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Abstract: Autonomous Underwater Vehicles (AUVs) are currently one of the most intensively
developing branches of marine technology. Their widespread use and versatility allow them to
perform tasks that, until recently, required human resources. One problem in AUVs is inadequate
navigation, which results in inaccurate positioning. Weaknesses in electronic equipment lead to
errors in determining a vehicle’s position during underwater missions, requiring periodic reduction
of accumulated errors through the use of radio navigation systems (e.g., GNSS). However, these
signals may be unavailable or deliberately distorted. Therefore, in this paper, we propose a new
computer vision-based method for estimating the position of an AUV. Our method uses computer
vision and deep learning techniques to generate the surroundings of the vehicle during temporary
surfacing at the point where it is currently located. The next step is to compare this with the shoreline
representation on the map, which is generated for a set of points that are in a specific vicinity of a
point determined by dead reckoning. This method is primarily intended for low-cost vehicles without
advanced navigation systems. Our results suggest that the proposed solution reduces the error in
vehicle positioning to 30–60 m and can be used in incomplete shoreline representations. Further
research will focus on the use of the proposed method in fully autonomous navigation systems.

Keywords: computer vision; deep learning; robotics; navigation

1. Introduction

The marine environment poses inherent risks to human exploration, characterized by
various hazards that threaten human safety during deep-sea endeavors. The physiological
limitations of the human body during prolonged exposure at significant depths require spe-
cialized life support equipment, making human presence on board a hazardous prospect [1].
Recognizing this imperative, the integration of Unmanned Underwater Vehicles (UUVs)
has emerged as a key aspect of modern maritime technology. Due to their ubiquity and
adaptability, UUVs have become indispensable tools, effectively replacing solutions that
traditionally require human involvement. Eliminating the need for human presence aboard
these vehicles is paramount to ensuring both safety and operational efficiency in the chal-
lenging marine environment. In addition to overcoming the constraints imposed by human
physiological limitations, UUVs are distinguished by their ability to carry out prolonged
missions, facilitating extended data collection without the constraints of human fatigue.
The unparalleled endurance of unmanned vehicles enables them to operate continuously
for extended periods of time, covering large areas and performing repetitive tasks with a
level of precision that is unattainable by their human counterparts. This capability has not
only revolutionized the scope of marine exploration but has also significantly improved
the efficiency and effectiveness of marine data collection. As a result, the integration of
unmanned vehicles is a cornerstone of modern maritime technology, introducing a new era
of exploration and data collection capabilities in the challenging and dangerous marine
environment [2].
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Two common solutions have emerged in the field of underwater exploration, each
addressing different operational requirements. The first solution involves the use of Re-
motely Operated Underwater Vehicles (ROUVs) attached to a Surface Control Unit (SCU)
via a cable harness [3]. This configuration facilitates the transmission of power, control
signals, and imagery between the ROUV and the SCU. ROUVs are highly adaptable and
can integrate a wide range of sensors, cameras, and manipulators. This versatility enables
them to perform various tasks from underwater inspection and maintenance of pipelines
and cables to exploration, scientific research, and salvage operations.

In contrast, the second category includes Autonomous Underwater Vehicles (AUVs) [4].
AUVs, unlike ROUVs, operate autonomously and do not require continuous operator su-
pervision. This autonomy gives them the ability to perform complex tasks independently.
The development of AUV technology is strongly influenced by both civil and military
applications. AUVs are becoming increasingly useful in scenarios where the use of manned
vessels is either infeasible or impractical. In particular, in a military context, small AUVs
equipped with specialized sensors constitute valuable tools for defensive and offensive
operations in coastal zones [1]. The inherent autonomy of AUVs makes them well-suited
for scenarios that require a high degree of flexibility, adaptability, and independence in
underwater exploration and operations.

Accurate navigation, which is crucial for determining precise positions, is a major
challenge for the effective deployment of Autonomous Underwater Vehicles (AUVs). One
of the oldest methods of position determination, known for centuries, is dead reckoning [5].
This technique uses information about the ship’s course, speed, and initial position to
calculate its successive positions over time. However, the effectiveness of dead reckoning
is hampered by the inherent imperfections of the measuring sensors used, compounded by
the influence of external factors, leading to the accumulation of errors over time [6].

A critical aspect to consider is that the accuracy of the AUV’s position decreases
with increasing distance traveled. Consequently, there is an increased likelihood that
the estimated position of the vehicle will deviate significantly from its actual position.
Such discrepancies can pose significant challenges and potentially prevent the AUV from
effectively performing its designated tasks. Consequently, there is an urgent need to
develop and implement countermeasures to mitigate the impact of these error-prone
phenomena on AUV navigation. Overcoming these challenges is critical to improving the
reliability and effectiveness of AUV operations, particularly in scenarios where precise
navigation is paramount.

