are at the instance level. When calculating the IoU, the instance-level mask takes the class-level label as the denominator, making the calculation ineffective. For example, if there are three cars in the image, in the “car” category layer, the pixels of the three cars will all be taken into account. Therefore, the proportion of pixels belonging to the “car” class in the mask of a car instance will decrease to 1/3 or 1/2 of the original proportion. If there are other classes present in the current area, it is likely that this area will be misclassified into another class. The SSA method relies entirely on the SAM mask and assigns instance-level pixel labels to all the masks output by SAM. This ensures that each mask has a definitive category label and does not generate large areas of holes. However, if the segmentation by SAM is inaccurate, it will directly result in large areas of errors.



When dealing with the SAM masks, we identified three shortcomings. Firstly, SAM struggled to differentiate classes with similar features, such as roads and sidewalks. In all scenarios, SAM uses the same mask for roads and sidewalks. This is unacceptable for autonomous driving. Secondly, SAM has difficulty distinguishing walls from railings or simply does not recognize them as objects, which could also be fatal for autonomous driving. Lastly, SAM performed poorly in nighttime conditions. For example, in the fourth row of Figure 4, SAM mistakenly assigned large areas of buildings to the sky, leading to errors in the label fusion region and undermining the performance brought by the original pseudo-labels.



To address these issues, we retained some critical categories from the original pseudo-labels (such as sidewalks, walls, and fences) to counter SAM’s shortcomings. Then, we allowed the masks to be assigned to incorrect classes (which is difficult to avoid), and we calculated the weights for each mask and reduced them in the loss function, thus effectively optimizing the SSA method. In Table 3, we show the impact of different label fusion strategies. As seen, the SAM-EDA method, which incorporates weights, achieved real improvements and outperformed the SSA method and the case without weights.




4.3. SAM-EDA for SAM Variants


SAM-EDA is also applicable to SAM variants with different numbers of parameters, with the potential to accelerate training. In Table 4, we replaced SAM with the lighter Fast-SAM [39] and Faster-SAM [26], significantly reducing the duration and memory usage of each iteration. In the standard SAM-EDA, we do not need to include SAM in the final segmentation model, so different SAM variants have little impact. However, the emergence of Faster-SAM undoubtedly provided a better option for future methods to include SAM.




4.4. Influence of SAM’s Hyper-Parameters


SAM’s hyper-parameters are related to the quality, density, and porosity of the generated masks. We conducted tests on the effectiveness of two hyper-parameters: the prediction IoU threshold   δ  i o u    and the stability score threshold   δ  s t a    (Figure 5). The higher they were set, the more precise the mask contours, but the fewer the masks. We conducted separate experiments on the ACDC-Rain validation set and found that the best results were achieved when    δ  i o u   =  δ  s t a   = 0.8  . This indicates that we need a stable quantity of masks to cover the entire image during label fusion rather than solely focusing on the quality of the masks.





5. Conclusions


We have presented SAM-EDA, a universal framework for using SAM in unsupervised semantic segmentation tasks. This method utilizes pseudo-labels generated by specific semantic segmentation models as prompts to fill in the spatial structure of SAM segmentation, thereby obtaining a more-accurate probability distribution of scene segmentation. The most-significant contribution of our method is the introduction of a more-accurate and fault-tolerant semantic prompt fusion approach. It can integrate the spatial structure provided by SAM with the semantic discernment generated by the original segmentation network. Our experiments showed that our method achieved better performance on semantic segmentation benchmarks under several adverse imaging conditions. Moreover, it can be implemented in a plug-and-play manner to enhance any unsupervised semantic segmentation algorithm based on pseudo-labels. After introducing a lightweight variant of SAM, our method obtained the ability to perform near real-time training and testing. We also explored the hyper-parameters of SAM.



