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Abstract: Reanalysis datasets provide a reliable reanalysis of climate input data for hydrological
models in regions characterized by limited weather station coverage. In this paper, the accuracy
of precipitation, the maximum and minimum temperatures of four reanalysis datasets, the China
Meteorological Assimilation Driving Datasets for the SWAT model (CMADS), time-expanded climate
forecast system reanalysis (CFSR+), the European Centre for Medium-Range Weather Forecast
Reanalysis (ERA). and the China Meteorological Forcing Dataset (CMFD), were evaluated by using
data from 28 ground-based observations (OBs) in the Source of the Yangtze and Yellow Rivers (SYYR)
region and were used as input data for the SWAT model for runoff simulation and performance
evaluation, respectively. And, finally, the CMADS was optimized using Integrated Calibrated
Multi-Satellite Retrievals for Global Precipitation Measurement (AIMERG) data. The results show
that CMFD is the most representative reanalysis data for precipitation characteristics in the SYYR
region among the four reanalysis datasets evaluated in this paper, followed by ERA5 and CFSR,
while CMADS performs satisfactorily for temperature simulations in this region, but underestimates
precipitation. And we contend that the accuracy of runoff simulations is notably contingent upon
the precision of daily precipitation within the reanalysis dataset. The runoff simulations in this
region do not effectively capture the extreme runoff characteristics of the Yellow River and Yangtze
River sources. The refinement of CMADS through the integration of AIMERG satellite precipitation
data emerges as a potent strategy for enhancing the precision of runoff simulations. This research
can provide a reference for selecting meteorological data products and optimization methods for
hydrological process simulation in areas with few meteorological stations.

Keywords: SWAT; reanalysis data; runoff simulation; optimization

1. Introduction

Located in Northwest China’s Qinghai Province, the Source of the Yangtze and Yellow
Rivers (SYYR) is the home to the headstreams of China’s two great rivers, the Yangtze
and Yellow river, which provide water resources for the country’s natural ecosystems and
a population exceeding hundreds of millions [1]. This assumes indispensable functions
in the preservation of water, regulation of runoff, and the sustenance of ecological diver-
sity [2–4]. Runoff, a pivotal facet of the hydrological cycle, exerts consequential effects
on both the regional hydrological dynamics and holds substantial implications for water
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security and ecological well-being in downstream regions [5,6]. Therefore, the large-scale
simulation or prediction of runoff within the SYYR region holds significance in advancing
our comprehension of surface water availability and management [7].

Watershed hydrological models have gained extensive utilization in the simulation
and prediction of runoff processes and are now mainly classified into the lumped hydro-
logical models, and the semi-distributed and distributed models. Sun et al. [8] applied
the calibrated lumped Xin’anjiang model for flood forecasting in the Shaowu basin. Dal
et al. [9] used the semi-distributed hydrological model to investigate the control of spatial
variability of runoff by the main river channel in the Thur basin, Switzerland. Liu et al. [10]
used the distributed hydrological model based on hydrothermal coupling considering
glaciers and permafrost to model the hydrological processes associated with the water
cycle in the Niyang River basin, located on the Qinghai–Tibet Plateau. Compared with
these models, the advantage of the Soil and Water Assessment Tool (SWAT) model is that it
not only has a strong physical basis, which can integrate geographic information systems
(GISs), remote sensing (RS), and digital elevation models (DEMs), but also has a good user
interface, strong spatial data management, organization, analysis, and presentation capabil-
ities. At present, the SWAT model has experienced growing adoption among hydrologists
and water resource managers for evaluating the influence of anthropogenic activities and
climatic variations on water resources [11]. However, a large amount of basic data are
required for the operation of the SWAT model, which includes four main components:
DEM data, land use data, soil data, and meteorological data. Over the years, the data
quality of DEMs, land use, and soil datasets has witnessed substantial improvement owing
to the swift evolution in remote sensing techniques and advancements in data classification
methodologies [12]. The availability and quality of meteorological data may be critical to
the results of simulations, but dense meteorological observatories are expensive to maintain
and not easily accessible [13]. However, the insufficiency of weather stations and meteoro-
logical data, coupled with the absence of comprehensive, long-term time series datasets,
characterizes the data limitations within the SYYR region [14].

With the advancement and development of satellite and ground-based observation
technologies, an increasing number of meteorological data products are available for
researchers to share and use. In particular, the precipitation data, which are the most
important data driving hydrological models, are available in a wide range of options. In
a review published in the Reviews of Geophysics, Sun et al. [15] delineated intricate details
pertaining to data sources and estimation methodologies for approximately 30 extant global
precipitation datasets, derived from gauge, satellite-related, and reanalysis datasets. It
is worth highlighting that reanalysis datasets exhibit heightened variability compared to
other dataset categories. Simultaneously, the extent of variability in precipitation estimates
varies across different geographical regions However, as an important part of the “China
Water Tower”, the SYYR region is mainly recharged by natural precipitation and glacial
meltwater. In the context of continued global warming, the increasing share of glacial
meltwater in water recharge indicates the necessity of enhancing the impacts of temperature
on runoff in the SYYR region; taking into account natural precipitation. The significance
of the reanalyzed dataset is underscored by its comprehensive incorporation of intricate
precipitation data and a multitude of climatic variables, encompassing temperature, solar
radiation, and wind speed. Of particular relevance to the SYYR area are precipitation
and temperature factors. In comparison to alternative climate products, these datasets
comprehensively fulfill our requirements for runoff simulation employing the SWAT model.