Positioning errors can be reduced using radio navigation devices that mainly utilize
satellites. Unfortunately, the high-frequency radio waves used for this purpose are very
strongly suppressed by water. It is, therefore, necessary for the ship to be temporarily
brought to the surface or for a special receiving antenna to be used. These devices are
currently inexpensive and small, which means that they are fitted to most AUVs. The error
is corrected to within a few meters due to the high accuracy of radio navigation systems.
Once the error has been corrected, the vehicle will dive again. It will continue to navigate
by dead reckoning.

In scenarios where the radio signal is either unavailable or deliberately jammed,
making it difficult to reduce dead reckoning errors, an alternative positioning system is
essential. Such a system should be able to provide accurate positioning using the onboard
equipment of the AUV. The solution proposed in this paper is designed to enable the AUV
to estimate its position by exploiting the surface environment without relying on radio
navigation methods.

The proposed methodology involves the AUV temporarily surfacing to capture images
of its surroundings. A process of semantic segmentation is then initiated, using a trained
neural network to delineate and categorize objects within the captured images. This
segmentation results in a comprehensive representation of the vehicle’s environment. This
representation is then transformed into a vector that encapsulates information about the
height of the coastline (land) within a 360◦ area. The next stage involves a comparison of
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this vector with the map stored in the AUV’s memory, facilitating an estimate of the current
position of the AUV.

By bypassing radio navigation and exploiting the inherent capabilities of onboard
sensing and processing systems, this innovative solution has the potential to provide
accurate AUV positioning even in radio-denied environments. The integration of image-
based environmental analysis and neural network-based semantic segmentation underlines
the adaptability and effectiveness of this approach for robust AUV navigation.

The solution was tested in real environmental conditions and compared with GNSS
information. The research was carried out in the Gulf of Gdańsk and the Baltic Sea waters.

The contribution of the work is as follows:

1. Proposal of an algorithm for estimating the position of ships in coastal areas;
2. The algorithm is designed for GNSS and environments in which radio navigational signals

are denied;
3. The algorithm’s effectiveness has been verified under real-world conditions.

The paper is divided into six distinct sections, each of which contributes to the com-
prehensive exploration and presentation of the proposed solution. The initial section
focuses on a review of relevant work in the field, providing a contextual background for
the proposed solution. The subsequent section describes the architecture of the proposed
solution, which includes an overview of the system’s components, outlining how they
interact and contribute to attaining the designated objectives. After that, authors explain
the methodology used in the investigation and describe the step-by-step approach taken
to investigate and validate the proposed solution. The Section 4 presents the outcomes of
experiments conducted in a real marine environment. This includes a detailed analysis of
the results, highlighting the performance and effectiveness of the proposed solution under
real-world conditions. Future research identifies areas that could benefit from further explo-
ration or refinement, providing a roadmap for ongoing investigations and improvements
to the proposed solution. The final section encapsulates the paper’s findings, summarizing
the research’s key insights, contributions, and implications. It links the various elements
presented in the previous sections, offering a holistic perspective on the proposed solution
and its significance.

2. Related Work

In principle, dead reckoning is a seemingly straightforward method of determining
a vehicle’s position. Knowing the initial position, speed, and direction, one should theoreti-
cally be able to determine the vehicle’s position with pinpoint accuracy at any given time.
Unfortunately, the practical application of dead reckoning is fraught with challenges due to
the inherent inaccuracies of measurement sensors and the ever-present influence of external
environmental factors, which introduce errors into the input data critical to calculating the
vehicle’s current position. The primary dead reckoning system used in AUVs typically
revolves around the use of an Inertial Measurement Unit (IMU) [7–9]. This IMU consists of
three rotating axes: an accelerometer, a gyroscope, and a magnetometer. This hardware
configuration is complemented by specialized software that processes the raw signals
from these devices to estimate the vehicle’s key navigation parameters. Unfortunately,
the effectiveness of this system is hampered by significant discrepancies in the accurate
determination of navigation parameters due to internal noise and increased susceptibility to
external interference. Consequently, this discrepancy culminates in a gradual accumulation
of errors over time, making the dead reckoning approach unsustainable for sustained and
accurate vehicle performance.

