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Abstract: Optical remote sensing videos, as a new source of remote sensing data that has emerged in
recent years, have significant potential in remote sensing applications, especially national defense. In
this paper, a tracking pipeline named TDNet (tracking while detecting based on a neural network) is
proposed for optical remote sensing videos based on a correlation filter and deep neural networks.
The pipeline is used to simultaneously track ships and planes in videos. There are many target
tracking methods for general video data, but they suffer some difficulties in remote sensing videos
with low resolution and those influenced by weather conditions. The tracked targets are usually misty.
Therefore, in TDNet, we propose a new multi-target tracking method called MT-KCF and a detecting-
assisted tracking (i.e., DAT) module to improve tracking accuracy and precision. Meanwhile, we
also design a new target recognition (i.e., NTR) module to recognise newly emerged targets. In
order to verify the performance of TDNet, we compare our method with several state-of-the-art
tracking methods on optical video remote sensing data sets acquired from the Jilin No. 1 satellite.
The experimental results demonstrate the effectiveness and the state-of-the-art performance of the
proposed method. The proposed method can achieve more than 90% performance in terms of
precision for single-target tracking tasks and more than 85% performance in terms of MOTA for
multi-object tracking tasks.

Keywords: optical remote sensing videos; correlation filter; deep neural network; target tracking

1. Introduction

In recent years, since the successful launch of the Jilin No. 1 optical remote sensing
video satellite, the interpretation of optical remote sensing videos has become a new and
important topic in the field of remote sensing. Remote sensing videos capture dynamic
changes in ground targets, which provide much more sufficient information than remote
sensing images. With this new type of remote sensing data, many potential applications can
be conducted, including surveillance of ground facilities, the dynamic monitoring of natural
disasters or environments, and especially military security [1]. Target tracking plays an
important role in video analysis and surveillance [2]. It is of great significance to track and
generate moving trajectories of multiple targets in remote sensing videos [3]. For example,
the behaviours and intentions of targets can be analysed and predicted based on their
moving trajectories; the targets can be clustered based on the moving relationship between
them; and moreover, target tracking can be integrated into satellites via processors with
low power and high performance for real-time monitoring of important targets. Therefore,
in this paper, we intend to develop a tracking system for remote sensing videos that detects
and tracks all specified targets. This has been studied by very few scholars [4] due to the
absence of data.
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There are quite a few studies about detecting and tracking small targets in wide-field-
of-view aerial videos with similar scenes to that of remote sensing videos. For example,
in [5], the target behaviour model is explored based on road structures to generate con-
straints for regulating matching schemes. It efficiently detects and tracks moving vehicles
in low-frame-rate aerial videos. Two trackers were designed in [6], with one based on
background subtraction for generating an initialised moving target and another based on
target state regression for frame-to-frame tracking. In [7], a two-stage spatial–temporal
convolutional neural network (CNN) was proposed to detect small objects in large scenes.
However, in those methods, the targets are too small to recognise, and therefore, temporal
information is important to detect the targets, which results in the limitation that only
moving targets can be detected and tracked.

In this paper, we aim to track specific targets in remote sensing videos, and thus, the
targets should be first detected and then tracked. Therefore, a tracking system is designed
using two techniques: object detection and target tracking. Object detection methods
have been well studied [8], including methods for remote sensing images [9], which are
used in this paper. Meanwhile, target tracking methods for general videos have also been
adequately researched [10] and are currently being explored for use in remote sensing
videos. Most target tracking approaches are based on correlation filtering, with the features
extracted by manual extractors [11] or deep neural networks [12].