Reanalysis datasets denote gridded datasets characterized by spatial and temporal
integrity, generated through weather simulation models extrapolating from observed
data [13]. They combine satellite data with observational data to represent observed
weather as accurately as possible on a continuous time and space scale. Numerous me-
teorological reanalysis data products have been employed in the realm of hydrological
modeling, including the CFSR, one of the preeminent reanalysis climate products utilized
in SWAT modeling, contributing about 40% to publications, and CMADS. Although the
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latter exclusively encompasses the East Asian region, with freely accessible data limited to
the temporal span from 2008 to 2018, it still contributes about 13% to publications [16]. In
addition, other global reanalysis products used in SWAT include the European Centre for
Medium-Range Weather Forecast ReAnalysis (ERA) and the Climatic Research Unit (CRU).
Reanalysis datasets usually provide a more accurate representation of weather conditions
at the basin or regional scale, but given that the reanalysis system is constituted by a back-
ground forecast model and a data assimilation process, their data quality depends to some
extent on the observed data used in the reanalysis system [17]. Consequently, in some cases,
the reanalysis dataset is not matched by the actual weather conditions in the region. Eini
et al. [13] evaluated precipitation data from five reanalysis datasets within the CRU and
CFSR in a semi-arid basin and simulated the local hydrology separately and concluded that
reanalysis precipitation is a valid alternative for hydrological modeling in semi-arid basins.
Ndhlovu et al. [18] utilized gridded climate data in the context of hydrological modeling
within the Zambezi River Basin, located in Southern Africa, and showed that the CFSR has
a satisfactory hydrological modeling result for this region. However, preceding studies fre-
quently focus solely on evaluating the precision of monthly precipitation, overlooking the
evaluation of the precision of daily precipitation data essential for hydrological modeling
as mandated by the SWAT model. It also requires an accurate assessment because of the
effect of alpine temperature on regional hydrology. Therefore, a comprehensive evaluation
of the regional precision of reanalysis data must be an obligatory prerequisite preceding
their incorporation into hydrological modeling [13].

Considering the suitability of meteorological reanalysis products across temporal
and spatial dimensions, coupled with the availability of data, this paper selects CFSR
and CMADS, which are used in hydrological modeling, the regularly updated ERA5 at a
global scale, and the China Meteorological Forcing Dataset (CMFD), which is a mainstream
Chinese gridded observation. Subsequently, an evaluation is conducted on the efficacy of
the CFSR, CMADS, CMFD, and ERA precipitation and temperature datasets within the
SYYR region. These datasets are subsequently employed in conjunction with the SWAT
model for hydrological simulations in the region, aiming to discern the reanalysis dataset
that yields optimal performance in the hydrological modeling context. Section 2 provides a
comprehensive overview of the study area, encompassing details on data sources, statistical
methodologies, and hydrological models employed in the research. Section 3 offers an
in-depth analysis of the performance of the reanalysis dataset, encompassing statistical
evaluations and hydrological modeling assessments. Section 4 delves into the underlying
factors contributing to the varied applicability of reanalysis data within the SYYR region,
elucidating optimization methodologies specific to CMADS. The study culminates in
Section 5 with the presentation of key findings and conclusions.

2. Materials and Methods
2.1. Study Area

“Situated on the Tibetan Plateau (TP), the geographic expanse spans approximately
30.53 × 104 km2 within the southern confines of Qinghai province. This area encompasses
both the Yangtze River source region and the Yellow River source region, as shown in
Figure 1. The Yangtze River source is bounded by the confluence of the Batang River, located
between the Kunlun and Tanggula ranges in the heart of the TP covering a watershed area of
about 16.11 × 104 km2. With its vast expanse of glaciers, snow-capped peaks, rivers, lakes,
and wetlands, this region plays a crucial role as a primary hydrological reservoir. Serving
as a vital water source for the Yangtze River basin, the runoff from the Yangtze River source
region constitutes approximately 25% of the entire water volume of the Yangtze River” [19].
The term ‘Yellow River source’ designates the region within the Yellow River basin situated
upstream of the Longyangxia Reservoir, located in the northeastern segment of the Tibetan
Plateau, encompassing a watershed area spanning approximately 14.42 × 104 km2. Despite
its modest physical footprint, the Yellow River source exhibits an intricate network of water
systems, serving as a vital water catchment in China. Notably, the runoff originating from
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this source contributes to over 40% of the entire Yellow River basin, establishing it as a
substantial component of China’s water tower [20]. In this research, the SYYR region is
divided into 54 sub-basins by the SWAT model, as shown Figure 1b.
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Figure 1. (a) Study area of the source of the Yangtze and Yellow Rivers: the main river, main
tributaries, climate stations, reanalysis data stations, and streamflow stations; (b) the delimitation of
the sub-basins with the SWAT model and the numbers are sub-basin numbers; (c): land use types
in 2010 (AGRL: agricultural land; FRST: forest-mixed; RNGB: shrubbery; PAST: pasture; HAY: hay;
WATR: water; URML: residential area (medium density); URLD: residential area (low density); UIDU:
industrial land; BARR: barren; WETL: wetlands).

2.2. Data Sources and Processing

CFSR, CMADS V1.0 (2008–2018) [21], CMFD, and ERA5 were designated as the
reanalysis datasets that scrutinize the accuracy of precipitation and temperature (both
maximum and minimum) in comparison to observations. Then, they were used as input
data for the hydrological simulations. It is imperative to highlight that the CFSR(SWAT) [22]
dataset, accessible via the SWAT website, received updates only until July 2014. This
limitation compromises its adequacy for fulfilling the contemporary demands of scientific
research presentations. In this study, tools such as Matlab2022b and python3.10 were used
to connect the NCEP Climate Prediction System version 2 (CFSv2) 6 h product to the CFSR
dataset, and updated the CFSR dataset to 2018, the same period as CMADS V1.0. This
paper encompasses ground-based observational meteorological data (OBS) utilized for
assessing the precision of reanalysis data. Additionally, it includes the DEM data, land use
data, and soil data essential for runoff simulation using the SWAT model, along with the
hydrological observations required for the calibration process. In addition, the required
data include AIMERG [23], the satellite precipitation data needed to optimize CMADS.
Detailed information such as the source of the above data can be found in Table 1.
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Table 1. Foundational details pertaining to the datasets employed in this study.