In study [10], the authors conduct a comparative analysis of professional-grade,
high-rate, and low-cost IMU devices based on microelectromechanical systems (MEMS).
The results show the good performance of these devices in determining pitch and roll,
although with an observable increase in azimuth error over time. These challenges are
compounded by the complex task of determining the correct speed of the AUV, particularly
when dealing with the influence of sea currents, which the IMU fails to detect [11]. These
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collective complexities underscore the intricacies associated with implementing dead reck-
oning in AUV navigation systems, requiring a nuanced consideration of sensor limitations
and environmental factors to mitigate the accumulation of errors over time. The use of
optical gyroscopes and a Doppler log will reduce the occurrence of this phenomenon.
Their tactical performance is 10 times better than that of MEMS, according to the analysis
presented in [12]. They can be successfully integrated into all types of unmanned vehicles
due to their moderate price and compact size. Despite enormous technological progress
and increasing accuracy of dead reckoning devices, error accumulation is still a problem.
Additional systems are needed.

In waters where it is possible to build a suitable infrastructure, Long Baseline (LBL),
Short Baseline (SBL), or Ultra-Short Baseline (USBL) acoustic reference positioning systems
are used [13–15]. In [16], the authors present a solution that enables the estimation of the ve-
hicle’s position in the horizontal plane based on two known position acoustic transponders
located in water. The distance from them is measured based on the time of the total signal
propagation to and from the transponder. Results were obtained in which the maximum
error in determining the AUV position did not exceed 10 m, and in most cases, it was about
2–3 m. Unfortunately, these systems can only be used in locations where there is a suitable
infrastructure or surface vessel.

The source of signals can also constitute a surface vessel equipped with a precise
DGPS positioning system. The system proposed by the authors of [17] uses a combination
of an external USBL acoustic system with a Doppler velocity logo and a depth sensor. Such
a combination of sensors enables a precise estimation of the AUV position in three planes.
The system guarantees excellent results but requires the constant presence of a reference
station near the vehicle.

The mitigation of navigation errors becomes an imperative consideration, especially
during periods when the autonomous vehicle temporarily surfaces. Currently, the predomi-
nant approach involves the use of GNSS in the majority of unmanned vehicles [18–20]. This
system generally provides exceptional accuracy, often to within a few meters. However,
a notable drawback of this solution is its dependence on the continuous reception of satellite
signals. The temporary disappearance or deliberate interruption of these signals poses
a significant risk to the integrity of the AUV navigation system, resulting in inaccuracies
that could lead to dangerous situations. It is important to emphasize the vulnerability of
GNSS-based systems to signal interruption, which can occur for a variety of reasons, includ-
ing atmospheric conditions or deliberate jamming. Such interruptions can lead to errors
in the AUV navigation system, compromising the reliability of its position information.
This inherent vulnerability is critical to ensuring the safety and effectiveness of unmanned
vehicles operating in dynamic and potentially hostile environments. Furthermore, it is
pertinent to highlight a fundamental limitation of GNSS systems—their inoperability below
the water’s surface. The GPS signal, which is an integral part of GNSS, is obstructed by
water, making it unavailable for underwater navigation purposes. This underscores the
need for alternative navigation methods and solutions that can be used during underwa-
ter operations and further highlights the multiple challenges associated with achieving
accurate and robust navigation for autonomous underwater vehicles.

Currently, a commonly used and intensively developed technique of precise naviga-
tion is Simultaneous Localization and Mapping (SLAM) [21,22]. Based on the readings from
the sensors, the displacement of characteristic points in relation to the vehicle is determined.
Sonar [23,24], radar [25], LIDAR [26], acoustic sensors [27], and cameras [28] are used as
sensors collecting information about the environment. On the basis of the collected informa-
tion, a map is created and updated, against which the vehicle’s position is simultaneously
estimated. Data processing is done by a computing unit that uses advanced algorithms [29]
with Bayesian [30] and Kalman [31] filters. However, SLAM requires constant monitoring
of the vehicle’s surroundings.

In [32], the authors used this technique combined with LIDAR to obtain information
on the coastline and determine the surface vehicle’s position in a seaport. The applied
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technique made it possible to estimate vehicle motion parameters without using elements
for dead reckoning. Unfortunately, publicly available laser devices have a range of up to
several hundred meters and require waters with low undulation.

Similar imaging is possible with the use of radar systems. However, because of the
large size of these devices, it is difficult to install them on small autonomous vehicles.
In [33], the authors tested the radar used in autonomous cars in the marine environment.
Unfortunately, the achieved range of the system (approximately 100 m) means that it can
only affect collision avoidance. A similar situation occurred in [34], where the authors
checked the capabilities of the micro-radar mounted on a UAV. The use of navigation radars
with a range of several kilometers requires a significant increase in the AUV volume and
the space for a sufficiently large antenna.