The pioneering minimum output sum of squared error filter (MOSSE) [13], the first
correlation-filter-based target tracking method, tracks a target by defining/modifying a
template that maximises the output response by convolving the template with the regions
of interest (RoIs) of the tracked target. It employs gray-scale features and has the fastest
tracking speed but relatively a low tracking accuracy. The peak side-lobe ratio (PSR) method
was also proposed in MOSSE, which could determine whether the object is obscured or
tracked unsuccessfully. Aiming to solve the problem of sample redundancy caused by
sparse sampling among the traditional methods [14], the circulant structure of tracking by
detection with kernels (CSK) [15] introduces a cyclic sampling strategy and kernel functions
to improve the performance of the tracking method. Since then, the circulant matrix and
kernel functions have found success in the correlation filter-based tracking field. CSK also
uses gray-scale features and has a relatively slow tracking speed but with greatly improved
accuracy compared with MOSSE on the same benchmark. The kernel correlation filter
(KCF) [16] is the perfect version of CSK and has two major breakthroughs. First, the KCF
expands the input from gray-scale single-channel features to multi-channel features (which
can be colour or HOG). Second, it defines a connection method for multi-channel features.
In addition, the importance of accuracy or tracking speed can be optionally determined
using different kernels, for example, a Gaussian kernel used in the KCF has the highest
accuracy and a linear kernel used in the KCF has the fastest tracking speed.

In 2006, a breakthrough in deep learning was made by Hinton and Salakhutdinov [17].
Since then, deep neural networks with hierarchical layers have shown their stronger
feature representation power in a wide range of computer vision applications, especially
convolutional neural networks (CNNs). The applications include classification, object
detection, and target tracking in not only nature image data but also remote sensing
data [18]. With the powerful feature representation and abstraction of CNN for images,
many advantages can be achieved by incorporating correlation filtering into a CNN. On
the one hand, the learned features are data-driven instead of handcrafted and can better
represent the input data. On the other hand, the features are learned to fully accomplish
the task and can better adapt to the problem. Therefore, many correlation filtering methods
are proposed for incorporation with deep neural networks for target tracking.

Compared to KCF, the continuous convolution operators for visual tracking (C-
COT) [19] method uses VGG [20], which is a CNN prototype designed to extract features. In
addition, the prototype uses cubic interpolation to interpolate feature maps with different
resolutions into a continuous spatial domain. Then, the Hessian matrix is used to obtain
the sub-pixel accuracy target position, as shown in [21,22]. After the interpolation equation
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is determined, the continuous spatial domain training problem is also solved. In order to
solve certain major problems in C-COT (i.e., slow tracking speed, overfitting, and model
drift), the efficient convolution operators for tracking (ECO) [12] were proposed with the
following three improvements: (1) The convolution operation was decomposed and thus,
the model parameters were reduced. (2) The generative sample space model was proposed,
which can simplify the generation of training data sets and ensure the diversity of samples.
(3) A new model update strategy was adopted that could avoid model drift.

However, in the aforementioned target tracking methods, the position of the target
in the first frame can only be given manually, and only a single object of interest can be
tracked (which cannot meet the requirement of tracking in remote sensing videos). First
of all, the targets should be recognised instead of manually assigned in the first frame.
The aim in solving this problem is to track the ships and planes in the scene. The ships
and planes should be recognised automatically. Secondly, in addition to tracking specific
moving targets, it is also particularly practical to monitor the stationary targets in the videos.
Again, it may make more sense to track multiple targets. In the end, it is also important to
recognise and track targets that suddenly appear in the scene. Moreover, compared with
nature videos, remote sensing videos are usually of low resolution and can easily suffer in
quality due to weather conditions. Therefore, the targets in them are often blurry, which
greatly increases the tracking difficulty.

Therefore, we propose a multi-target tracking pipeline (tracks while detecting ships
and planes based on deep neural networks, called TDNet for short) that is composed
of four modules, including object detection, multi-target tracking based on KCF (MT-
KCF), detecting-assisted tracking (DAT), and new target recognition (NTR). The proposed
tracking pipeline is processed as follows: (1) region-based fully convolutional networks
(R-FCNs) [8] detect all the objects in the first frame of the video sequence and derive the
coordinate values for all objects and numbers of these objects in-class; (2) the MT-KCF
tracks all the detected targets; (3) the NTR recognises the newly emerged targets; (4) and the
DAT helps to improve the tracking performance. TDNet was evaluated on optical remote
sensing video data sets that were acquired by the Jilin No. 1 satellite. Since ships and planes
are two important types of targets, we focused on these types of targets in this paper. We
compared TDNet with state-of-the-art tracking methods to demonstrate the effectiveness
of its pipeline and the modules within it.