The universality and generalizability of SAM are valuable resources. In future research, we plan to introduce SAM into tasks such as Test Time Adaptation, serving as a spatial structure anchor to combat the catastrophic forgetting that may occur during prolonged adaptation processes of the model.
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Figure 1. The main idea behind the proposed method. For images from the target domain, the teacher-assistant model and SAM-teacher generate semantic segmentation masks (called “semantic prompts”) and spatial structure masks, respectively, and, then, use the algorithm mentioned in Section 2.2 for fusion. Due to SAM’s strong generalization ability, this step can produce pseudo-labels that are more consistent with real scene distributions; so, the student model can completely explore the target domain knowledge, similar to the method of supervised learning. 
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Figure 2. The pipeline of the proposed method. Both the source and target domain images used in this method were captured from a vehicle perspective camera. The target domain image   Y T   was first fed into the teacher-assistant   g ϕ   to generate coarse pseudo-labels    Y ˜  T  , which serve as semantic prompts. Then,   Y T   was put into SAM to obtain a spatial structural segmentation map M, leveraging SAM’s generalization. We merged    Y ˜  T   and M to incorporate the semantic information. During the merging process, the top-k occupancy ratio method was mainly used to retain some key class pixels from    Y ˜  T   while considering the holes in the SAM’s missing segmentation. The weights were also calculated based on the proportion of semantic pixels to reduce the impact of uncertainty in SAM. The merged pseudo-label    Y ¯  T   was close to the distribution of the real-world scene, thus enabling supervision of the student model. 
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Figure 3. A qualitative comparison with other methods. From top to bottom, there are foggy, rainy, snowy, and nighttime scenes. Based on our method, more-precise segmentation results are obtained in the categories poles, traffic lights, and traffic signs with obvious shapes. 
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Figure 4. Different pseudo-label fusion methods. From left to right are the target domain image, the original pseudo-label (PL) generated by the teacher-assistant model, the original masks generated by the SAM, the pseudo-label fused using the IoU method, the SSA method, our SAM-EDA (S-E) method, SAM-EDA’s weight, and the ground truth (GT). 
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Figure 5. Influence of SAM’s hyper-parameters. High   δ  i o u    and   δ  s t a    both result in performance degradation, and we found that the best results were achieved at    δ  i o u   =  δ  s t a   = 0.8  . 
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Table 1. Performance comparison. Experiments were conducted on the ACDC, Foggy Driving, Foggy Driving Dense, Rainy Cityscapes, and Dark-Zurich validation sets and measured with the mean intersection over union (mIoU %) over all classes.
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Dataset

	

	






	
Model

	
Pub/Year

	
Backbone

	
Fog

	
Rain

	
Snow

	
Night

	
Speed/FPS

	
GPU/GB




	

	

	

	
ACDC-f

	
FD

	
FDD

	
ACDC-r

	
Rain-CS

	
ACDC-s

	
ACDC-n

	
DZ

	

	




	
DAFormer [19]

	
CVPR 2022

	
SegFormer [7]

	
63.41

	
47.32

	
39.63

	
48.27

	
75.34

	
49.19

	
46.13

	
43.80

	
6–10

	
Train: 16 GB

Test: 8 GB




	
CuDA-Net [20]

	
CVPR 2022

	
DeepLabv2 [13]

	
68.59

	
53.50

	
48.20

	
48.52

	
69.47

	
47.20

	
-

	
-




	
FIFO [33]

	
CVPR 2022

	
Refinelw-101 [14]

	
70.36

	
50.70

	
48.90

	
-

	
-

	
-

	
-

	
-




	
CumFormer [36]

	
TechRXiv 2023

	
SegFormer

	
74.92

	
56.25

	
51.91

	
57.14

	
79.34

	
62.42

	
44.75

	
43.20




	
VBLC [34]

	
AAAI 2023

	
SegFormer

	
-

	
-

	
-

	
-

	
79.80

	
-

	
-

	
44.41




	
GCMA [35]