Vision systems are a common and relatively cheap tool enabling the registration
of the vehicle’s surroundings [35,36]. Information about objects in the near and distant
surroundings can be obtained using the installed visible light or infrared camera. Due
to the low cost and small size of the image recording devices, they are often used in all
unmanned vehicles. Due to this, the operator can avoid obstacles and identify objects in
the vicinity. A very popular solution is to use a double camera system (stereovision) [37,38],
which allows the extraction of 3D information. In this approach, two horizontally shifted
cameras provide information about relative depth, thanks to which we can determine the
vehicle’s position in relation to individual characteristic objects [39]. However, this solution
requires placing the cameras at a certain distance from each other, which significantly
increases the space occupied by the system.

The other solutions use a single camera. Low weight and dimensions make it possible
to use for any vehicle, with the main disadvantage being the difficulty in determining
the distance from the object. In [40], the author presents a method based on the results of
horizontal angle measurements; however, the indication of characteristic points in an image
with a known position requires analysis by a human. An AUV camera is also widely used
for relative pose estimation and docking with self-similar landmarks [41] or with lights
mounted around the entrance [42]. It can also be used for obstacle detection. The advan-
tages of optical detectors in this field and tracking objects in maritime environments are
described in [43].

The creation of an accurate autonomous positioning system based on one camera
requires the use of appropriate algorithms to obtain as much information as possible
from the input data [44–46]. One of the more significant methods is image segmentation.
This is a computer vision technique that divides an image into segments and that has
found application in many aspects of image processing. In [47], the authors proposed
adaptive semantic segmentation for visual perception of water scenes. Adaptive filtering
and progressive segmentation for shoreline detection are shown in [48].

The many advantages in navigation encouraged the authors of this paper to apply
the above computer vision methods to solve the problem of AUV position estimation in
surface position.

3. Architecture Overview

The solution outlined in this paper represents an innovative approach to determining
the X,Y coordinates of an AUV through the integration of advanced computer vision and
artificial intelligence methods. This advanced methodology is mainly applied in AUV
navigating areas without radio navigation signals. During a temporary surface, the system
captures images of the environment using a camera mounted on the vehicle. The semantic
segmentation is then performed using a trained neural network, the purpose of which
is to obtain information about the height of the land in a given bearing. The resulting
output provides a comprehensive representation of the vehicle’s environment, facilitating
comparative analysis with a corresponding map-derived representation. The complex
architecture of the proposed system is illustrated by the components shown in Figure 1:
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Figure 1. Block diagram of the proposed system.

Where:
SP—the representation of the surroundings of the vehicle at point P
P—the point where the vehicle is actually located
S′Gi —map representations of the points Gi, i ∈ (0, M)
M—the set of random points Gi
Gi—point on the map where the map representation S

′Gi is created
P′—estimated AUV position.

3.1. Computer Vision Subsystem

The task of the subsystem is to determine the visual representation of the vehicle
surrounding SP in point P, where the actual location of the vehicle is. A camera mounted
on the vehicle is used for this purpose. The vehicle or camera is rotated 360◦ to provide full
coverage of the surroundings. Actual camera angle information AO

k is read from on-board
systems and appended to each kth image, k = 1 . . . N. Knowing this parameter and the
horizontal angle of view αh, the bearing (angle) can be determined for each image pixel
column (Figure 2).

Figure 2. Actual camera angle AO
k and angle of view αh.

The recorded images are then segmented to determine where the land is located. This
is done using a trained convolutional neural network (Figure 3).

Figure 3. Segmented image (ground truth): sky (white), land (black), sea (gray).

The information from all segmented N images is then used to create a representation of
the vehicle’s surroundings SP. Formally, the representation SP =< SP

0 , SP
1 , . . . , SP

l , . . . , SP
t >
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(Figure 4) is the height of the land as seen from the point P, where SP
l is the height of land

in the direction AP
l = lR◦, l = 0 . . . t, t = 360

R − 1, and R is the resolution of SP.

Figure 4. The representation of the vehicle’s surroundings SP.

SP is determined from the N images captured by the camera, of which the kth image
is represented by (Figure 5):

SO
k =< SO

k,0, SO
k,1, . . . , SO

k,i, . . . , SO
k,(w−1) > (1)

where:
SO

k,i—is height of land in kth image and ith image column;
AO

k —is azimuth (angle) for kth image;
AO

k,i—is azimuth (angle) for kth image and ith image column;
w—determines the width of the image.

Figure 5. Land representation on the image SO
k for the kth image.

Finally, SP is calculated as follows:

SP
l =

SO
k∗ ,j∗

SO
max

(2)

where:
SO

max = maxk,j SO
k,j

k∗ = argmink |AP
l − AO

k |—is the image that was selected to calculate SP
l

j∗ = argminj |AP
l − AO

k∗,j|—is the column of k∗ image, which was selected to calculate SP
l .