Data Name Time Range Time
Resoltion

Spatial
Resolution Data Sources

CFSR
(SWAT) 2008–2014 daily 1/3◦ https://swat.tamu.edu/data/cfsr

(accessed on 9 February 2021)

CFSv2 2014–2018 6 h 0.5◦ https://rda.ucar.edu/datasets/ds094.0
(accessed on 10 February 2021)

CMADS V1.0 2008–2018 daily 1/3◦ http://www.cmads.org (accessed on
15 March 2021)

CMFD 2008–2018 3 h 0.1◦ http://data.tpdc.ac.cn (accessed on
11 May 2022)

ERA5 2008–2018 1 h 0.25◦ https://cds.climate.copernicus.eu/
(accessed on 20 May 2022)

OBS 2008–2018 daily - http://data.cma.cn (accessed on
11 October 2020)

DEM - - 90 m http://www.resdc.cn (accessed on
1 October 2020)

LUCC 2010 - 30 m http://www.resdc.cn (accessed on
1 October 2020)

HWSD - - 1 km https://data.tpdc.ac.cn (accessed on
17 September 2020)

Hydrological
data 2008–2018 monthly - Hydrological Yearbook

AIMERG 2008–2014 0.5 h 0.1◦ https://data.tpdc.ac.cn (accessed on
25 August 2022)

2.3. SWAT Model

The SWAT model, derived from the Simulator for Water Resources in Rural Basins
(SWRRB) model, is a semi-distributed hydrological model encompassing three primary
sub-modules designed for applications in hydrology, soil erosion, and pollution load
assessment [24,25]. Since its development, the model has undergone ongoing refinement,
and its efficacy in simulating and forecasting runoff and sediment dynamics has garnered
global recognition through widespread utilization and validation.

2.3.1. Hydrological Cycle Processes in SWAT Model

The process of the hydrological cycle follows the principle of water balance. A fraction
of the precipitation is intercepted and retained by the vegetative canopy, while the remain-
ing portion impinges upon the soil surface. Subsequently, a segment of the water at the soil
surface undergoes infiltration into the soil profile, contributing to the generation of surface
runoff, which then converges into the river system. Then, part of the infiltrated water will
remain in the soil and evaporate, and others will flow into the surface water system via
underground channels [26,27], the formula is as follows:

SWt = SW0 + ∑t
i=1

(
Rday + Wy − Qsur f − Ea − Wseep − Qgw

)
(1)

SWt denotes the final soil water content, SW0 represents the initial soil water content
on day ‘i’, where ‘t’ denotes the temporal dimension in days. The variables Rday, Wy,
Qsurf, Ea, Wseep, and Qgw, correspondingly, signify the daily quantities of precipitation,
snowmelt, surface runoff, evapotranspiration, percolation, and return flow on day ‘i’, with
all measurements expressed in millimeters.

2.3.2. Snowmelt Processes in SWAT Model

The SWAT employs a temperature index-based methodology for the estimation of
snowmelt processes. The dynamics of snowmelt are intricately influenced by both atmo-
spheric and snowpack temperatures, the rate of melting, and the spatial extent of snow
coverage. Within this framework, the model treats the resultant melted snow as akin

https://swat.tamu.edu/data/cfsr
https://rda.ucar.edu/datasets/ds094.0
http://www.cmads.org
http://data.tpdc.ac.cn
https://cds.climate.copernicus.eu/
http://data.cma.cn
http://www.resdc.cn
http://www.resdc.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
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to rainfall, facilitating the computation of runoff and percolation. The quantification of
snowmelt is derived through a linear function, wherein it is expressed as a function of the
disparity between the average maximum air temperature associated with the snowpack
and a user-defined threshold denoting the temperature conducive to snowmelt.

SNOWmelt = fmlt × SNOWcov ×
[

Tsnow + Tmax

2
− Tmelt

]
(2)

SNOWmelt represents the daily volume of snowmelt (mm H2O), fmelt denotes the
snowmelt factor (mm H2O/◦C-day), SNOWcov signifies the proportion of Hydrologic
Response Units characterized by snow cover, Tsnow represents the temperature of the
snowpack (◦C), Tmax corresponds to the maximum temperature (◦C), and Tmelt is the
temperature threshold indicative of snowmelt initiation (◦C).

2.3.3. Model Setup

The simulation of the source basin was executed utilizing the ArcSWAT interface
designed for SWAT2009. In the source regions of the Yellow River and the Yangtze River, a
single basin outlet is concurrently identified, and the entire basin is delineated into 54 sub-
basins using a DEM. In order to optimize both the precision of model computation and
computational efficiency, a total of 695 Hydrologic Response Units (HRUs) were gener-
ated. The delineation of these HRUs was contingent upon the predominant land use, soil
characteristics, and slope, with respective thresholds of 10%, 15%, and 10% being applied.

2.4. Statistical Measures
2.4.1. Validation Strategies

The evaluation of the reanalysis datasets was divided into two main aspects: (1) Cli-
matic aspects—evaluating the accuracy of four reanalysis datasets in terms of precipitation,
maximum and minimum temperatures in time (daily/monthly/annual), and space by
using OBS data. (2) Hydrological aspects—the comparison of runoff data obtained from
four reanalysis datasets and the OBS data-driven SWAT model to analyze their perfor-
mance in a runoff simulation. As reanalysis datasets are grid data products while OBS
data are point data, so the spatial matching between the two kinds of data is a critical
aspect. According to Pombo et al. [28] and Tan et al. [29], there are two main approaches to
solving the spatial matching problem. To achieve grid-to-point conversion, one approach
is to calculate the meteorological indicators corresponding to the location of the actual
meteorological station in the reanalysis dataset by simple averaging; the other is to use
interpolation to convert points to a grid based on the actual meteorological station locations.
In this paper, we choose to calculate the precipitation, maximum temperature, and mini-
mum temperature of four reanalysis datasets at the corresponding points of OBSs using the
inverse distance weighting method by comparing the results obtained by the two methods
of interpolation and simply averaging them. As for the evaluation of reanalysis datasets,
only grids covering at least one OBS site were considered, otherwise, they were excluded
from the evaluation.