	
ICCV 2019

	
DeepLabv2

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
42.01




	
SegFormer (cs)

	
NeurIPS 2021

	
-

	
64.74

	
46.06

	
33.15

	
40.62

	
68.31

	
42.03

	
26.61

	
23.43

	
6–10

	
-




	
SSA + SAM + SegFormer

	
arXiv 2023

Github 2023

	
ViT-B [28]

	
60.57

	
39.02

	
25.33

	
43.17

	
67.51

	
42.93

	
24.97

	
22.36

	
<0.1

	
Train: 8–48 GB

Test: 16–24 GB




	
ViT-L [28]

	
66.78

	
48.02

	
31.33

	
52.94

	
68.69

	
51.47

	
27.69

	
26.73




	
ViT-H [28]

	
68.16

	
50.89

	
33.72

	
54.39

	
70.27

	
53.32

	
29.60

	
28.92




	
OneFormer (cs) [15]

	
arXiv 2022

	
-

	
72.31

	
51.33

	
44.31

	
56.72

	
74.96

	
55.13

	
32.41

	
26.74

	
4–5

	
-




	
SSA + SAM + OneFormer

	
arXiv2023

GitHub2023

	
ViT-B

	
69.13

	
46.97

	
41.96

	
58.77

	
73.03

	
57.14

	
36.78

	
28.96

	
<0.1

	
Train: 8–48 GB

Test: 16–24 GB




	
ViT-L

	
75.94

	
53.14

	
46.78

	
64.25

	
75.62

	
64.21

	
40.14

	
34.25




	
ViT-H

	
77.87

	
55.61

	
48.41

	
69.25

	
76.31

	
66.22

	
41.22

	
37.43




	
SAM-EDA(Ours)

	
-

	
ViT-B

	
68.10

	
50.74

	
43.66

	
54.20

	
71.01

	
55.47

	
33.62

	
27.63

	
6.7

	
Train: 8–48 GB

Test: 8 GB




	
ViT-L

	
75.30

	
55.49

	
46.98

	
64.68

	
73.41

	
58.12

	
41.30

	
35.45




	
ViT-H

	
78.25

	
56.37

	
51.25

	
69.38

	
76.63

	
68.17

	
43.15

	
42.63











 





Table 2. SAM-EDA for UDA methods. Experiments were conducted on the ACDC-Fog validation set and measured with the mean intersection over union (mIoU %) over all classes.
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	UDA Method
	w/o SAM-EDA
	w/SAM-EDA
	Diff.





	DACS [37]
	61.08
	64.28
	+3.20



	ProDA [18]
	65.17
	68.74
	+3.57



	DAFormer [19]
	67.93
	71.61
	+3.68



	CuDA-Net [20]
	68.56
	72.37
	+3.81



	CumFormer [36]
	74.92
	77.89
	+2.97










 





Table 3. Different semantic prompt fusion methods. Experiments were conducted on the ACDC and Dark-Zurich validation set and measured with the mean intersection over union (mIoU %) over all classes.
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Method/Datasets

	
ACDC-F

	
Dark-Z

	
Mean

	
Gain

(mIoU)




	
Fog

	
Rain

	
Snow

	
Night






	
DAFormer [19]

	
63.41

	
48.27

	
49.19

	
46.13

	
43.80

	
50.16

	
+0.00




	
IoU [38]

	
55.19

	
41.58

	
42.17

	
39.48

	
27.66

	
41.22

	
−8.94




	
SSA (SegFormer) [25]

	
68.16

	
54.39

	
53.32

	
29.60

	
28.92

	
46.88

	
−3.28




	
SAM-EDA w/o Weight

	
74.02

	
65.17

	
62.74

	
38.74

	
39.91

	
56.12

	
+5.96




	
SAM-EDA w/Weight

	
78.25

	
69.38

	
68.17

	
43.15

	
42.63

	
60.32

	
+10.16











 





Table 4. SAM-EDA for SAM