3.2. Map Subsystem

The primary objective of the subsystem is to generate a map representation S′G corre-
sponding to any given point Gi in the area covered by the terrain model. This representation
is formulated by integrating a stored topographic map, a digital terrain model, or, in partic-
ular, a digital surface model. Of these options, the digital surface model emerges as the
most accurate representation of the terrain, as it not only encapsulates the topographical
features, but also incorporates elevation information relating to objects on the ground, such
as trees and buildings, thereby increasing the overall accuracy of the representation. The
construction process S′Gi requires the application of appropriate transformations, taking
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into account the Earth’s curvature and the objects’ mutual occlusion, as shown in Figure 6.
This complex process ensures a faithful representation of the terrain that is consistent
with the topography of the real world. A critical consideration in this endeavor is the
phenomenon of mutual occlusion, where objects occlude each other as the observer moves
away from them. The size of the visible portion (hvis) of an object is mainly a function of
the elevation of the camera and the distance from the object, as described by Equation (3).
This mathematical relationship emphasizes the dynamic nature of the visible part of an
object as a function of both camera placement and spatial proximity. The systematic consid-
eration of these factors is essential for the accurate and comprehensive generation of the
map representation S′, which reflects the complex interplay between terrain features and
observation parameters.

Figure 6. Height of an object beyond the horizon [49].

hvis = h2 − (

√
(d0 −

√
h0(h0 + 2RE))2 + R2

E − RE) (3)

where:
h0—height of observer (camera)
hvis—height of an object visible above horizon
h2—height of an object
d0—distance from the observer to object
RE—radius of earth.
In addition, there are cases where the apparent height of an object in the foreground

is less than that of a more distant object, but the former still blocks the view of anything
behind it. This scenario is particularly relevant in the context of map creation, where
the goal is to capture information about objects that occupy the largest number of pixels
in the image, prioritizing visibility over physical height. Figure 7 presents a visibility
analysis carried out along a specified line of approximately 4 km, accompanied by its
corresponding cross section or elevation profile. This analytical display illustrates the
nuanced interplay between foreground and background objects and highlights the critical
nature of prioritizing pixel coverage in the display process. The intricacies of visibility,
as delineated in the cross section, underscore the need for a sophisticated approach to map
representation that goes beyond mere physical height considerations to ensure a more
comprehensive and contextually relevant representation of the observed terrain.

Formally, a map representation for point Gi looks as follows:

S′Gi =< S′Gi
0 , S′Gi

1 , . . . , S′Gi
t >, S′G

k = hvis,w

k = 0, 1, . . . , t (4)

w =

{
argmaxi

hvis,i
xi

⇐⇒ ∃i∈Bk hvis,i > 0
0 otherwise

(5)

where:
Bk—a numbered sequence of pixels in direction kR from point Gi
xi—distance from point Gi to the ith pixel.
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Figure 7. Example determination of hvis: bottom—white line is vision for a given hvis; top
left—continuous height profile, top right—discrete height profile; where: x[m]—distance from
point Gi, h[m]—height of an object.

3.3. Position Estimation Subsystem

The task of the subsystem is to determine the position estimated at point P. This is
done by comparing the SP representation with the S′G map representations for the set
M of random points Gi located in a circle with radius r and center at point Q, which
is the estimated position of the submersible vehicle determined by the dead reckoning
navigation system. The position of point P corresponds to the position of point Gi, whose
representation S′Gi is more similar to the representation of SP with respect to the selected
measure of similarity T. Formally, the estimated position P′ for the point P is defined
as follows:

P′ = Gk (6)

k = argmax
i∈0...|M|

T(SP, S′Gi ) (7)

where:
T is a measure of the similarity of representations SP and S

′G.

4. Experiments
4.1. Dataset

To validate the methodology proposed in this paper, the authors conducted testing
using real-world image data. The research began with the assembly of an image database.
In order to compute the map representation, S

′G, a prerequisite is the use of a neural
network capable of delineating the location of land within an image through semantic
segmentation. To facilitate this, a corpus of 3000 images was collected, covering a range
of weather and lighting conditions, as shown in Figure 8. These images were captured in
various locations, including different areas of the Baltic Sea and inland waters, to ensure a
diverse and representative dataset for robust testing.

A crucial phase of the experiments involved image labeling. The authors initially
used an algorithm, as previously proposed in [48], for an automated labeling process; the
inherent imperfections of the algorithm required manual improvement for some images.
Consequently, each image destined for neural network training was segmented into distinct
segments, namely sea (I1), land (I2), and sky (I3). This labor-intensive labeling process
ensures the accuracy and reliability of the training dataset and lays the groundwork for the
subsequent stages of verification of the proposed method.
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Figure 8. Sample images from the training set.