2.4.2. Validation Metrics

Taylor diagrams serve as a tool for evaluating the performance of four distinct re-
analysis datasets of climate information in comparison to observational data. In a Taylor
diagram, the correlation coefficient (CC), standard deviation (STD), and root mean square
error (RMSD) of the reanalysis climate data are related to the observations by a cosine
relationship. This was employed for the evaluation of the precision of precipitation, maxi-
mum temperature, and minimum temperature within the reanalysis datasets relative to
OBS data. The latter had been extensively utilized in prior research endeavors for the
meticulous assessment of gridded climate products [30–32]. In addition, three categories
of statistical indicators, the Probability of Detection (POD), False Alarm Rate (FAR), and
Critical Success Index (CSI), were used to assess the consistency of daily precipitation data
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with actual precipitation events in the reanalysis data, which can be represented in the
performance diagram. POD and FAR metrics quantify the proportions of correctly and
incorrectly identified precipitation events relative to the total precipitation occurrences,
respectively. Meanwhile, CSI assesses the comprehensive ratio of both precipitation and
non-precipitation days detected by the reanalysis data. Within the Taylor diagram, proxim-
ity to the ‘observed’ point along the x-axis signifies heightened accuracy, whereas in the
performance diagram, closeness to the upper right corner indicates better detectability of
occurrence [33]. The determination coefficient (R2) and Nash–Sutcliffe coefficient (NSE)
were used to evaluate the runoff accuracy of the SWAT model. The evaluation criteria
(Table 2) were applied for evaluation standards, which are commonly used by previous
researchers [34]. In other words, the assessment of simulated runoff results from the SWAT
model was conducted by gauging the R2 and NSE indexes for their respective magnitudes.
The calculation methods of the above evaluation indicators are shown in Table 3.

Table 2. Evaluation of runoff simulation performance of SWAT model.

Indicator Very Good Good Satisfactory Unsatisfactory

R2 R2 > 0.85 0.75 < R2 ≤ 0.85 0.6 < R2 ≤ 0.75 R2 ≤ 0.6
NSE NSE > 0.8 0.7 < NSE ≤ 0.8 0.5 < NSE ≤ 0.7 NSE ≤ 0.5

Table 3. Statistical indexes for the evaluation of precipitation, temperature, and runoff in this study.

Name Formula Value Range Ideal Value

Correlation Coefficient (CC) CC =
∑n

i=1 (Oi−O)(Gi−G)√
∑n

i=1(Oi−O)
2
√

∑n
i=1(Gi−G)

2
−1 to 1 1

Standard Deviation (STD) STD =
√

1
n ∑n

i=1
(
Gi − G

)2 0 to +∞ 0

Centered Root Mean Square
Difference (RMSD) RMSD =

√
1
n ∑n

i=1
[(

Gi − G
)
−

(
Oi − O

)]2 0 to +∞ 0

Probability of Detection (POD) POD = H
H+M 0 to 1 1

False Alarm Ratio (FAR) FAR = F
H+F 0 to 1 0

Critical Success Index (CSI) CSI = H
H+M+F 0 to 1 1

Coefficient of Determination (R2) R2 =
[∑n

i (QOi
−QO)(QSi

−QS)]
2

∑n
i=1 (QOi

−QO)
2
∑n

i=1(QSi
−QS)

2
0 to 1 1

Nash-Sutcliffe coefficient (NSE) NSE = 1 − ∑n
i=1(QSi

−QOi )
2

∑n
i=1(QOi

−QO)
2

0 to 1 1

where O denotes the observed data, G signifies the reanalysis data, n represents the sample size, H represents
the count of accurately identified precipitation days by the reanalysis data, F indicates the count of observed
non-precipitation days erroneously identified as precipitation by the reanalysis data, M denotes the count of
observed precipitation days not detected by the reanalysis data. QSi

and QOi
denote the simulated and observed

values for event i, while QS and QO represent the respective averages of simulated and observed events.

3. Results
3.1. Climate Aspect

A total of 903 meteorological points in the SYYR region and its surrounding ar-
eas were extracted from the four reanalysis datasets, respectively, including three me-
teorological factors: precipitation, maximum temperature, and minimum temperature.
Then, the observation data of 28 meteorological stations were used to analyze the time
scale (daily/monthly/yearly) and spatial scales to evaluate the accuracy of the reanaly-
sis datasets.

3.1.1. Evaluation of the Precipitation of Reanalysis Datasets by Time Scale

A quantitative understanding of how these reanalysis data compare to observations
on different time scales can be found by looking at the correlation coefficient (i.e, CC),
centered root mean square difference (i.e., RMSD), and standard deviation (i.e., STD). This
can be summarized by a drawing of the Taylor diagram Figure 2. At the daily scale, CMFD
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performed best, followed by ERA5 and CFSR, while CMADS underperformed in terms
of daily precipitation. For example, CMFD precipitation has the best correlation with
observed precipitation (i.e., a correlation over 0.95) and its RMSD is also the smallest in
the four reanalysis datasets used for evaluation (i.e., RMSD less than 1 mm/day), showing
that CMFD is in excellent agreement with observed data, although the STD of CMFD is not
the smallest. The correlation between ERA5 and CFSR with observations, although not as
high as CMFD, is also satisfactory (i.e., the correlation also reaches 0.85–0.91), whereas the
correlation between CMADS and observations is only 0.74, showing that ERA5 and CFSR
are also representative of the precipitation characteristics of the SYYR region to some extent.
Additionally, the standard deviation of CMFD is 2.01 mm/day, which is only 0.01 mm/day
different from the standard deviation of 2.00 mm/day for the observations, showing that
CMFD captures the variability of precipitation in the SYYR region well. Standard deviations
greater than 2.00 mm/day for ERA5 and CFSR indicate a slight tendency to overestimate
estimated precipitation, while CMADS tends to underestimate (i.e., standard deviation of
1.81 mm/day).
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Meanwhile, CMFD has the highest POD and CSI and the smallest FAR in the four
reanalysis datasets according to the performance diagrams in Figure 3, showing that CMFD
performs well in the precipitation detection capability assessment. The four reanalysis
products show similar performance, in most cases second only to CMFD, suggesting a
robust occurrence detection mechanism. On the monthly scale, the performance of CMADS
and CFSR is satisfactory (i.e., both correlation coefficients are greater than 0.95), while
CMFD and ERA5 are not as good as at the daily scale (i.e., both correlation coefficients
are less than 0.7). At the interannual scale, the four reanalysis datasets performed poorly,
not only with correlation coefficients lower than 0.5, but also standard deviations and root
mean square errors greater than 40 mm/year.
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3.1.2. Evaluation of the Temperature of Reanalysis Datasets by Time Scale