In addition, to increase the robustness and diversity of the dataset, all the recorded
images, along with their carefully labeled counterparts, underwent an augmentation pro-
cess. Several methods available in the Pyplot library were used for this purpose, including
horizontal and vertical shift, horizontal and vertical flip, random brightness adjustment,
rotation, and zoom. The augmentation process significantly expanded the dataset used to
train the neural networks, contributing to the models’ adaptability to different environmen-
tal conditions and scenarios. The dataset was then split into training and validation sets at
a ratio of 9:1. Based on the findings of an extensive literature review, four widely accepted
neural network architectures [50,51] were selected for experimentation: FCN-32, Segnet,
Unet, and PSPNet.

In the next phase, the selected neural networks were trained using the TensorFlow
and Keras libraries. The training and validation accuracies of all selected models are shown
in Table 1. The best results were achieved by Segnet. To evaluate the effectiveness of the
trained models, an additional test set of 150 labeled images taken in different regions of the
Baltic Sea was used. Each image of the test set was carefully compared to the ground truth,
as shown in Figure 9. This comparative analysis facilitated the quantification of correctly
identified pixels, which served as a metric for evaluating the segmentation accuracy of the
neural networks. After careful evaluation, the Segnet architecture emerged as the most
effective, achieving the highest accuracy in image segmentation. As a result, Segnet was
selected as the designated image segmentation neural network for the subsequent stages of
the research, demonstrating its effectiveness for the intended application.

Table 1. The training and validation accuracies.

Model Training Loss Training
Accuracy Validation Loss Validation

Accuracy

FCN-32 1.0985 0.3398 1.0984 0.3431
PSPNet 0.1685 0.9480 0.6678 0.8120

Unet 0.1355 0.9595 0.3672 0.8847
Segnet 0.0614 0.9802 0.0833 0.9694
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Figure 9. Comparison of the effectiveness of the tested neural networks.

4.2. Representation of the Surroundings

In the next step, in order to verify the accuracy of the proposed method, 2046 images
were registered at 100 measurement points P on the Baltic Sea and in Gdańsk Bay (Figure 10).
Information on the position and azimuth of the camera’s optical axis was attached to
each shot.

Figure 10. Measurement points on the open sea (top) and in the bay (bottom).

An important parameter influencing the nature of the image is the height of the lens
above the water level. In order to simulate the camera of a surfaced underwater vehicle, all
images were taken at a constant height of 1 m above sea level. An Olympus TG-6 camera
equipped with a GNSS receiver and a digital compass was used to record the images.
During the recording, the focal length of the lens was set to a value equivalent to 25 mm
for a full frame matrix, thus obtaining an αh = 71.52◦. Therefore, full 360◦ imaging could
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be obtained by registering a minimum of N = 6 images. In practice, this number ranged
from 8 to 16, which made it possible to counteract the distortion. The resolution of the
representation SP was set to R = 0.1◦, so SP =< SP

0 , SP
1 , . . . , SP

3600 >.
The 2046 images recorded under the conditions specified above were used to create

a representation SP for each measurement point P.

4.3. Map of the Surroundings

The generation of an M set of points requires reference to the map of the area where the
AUV performs its tasks. The more precise the map, the more accurate the representations
of the points in the set M. A Digital Surface Model (DSM) was used as the map, on the
basis of which the comparison points were generated. It is currently the most accurate
representation of the Earth’s surface along with the objects located on its surface. DSM is
available as text files and contains the coordinates (X, Y, Z) of points, with a resolution of
0.5 m for urban areas and 1 m for other areas. The heights are generated with an accuracy
of 0.15 m and, in some areas, up to 0.1 m. The data obtained cover the Polish area of the
Gulf of Gdańsk, together with the Hel Peninsula, which fully coincides with the area where
the research was carried out. However, the drawback of this representation is the size of
the files, which is about 40 GB for the area shown in Figure 11. Therefore, it was necessary
to adapt the data derived from DSM to the proposed method. To this end, numeric data
were converted to a bitmap. Knowing that the maximum height is less than 200 m above
sea level, a compressed DSM took the form of an 8-bit grayscale image. The graphic file in
tiff format had a resolution of 39,135 × 27,268 pixels and covered an area of approximately
85 × 55 km, due to which an accuracy of about 2 m/pixel was obtained. This made it
possible to reduce the image size to 1.2 GB, which significantly influenced the speed of
generating points.

Figure 11. DSM after converting to bitmap (left: Gdynia city, right—Gdańsk Bay).

4.4. A Measure of the Similarity of Representations

The estimation of the AUV position at point P requires a comparison of the SP repre-
sentation with the S′Gi map representations. Two common methods were used to determine
the measure of similarity T(SP, S′Gi ): the inverse of Euclidean distance (Equation (8)) and
the Pearson correlation coefficient (Equation (9)).

TE(S, S′) =
1

1 + d(S, S′)

TE(S, S′) =
1

1 +
√

∑t
n=1((S

P
i − S′G

i )2)
(8)

TC(S, S′) = d(S, S′)

TC(S, S′) =

n
∑

i=1
(SP

i − SP)(S′G
i − S′G)√

n
∑

i=1
(SP

i − SP)2
n
∑

i=1
(S′G

i − S′G)2

(9)
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For each measurement point P, the algorithm generated the set M, consisting of
500 random points Gi located in a circle with radius r = 1 km and center at point P. For each
point Gi, a map representation S′Gi was generated using compressed DSM, and then the
measure of similarity T(SP, S′Gi ) was computed using Equations (8) and (9). In the final
step, the estimated position P′ for each point P was calculated according to Equation (6).

5. Experimental Results

In order to verify the effectiveness of the proposed algorithm, the errors (max, min,
and average) in the calculation of the estimated position P′ for each point P were applied.
The errors are given in Table 2.

As it turned out, errors in the estimation of the position P for Equation (9) were
102.40 m (max), 8.93 m (min), and 64.60 m (avg). For Equation (8), the results were sig-
nificantly worse and were 189.25 m (max), 10.43 m (min), and 91.6 m (avg). Pearson’s
correlation, as a measure of the linear relationship between variables, showed greater sensi-
tivity to underlying patterns. This is particularly important for data where the relationships
between variables are not strictly linear and may show non-linear trends. Unlike Euclidean
distance, which is sensitive to the size and scale of the variables, Pearson’s correlation takes
into account relative differences, providing a more robust measure of similarity. The preva-
lence of Pearson correlation in our experiments suggests that it is more appropriate for
our dataset.

Table 2. Comparing Euclidean distances and correlations.

Error Min [m] Max [m] Average [m]

Euclidean 10.43 189.25 91.62
Correlation 8.93 102.40 64.60

After the analysis of the spatial distribution of the points Gi, it turned out that the
points with the highest similarity measure TC(S, S′) were generally located in the closest
neighborhood to the point P. The distribution of the correlation coefficient for four sample
points P is shown in Figure 12 (left column). The authors thus decided to estimate P′ based
on the five Gi points with the highest TC(S, S′) according to the following equation:

P′ =
∑L

i=1 TC(SP, S′Gi )Gi

∑L
i=1 TC(SP, S′Gi )

(10)

where:
L—a set of points Gi with the highest value of TC.

Figure 12. Cont.
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Figure 12. Distribution (left—spatial, right—quantitative) of the correlation coefficient for four
sample points P.

As it turned out, this procedure resulted in a significant reduction in the estimation
error, as shown in Table 3.

Table 3. Comparing 1 and 5 points with the highest similarity measure.

Error Min [m] Max [m] Average [m]

1 point 8.93 102.40 64.60
5 points 4.37 64.59 34.78

During the registration of the images, there were situations where the sea conditions
(waves) or the appearance of surface vessels in the field of view prevented the correct gen-
eration of the representation SP. Therefore, the authors decided to verify the effectiveness
of the incomplete environment representation algorithm SP. To this end, 10%, 30%, or 50%
(in reality, it is very unlikely for the disruptions to exceed 30%) of items, ranging from the
nth to the mth, were removed from SP =< SP

0 , SP
1 , . . . , SP

n , . . . , SP
m, . . . , SP

t >. The resulting
representation SP

r after the removal procedure is given by Equation (11). The verification
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of the algorithm for incomplete representation SP
r was carried out for 20 random points P,

and the results are presented in Table 4.

SP
r = SP\ < SP

n , SP
n+1, . . . , SP

m > (11)

where:
m ∈ {n + 360:10%, n + 1080:30%, n + 1800:50%}
n ∈ {180, 720, 1800}.

Table 4. Comparing representations of incomplete surroundings.

Removed Part n Min [m] Max [m] Average [m]

10% 180 5.21 54.19 40.87
10% 720 7.87 74.02 29.08
10% 1800 4.17 62.94 47.78
30% 180 8.03 81.09 46.26
30% 720 14.01 101.29 69.01
30% 1800 10.65 57.94 36.28
50% 180 42.39 179.03 130.97
50% 720 38.67 237.14 158.30
50% 1800 49.49 213.59 143.00

The obtained results show that incomplete display around the vehicle does not make
it impossible to estimate vehicle position. For disruptions equal to 10% and 30% of original
SP, the highest errors amounted to 47.78 m/69.01 m (average), 74.02 m/101.29 m (max),
and 7.87 m/8.03 m (min), which is an even better result than for the undisturbed repre-
sentation SP. However, it should be noted that the results given in Table 3 are calculated
for only 20 measurement points compared to the previous case in which all 100 points
were considered. The noticeable deterioration of the results is only visible for 50% of the
disturbances. In this case, the highest errors amounted to 158.30 m (average), 237.14 m
(max), and 49.49 m (min).