At the daily scale, the four reanalysis datasets performed satisfactorily in terms of
maximum and minimum temperature, with the best being CMADS, followed by CMFD,
and finally ERA5 and CFSR; all had correlation coefficients greater than 0.95. At the
same time, the STD and RMSD of the four reanalysis datasets are relatively close and
not significantly different to the observed data and show a cumulative state in the Taylor
diagram, showing that the reanalysis dataset has high accuracy in temperature estimation.
At the monthly scale, the four reanalysis datasets performed similarly to the daily scale at
the monthly scale, with all showing satisfactory accuracy in temperature estimation, for
both maximum and minimum temperatures. On the interannual scale, the four reanalysis
data vary considerably in the accuracy of the temperature estimates, and the accuracy
varies considerably between maximum and minimum temperatures. For example, among
the datasets considered, ERA5 exhibits superior accuracy in capturing the mean annual
maximum temperature (i.e., the correlation coefficient of 0.92), while the accuracy is very
low in terms of mean annual minimum temperature (i.e., the correlation coefficient of only
0.32). The other three reanalysis datasets are similar to ERA5, which may be caused by the
lower number of samples used for assessment at the annual scale.



Remote Sens. 2024, 16, 751 10 of 21

3.1.3. Spatial Annual Averages: Reanalysis Datasets vs. OBS Data

In order to spatially compare the differences between reanalysis datasets and OBS
data, this study employs the ANUSPLIN interpolation methodology to interpolate annual
mean precipitation as well as maximum and minimum temperatures within the SYYR
region (Figure 4).
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Figure 4. Spatial distribution of reanalysis datasets and observed data. Subfigures in the first, second,
and third columns illustrate the spatial distributions of annual average precipitation, maximum
temperature, and minimum temperature, respectively ((a): OBS-Pcp, (b): OBS-Tmax, (c): OBS-
Tmin, (d): CMADS-Pcp, (e): CMADS-Tmax, (f): CMADS-Tmin, (g): CFSR-Pcp, (h): CFSR-max,
(i): CFSR-Tmin, (j): CMFD-Pcp, (k): CMFD-Tmax, (l): CMFD-Tmin, (m): ERA5-Pcp, (n): ERA5-Tamx,
(o): ERA5-Tmin).

From Figure 4a, it was found that precipitation presents a decrease from southeast to
northwest in the SYYR region. Due to the topographic obstruction and airflow uplift, water
vapor from the ocean decreases in the process of moving from southeast to northwest,
resulting in abundant precipitation in the southeastern part of the SYYR region, with
annual precipitation ranging from 800 to 1200 mm, while precipitation is scarce in the
northwest, with annual precipitation less than 300 mm. By comparing Figure 4a,d,g,j,m, it
can be discerned that the annual precipitation across CMADS, CFSR, CMFD, ERA5, and
observational (OBS) data in the SYYR region consistently displays a geographical pattern
marked by higher values in the southeast and lower values in the northwest. In particular,
the CMFD data are in excellent agreement with the spatial distribution of the observations.
Furthermore, it is apparent that CMADS tends to exhibit a systematic underestimation of
annual precipitation within the SYYR region, while both CFSR and ERA5 demonstrate a
tendency toward overestimation. This observation aligns with the outcomes derived from
the quantitative analysis presented in the preceding section.

From Figure 4b,c, the investigation reveals a discernible east-to-west decline in both
the annual mean maximum and minimum temperatures across the SYYR region. This
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temperature variation is attributed to the elevation gradient, particularly evident in the
transition from the relatively lower-elevation eastern Yellow River source area to the
higher-elevation Yangtze River source area in the west. The temperature reduction is
compounded by the latitudinal influence, contributing to relatively elevated temperatures
in the southeastern corner of the Yangtze River source region. This phenomenon indicates
that the influence of elevation gradient on the temperature in the SYYR region is greater
than that of latitude. By comparing Figure 4b,e,h,k,n, a consensus is evident in the spatial
distribution of the annual mean maximum temperature across CMADS, CFSR, CDMFD,
and observational (OBS) data within the SYYR region. This commonality manifests as a
geographical pattern characterized by higher values in the east and lower values in the
west. However, ERA5 performed poorly and there was a significant overestimation of
temperatures in the southwestern Yangtze River source. The spatial patterns observed in
Figure 4c,f,i,l,o indicate a general coherence between the spatial distribution of the mean
annual minimum temperature and that of the mean annual maximum temperature.

3.2. Hydrological Aspect
3.2.1. Calibration and Sensitivity Analysis of Parameters

The calibration of the SWAT model is executed by employing the Sequential Uncer-
tainty Fitting Algorithm (SUFI-2) within the Uncertainty Procedure (SWAT-CUP). This
method offers a versatile algorithm for the calibration of SWAT models characterized by a
substantial number of input parameters [35]. The process of calibrating the SWAT model
involved the application of global sensitivity analysis within SWAT-CUP, leading to the
identification and selection of a total of 10 parameters for calibration. Table 4 lists the global
sensitivity ranking of model parameters and their best-fit values for runoff simulations in
the SYYR region. Across all simulations, the year 2008 was designated as the warm-up
phase for model simulations, while the interval spanning 2009 to 2014 served as the model
calibration period. Subsequently, the validation phase encompassed the years 2015 to
2018. Calibration and validation procedures were conducted at both the daily and monthly
temporal scales.

Table 4. Initial and optimized parameter values for the runoff simulation.

Parameter Description Min Max Sensitivity Fitted Value

R_CN2.mgt SCS runoff curve number −0.5 0.5 6 0.19
V_ALPHA_BF.gw Baseflow alpha factor (days) 0 1 10 0.87
A_GW_DELAY.gw Groundwater delay (days) −31 500 4 119.97

V_GWQMN.gw Threshold depth of water in the shallow
aquifer required for return flow to occur (mm) 0 5000 1 4394.73

V_GW_REVAP.gw Groundwater “revamp” coefficient 0.02 0.2 9 0.08
V_RCHRG_DP.gw Deep aquifer percolation fraction 0 1 3 0.33

R_SOL_Z(..).sol Depth of burial at the bottom of the soil layer −1 10.5 2 0.91
R_SOL_AWC(..).sol Available water capacity of the soil layer 0 1 8 0.62

R_SOL_K(..).sol Saturated hydraulic conductivity (mm h−1) −1 19.5 5 0.59
V_SMTMP.bsn Snow melt base temperature (◦C) −5 5 7 −3.08

The notation, v_ signifies the substitution of the default parameter with a specified value, while r_ indicates the
multiplication of the existing parameter value by (1 + a given value), a means to add a fixed value to an existing
parameter value. Note: The “Fitted Value” in the last column of Table 4 is the value entered during parameter
modification in ArcSWAT, and does not represent the true value of the parameter.

3.2.2. Flow Simulation in the SYYR

To mitigate uncertainties in the hydrological model, parameter uniformity is im-
perative among the various components of the hydrological model. Therefore, we first
rigorously process the data based on observations, then adjust the reference to obtain the
best parameters for input into SWAT, with the best parameters held constant, and then
input different meteorological forcing data for simulation, so that the resulting hydrological
processes are comparable.
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Upon calibration of parameters using observational data, diverse runoff simulations
were generated by executing the SWAT model with varied meteorological datasets. Figure 5
presents the daily and monthly runoff simulations for the two hydrological stations, while
Table 5 details the corresponding performance indicators. Comparative analysis of the
runoff simulations using distinct input data reveals the superior performance of OBS-driven
simulations, with CMFD demonstrating the closest resemblance, followed by ERA5 and
CFSR. Conversely, CMADS exhibits comparatively inferior performance.
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Table 5. Performance metrics for daily and monthly runoff simulation.

Time
Scale

Calibration Validation

Yellow River Yangtze River Yellow River Yangtze River

R2 NSE R2 NSE R2 NSE R2 NSE

OBS

Daily

0.81 0.81 0.83 0.80 0.70 0.69 0.82 0.80
CMFD 0.82 0.81 0.76 0.74 0.70 0.67 0.62 0.51
ERA5 0.63 0.63 0.73 0.72 0.63 0.60 0.67 0.65
CFSR 0.64 0.63 0.65 0.61 0.60 0.43 0.62 0.41

CMADS 0.75 0.64 0.53 0.50 0.34 0.18 0.35 0.15

OBS

Monthly

0.82 0.82 0.86 0.84 0.65 0.64 0.78 0.77
CMFD 0.80 0.78 0.80 0.80 0.65 0.59 0.75 0.70
ERA5 0.76 0.75 0.75 0.69 0.65 0.59 0.67 0.59
CFSR 0.73 0.70 0.73 0.72 0.58 0.47 0.57 0.57

CMADS 0.76 0.67 0.55 0.54 0.30 0.24 0.36 0.23

In summary, the precision of runoff simulations generated by SWAT models gen-
erally exhibits a higher degree of accuracy at the monthly scale compared to the daily
scale. Additionally, most reanalysis datasets adequately fulfill the data requirements for
runoff simulations, with the notable exception of CMADS, which demonstrates suboptimal
performance during the validation period. When coupled with the assessment outcomes
of reanalysis data in Section 3.1, a notable correspondence emerges between the runoff
simulation results and the evaluation of daily scale precipitation. Specifically, a one-to-one
relationship is observed between the accuracy of runoff simulation and the precision of
daily scale precipitation. It can be inferred that the accuracy of runoff simulation is heavily
contingent upon the accuracy of daily scale precipitation within reanalysis datasets. This
observation underscores the tendency in related research to primarily focus on the assess-
ment of precipitation within reanalysis or satellite datasets. On the other hand, we note that
there are differences in the accuracy of the reanalysis data for runoff simulations in the two
basins. For example, although CMADS is less accurate in estimating daily precipitation, its
simulation accuracy for monthly runoff in the Yellow River source area is better than that
of CFSR and ERA5, while it performs poorly in the Yangtze River source area, most likely
due to the spatial differences in the accuracy of the reanalysis data.

As can be seen from Figure 5, whether within the Yellow River or Yangtze River basin,
the annual peak flow predominantly occurs during the period from May to September.
Notably, during the calibration period (2009–2014), the highest daily average flow reached
3350.00 m3/s at the source of the Yellow River on 24 July 2012, and 3320.00 m3/s at the
source of the Yangtze River on 24 July 2009. Employing the 95% quantile [36] of runoff
values for the study period as the extreme runoff threshold (as illustrated in Figure 6),
it was observed that, in most instances, both reanalysis datasets and observed data tend
to underestimate peak flows during runoff simulations at the sources of both the Yellow
River and the Yangtze. This discrepancy may arise from the SWAT model’s limitation in
accurately representing the glacier and soil thawing processes in the SYYR region during
the thaw period. Additionally, it fails to seamlessly integrate glacier meltwater and thawed
soil water into the simulated runoff outcomes.
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4. Discussion
4.1. Uncertainty Analysis of Reanalysis Data

In general, the reanalysis data have good applicability in China and can obtain a
relatively accurate runoff simulation by running the SWAT model. However, the study
area in this paper is located on the Tibetan Plateau, which has a unique plateau climate
with climatic differences from other regions in China [14]. Moreover, the spatial and
temporal resolution, as well as the quality of the components, will exhibit variations across
diverse reanalysis datasets, contingent upon factors such as the origin of the observed
data, the forecast model/land surface model [37], the assimilation method [38], and other
contributing parameters [39]. These factors could contribute to notable disparities in the
precision and suitability of the four reanalysis datasets within the SYYR region.