6. Future Research

The exploration of alternative terrain models is a promising avenue for further re-
search. While DSM provides high accuracy in object elevation information, they are limited
to specific geographic regions. In cases where DSM data are not available, alternative
models as topographic maps or satellite imagery could be used. However, this will require
adaptations to the existing algorithm to enable it to integrate and utilize different map
information from different sources.

A second area of research is the development of an algorithm tailored to regions
with recognizable landmarks in the vicinity of the vehicle. For this purpose, a terrestrial
navigation approach can be used by training neural networks to classify objects such as
forests, beaches, lighthouses, buoys, etc., and then using an algorithm to locate these objects
on a map. This approach is promising in environments where identifiable landmarks can
serve as navigational reference points.

The third area of interest revolves around exploring the size of objects in the image.
By identifying objects of known size and estimating their distance based on the disparity
between their actual size and their size in pixels, a methodology for distance estimation can
be established. Integrating this distance information with object classification data further
paves the way for an effective terrestrial navigation approach.

A fourth and equally important area for future research is the development of algo-
rithms capable of detecting image clutter such as waves, vessels, and other potential sources
of interference. The identification and mitigation of such clutter is critical to ensuring the
accuracy of vehicle position calculations, particularly in challenging marine environments
where external factors can impede accurate navigation.
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7. Conclusions

This paper presents a new algorithm for estimating the position of an Autonomous
Underwater Vehicle (AUV) when it operates on the surface under the condition that the
shore is visible. The algorithm’s core methodology involves comparing the real-time repre-
sentation of the vehicle’s environment, captured by a camera, and the map representation
derived from a DSM.

The main results of the tests carried out, as reported in the paper, are as follows:

1. Convolutional neural networks accurately extract land features from marine imagery.
This highlights the effectiveness of advanced machine learning techniques in the field
of maritime image analysis.

2. The proposed algorithm reduces the error associated with dead reckoning navigation
systems to 30–60 m. This indicates the algorithm’s effectiveness in improving the
accuracy of AUV navigation, particularly in challenging maritime environments.

3. The resilience of the algorithm is highlighted by its ability to operate effectively even
in scenarios where land representation is incomplete. This adaptability is crucial for
real-world applications where environmental conditions may limit the availability of
comprehensive map data.

4. The proposed algorithm proves to be a robust means for developing a fully au-
tonomous AUV navigation system. It shows particular promise in environments
where access to GNSS signals is limited, positioning it as a viable solution for GNSS-
denied scenarios. This capability opens up avenues for autonomous task performance in
challenging maritime conditions, contributing to the advancement of AUV technology.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z.; software, J.Z.; validation, J.Z. and
S.H.; formal analysis, J.Z.; resources, J.Z.; data curation, J.Z.; writing—original draft preparation, J.Z.;
writing—review and editing, S.H.; visualization, J.Z.; supervision, J.Z. and S.H.; funding acquisition,
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Ministry of Defence, Poland, Research Grant Program: Optical Coastal Marine Naviga-
tion System.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [J.Z.], upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
DGPS Differential Global Positioning System
DSM Digital Surface Model
GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial Measurement Unit
MEMS Microelectromechanical System
LBL Long Baseline
LIDAR Light Detection and Ranging
ROUV Remotely Operated Underwater Vehicle
SBL Short Baseline
SCU Surface Control Unit
SLAM Simultaneous Localization and Mapping
UAV Unmanned Aerial Vehicle
USBL Ultra Short Baseline
UUV Unmanned Underwater Vehicle



Remote Sens. 2024, 16, 741 17 of 18

References
1. Sahoo, A.; Dwivedy, S.K.; Robi, P. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160.

[CrossRef]
2. Bovio, E.; Cecchi, D.; Baralli, F. Autonomous underwater vehicles for scientific and naval operations. Annu. Rev. Control 2006,

30, 117–130. [CrossRef]
3. Joochim, C.; Phadungthin, R.; Srikitsuwan, S. Design and development of a Remotely Operated Underwater Vehicle. In

Proceedings of the 2015 16th International Conference on Research and Education in Mechatronics (REM), Bochum, Germany,
18–20 November 2015; pp. 148–153. [CrossRef]

4. He, Y.; Wang, D.B.; Ali, Z.A. A review of different designs and control models of remotely operated underwater vehicle. Meas.
Control 2020, 53, 1561–1570. [CrossRef]
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