The findings of this study indicate that, within the SYYR region, CMFD exhibits the
highest level of applicability, succeeded by ERA5 and CFSR, whereas CMADS demonstrates
suboptimal results in runoff simulation due to its diminished performance in daily scale
precipitation. Notably, CMFD and CMADS assimilate ground-based observations with
multiple gridded datasets sourced from remote sensing and reanalysis [40]. Given the
constraints associated with ground observations, particularly in regions of elevated terrain
complexity, direct interpolation of variable values may yield greater errors compared to
the interpolation of differences or ratios between station data and background data [41].
CMFD employed distinct data generation algorithms tailored for various variables [42].
Notably, the precipitation generation algorithm employed a positive bias suppression
method, wherein precipitation interpolation was conducted separately for sub-daily and
-monthly scales. Subsequently, the sub-daily interpolated values were adjusted based on
the corresponding monthly interpolated values [43], which greatly improves data accuracy.
ERA5 is a comprehensive reanalysis dataset which assimilates as many observations as
possible in the upper atmosphere and near the surface [44,45]. In regions with limited
observational coverage, ERA5 employs a weather forecasting model to furnish spatially
and temporally continuous data. This dataset is generated through the utilization of 4D-Var
data assimilation and model forecasts within the CY41R2 version of the ECMWF Integrated
Forecast System (IFS) [46]. ERA5 integrates available weather observations and comple-
ments them with a weather forecasting model to yield continuous data with spatial and
temporal coverage. The resultant dataset, resembling a weather forecast, inherently carries
a degree of uncertainty. Conversely, CFSR stands as a comprehensive, long-term reanalysis
dataset crafted by the U.S. National Centers for Environmental Prediction. It encompasses
both the coupled land–atmosphere–ocean model and the Global Land Data Assimilation
System (GLDAS) [47]. Although its data quality has improved after the upgrade transition
from CFSv1 to CFSv2, the resulting data necessarily contain some uncertainty as they
seem not to assimilate ground-based observations [48], but to produce data in a forecast
manner. CMADS was constructed through the application of diverse techniques, including
data loop nesting, resampling, and bilinear interpolation. This process was rooted in
the utilization of field elements derived from the China Meteorological Administration
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Land Data Assimilation System (CLDAS) as the foundational dataset [49]. This may be
one of the reasons for the lower accuracy of CMADS in terms of daily scale precipitation,
which is also consistent with the findings of Zhang et al. [49] and Dao et al. [50]. Never-
theless, CMADS merits acknowledgment for its commendable precision in temperature
estimates, yielding satisfactory outcomes across the annual, monthly, and daily temporal
scales. Consequently, an evaluation of climate data source accuracy becomes imperative
when employing reanalysis datasets at a regional scale, particularly in areas with limited
meteorological station coverage.

4.2. Optimization of the CMADS Dataset

The SYYR region is one of China’s important nature reserves, where human activities
have relatively little impact on the natural environment [51]. Moreover, the predominant
sources of water supply to rivers in the region consist primarily of natural precipitation
and glacial meltwater. Consequently, the regional runoff is primarily shaped by natural
factors [5,52]. In this investigation, an initial exploration of the influence of precipitation,
temperature, and solar radiation on runoff in the SYYR region was conducted at a monthly
scale using path analysis. This analysis was based on a synthesis of regional characteristics
and the data essential for runoff simulation with the SWAT model, as illustrated in Figure 7.
The findings reveal that temperature exerts the most substantial direct impact on runoff in
the SYYR region, followed by solar radiation, with precipitation exhibiting the least direct
influence. Li et al. [53] argued that with global warming and increasing temperatures, on
the one hand, the depth of permafrost freezing decreases, glacial snowmelt increases, and
evaporation increases in the basin, leading to a greater effect of temperature on runoff. On
the other hand, the rise in temperature alters the characteristics of the basin’s underlying
surface, leading to an augmentation in soil layer thickness. This, in turn, escalates the
proportion of precipitation contributing to groundwater recharge while diminishing direct
surface runoff. Consequently, the impact of temperature on runoff in the SYYR region
becomes more pronounced.
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From the results of this paper, it is clear that CMADS does not perform well in pre-
cipitation, but it presents good results in temperature simulation. Therefore, the author
advocates for the utilization of meteorological data products demonstrating superior pre-
cision in precipitation estimation or corresponding satellite data products to address the
deficiencies observed in CMADS regarding precipitation. Notably, prior studies have
consistently demonstrated a strong correlation between the daily precipitation data from
IMERG and surface precipitation across China [54–56].

In this study, the selection is made for AIMERG, which is acquired through the
implementation of an innovative spatiotemporal correction algorithm. Additionally, the
integration of a high-quality ground-based observation product, APHRODITE, is employed
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to rectify the GPM IMERG satellite precipitation product [23]. The AIMERG precipitation
dataset effectively integrates the respective merits of satellite estimation and ground-based
observations, exhibiting superior performance in systematic bias and random errors across
diverse spatial and temporal scales in China, thereby furnishing a more dependable foun-
dational dataset for scientific research and applications in related fields across Asia [57,58].
Employing Python and Matlab tools, precipitation data from AIMERG was extracted and
substituted for corresponding points in CMADS, ensuring the continuity of other input
data. Subsequently, the SWAT model underwent recalibration to simulate runoff in the
SYYR region, with the stipulation that the remaining input data remained unaltered. The
result shows (Table 6) that the CMADS data optimized with AIMERG are more suitable
for runoff simulation in the SYYR area (Figure 8), especially in the Yangtze River source
area, where the R2 and NSE for monthly scale runoff simulation increased from 0.55 and
0.54 to 0.86 and 0.86, respectively, and the R2 and NSE for monthly scale runoff simulation
increased from 0.53 and 0.50 to 0.82 and 0.79.

Table 6. Evaluation Indicators for Daily and Monthly Runoff Simulation for CMADS and
AIMERG + CMADS.

Input Data Time Scale
Yellow River Yangtze River

R2 NSE R2 NSE

CMADS Daily 0.75 0.64 0.53 0.50
AIMERG + CMADS 0.82 0.81 0.82 0.79

CMADS Monthly 0.76 0.67 0.55 0.54
AIMERG + CMADS 0.79 0.72 0.86 0.86

The refinement of the CMADS dataset through the application of the substitution
method has yielded a significant enhancement in its accuracy. This approach, characterized
by its simplicity and accessibility, contrasts with the intricate methodologies employed by
other researchers in optimizing and fusing reanalysis data. These methodologies encompass
sophisticated techniques, including artificial neural networks [59], wavelet transform
methods [60], genetic algorithms [61,62], and machine learning [63,64]. However, it is
noteworthy that the efficacy of the aforementioned optimization is constrained to situations
akin to CMADS, where certain metrics exhibit suboptimal performance relative to others.

4.3. Limitations

Within the confines of the SWAT model framework, notwithstanding the incorpora-
tion of parameters pertinent to snowmelt, it is imperative to acknowledge the model’s
omission of pivotal freeze–thaw phenomena manifesting in soils and glaciers. This lacuna
encompasses the nuanced influences exerted by seasonal permafrost, permafrost, and
glacial melt on the hydrological process of runoff. Particularly noteworthy are investiga-
tions conducted by Wang et al. [65] and Xin et al. [66], which have astutely recognized
the substantive repercussions of these processes on streamflow dynamics. And the depth
of perennial permafrost on the Tibetan Plateau has decreased in recent years [67]. The
concurrent presence of permafrost and seasonal permafrost introduces limitations on inter-
facial water fluxes encompassing the terrestrial surface, the cryosphere, and the unfrozen
lithosphere beneath [68]. This constraint engenders a diminution in the soil surface’s
infiltration capacity and the hydraulic conductivity of the soil, instigating alterations in
surface hydrodynamics, subsurface groundwater transport, and subsequent disruptions
to ecosystem functioning [69,70]. Conversely, the escalating influence of glacial meltwater
on runoff dynamics within the SYYR region necessitates the development of an analogous
algorithmic framework or a module dedicated to simulating soil and glacier freeze–thaw
processes within the SWAT model. Previous endeavors, exemplified by Omani et al. [71]
and Qi et al. [72], sought to devise methodologies incorporating soil temperature and glacier
mass balance simulations. Nevertheless, extant accomplishments underscore discernible
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lacunae the envisioned objectives, thus underscoring the imperative for future research
endeavors aimed at ameliorating these gaps.
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Furthermore, the role of groundwater in runoff simulation within the SWAT model in
alpine regions is of paramount importance. The substantial impact of groundwater on soil
moisture dynamics, particularly in cooler climates, is undeniable, and its pivotal role in
mitigating runoff constraints arising from soil freezing cannot be disregarded [70]. However,
the somewhat simplified delineation of groundwater processes in the SWAT model may not
comprehensively encapsulate the intricate interplay between groundwater dynamics and
soil moisture dynamics [73]. The optimization of the groundwater–surface water linkage
within the SWAT model can be achieved by incorporating a more nuanced depiction
of interaction mechanisms between groundwater and surface water [74]. Furthermore,
enhancing the parameterization process governing groundwater–surface water interaction
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within the model is imperative to elucidate groundwater dynamics with greater granularity
in forthcoming research endeavors.

5. Conclusions

In this study, three meteorological elements, precipitation, and maximum and min-
imum temperature of the reanalysis datasets CMADS, CFSR, CMFD, and ERA5 were
initially evaluated based on daily, monthly, and annual time scales by using 28 meteorolog-
ical station observations from 2008 to 2018 in the SYYR region. And the five meteorological
datasets (OBS, CMADS, CFSR, CMFD, and ERA5) were also applied to the SWAT model
to compare the performance of each dataset in the simulation of runoff. Additionally, the
CMADS dataset was also optimized using AIMERG satellite precipitation data based on
the assessment results of meteorological elements and the hydroclimatic characteristics of
the SYYR region, and satisfactory results were obtained. In summary, the principal findings
of this study are outlined as follows:

(1) On the daily scale, in terms of climate, CMFD performs best (i.e., correlation over
0.95 and RMSD less than 1 mm/day), followed by ERA5 and CFSR, while CMADS
performs poorly in terms of daily precipitation (i.e., correlation only 0.74). The four
reanalysis datasets performed well in terms of temperature at the daily and monthly
scales (i.e., correlation over 0.95), but not satisfactorily at the annual scales.

(2) In runoff simulations, SWAT has better simulation accuracy at the monthly scale than
at the daily scale. The best runoff simulation was based on OBS data (with R2 > 0.80,
NSE > 0.80 during the calibration period), and the closest to the OBS simulation results
was CMFD, followed by ERA5 and CFSR, while CMADS was the worst performer.

(3) Reanalysis data and the observed data in most cases underestimated the peak flows to
varying degrees in the runoff simulations carried out, and failed to effectively capture
the extreme runoff characteristics of the basin, both at the source of the Yellow River
and the Yangtze.

(4) After optimizing CMADS with the AIMERG precipitation dataset, the runoff simula-
tion performance was greatly improved, with R2 and NSE increasing from 0.55 and
0.54 to 0.86 and 0.86 for the source of the Yangtze at the monthly scale and from 0.53
and 0.50 to 0.82 and 0.79 at the daily scale, respectively.

Ultimately, we posit that a meticulous evaluation of the precision inherent in re-
analyzed data becomes imperative when employing such datasets at a regional scale,
particularly in regions characterized by a paucity of weather station coverage. In the
context of the SYYR region scrutinized within this study, it is undoubtable that the CMFD
dataset and the refined iteration of CMADS stand out as the most apt choices.
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