The rest of the paper is organised as follows. Section 2 describes the background
and preliminaries. The proposed TDNet is elaborated in Section 3. Section 4 reports and
analyses the experimental results. The conclusions and future work are given in Section 5.

2. Preliminaries

In the detecting-assisted tracking (DAT) and new target recognition (NTR) modules,
we recognised the ships and planes based on R-FCN [8], and we propose an MT-KCF
approach based on KCF [16] to track them. We will first start by introducing R-FCN and
KCF in this section.

2.1. R-FCN-Based Object Detection Approach

Recently, regions with CNN feature (R-CNN [23])-based object detection approaches [8]
have been substantially improving upon the state-of-the-art methods in a wide range of
computer vision applications. Their success is largely due to the advent of the backbone
network, which is a deep convolutional network model trained on the ImageNet data
set. Since R-FCN, with ResNet [24] as the backbone network, high quality features of a
target can extracted; thus, we chose R-FCN with ResNet as the object detection network to
complete the object detection task in DAT and NTR.

Figure 1 shows the architecture of R-FCN. A indicates the input. B is ResNet101,
which is the backbone network in R-FCN (but it must be noted that B is different from the
traditional ResNet101). B is constructed by removing the last full connected layer of the
traditional ResNet101 and adding a full convolutional layer with a 1 × 1 × 1024 size. D is
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obtained after the RPN operation, which is a proposal extraction network that was proposed
in Faster R-CNN [25], conducted on the last layer of B. C is the position-sensitive score
map, which is obtained by convolution of the last layer of B over k ∗ k(C + 1) convolutional
kernels with a size of 1024 × 1 × 1, where C is the number of categories. E is obtained by
the average pooling of regions of interest (RoIs) in C. F is the result of voting by E.

Input

average pool

C+1

k*k(C+1)-d

k*k(C+1)k*k(C+1)

conv

bottom-right

top-center

top-left

conv

RPN

RoIs

vote softmaxvote softmax

A

B C

E

D

F

C+1

Figure 1. The architecture of R-FCN. k ∗ k represents the size of RoIs on the position-sensitive score
map. C represents the number of categories. The conv symbol represents the convolution operation.
Softmax is a multi-class classifier.

2.2. Kernel Correlation Filter Tracking

A common phenomenon in the field of target tracking is that tracking methods based
on correlation filtering with traditional feature extractors are relatively fast in tracking
speed; moreover, tracking methods that are based on correlation filtering incorporation
with deep neural networks have relatively high tracking accuracy. Due to the special
characteristics of our remote sensing video data, in which the frame per second (fps) speed
was about 10 fps, we needed to control the tracking speed. KCF is a method with a relatively
fast tracking speed and an acceptable tracking accuracy. In order to achieve a relatively
high tracking speed, we chose to improve KCF to build a tracking method that fits our data.
Therefore, in this subsection, we introduce the formulation of KCF.

2.2.1. Correlation Filter-Based Methods

The basic idea in correlation filter-based tracking methods is to design a template that
maximises the output response by convolving the template with the RoIs of the tracked
target. As shown in Figure 2, the idea can be described mathematically as follows:

g = f ⊗ h, (1)

where ⊗ represents a convolution operation, g represents the output response, f indicates
the gray-scale image of the input image, and h represents the filter template. We only
need to constantly modify the filter template to obtain the maximum output response. In
these tracking methods, the output response can be calculated via a convolution operation
between the filter template and the RoI of the tracked target.
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Figure 2. Schematic of a tracking method based on a correlation filter.

To increase the tracking speed, MOSSE [13] uses the fast Fourier transform (FFT),
which converts the convolution operations in the real number domain to an element-wise
multiplication in the Fourier domain, and this is performed to decrease the computational
complexity. The specific formula for this is as follows:

F (g) = F ( f ⊗ h) = F ( f )⊙F (h)∗, (2)

With respect to the above, we defined G = F (g), F = F ( f ), and H = F (h) with F (·), and
we denoted the FFT operator, where the above formulation can be abbreviated as follows:

G = F ⊙ H∗, (3)

where ∗ indicates a complex conjugate and ⊙ denotes element-wise multiplication. Thus,
the filter template in the Fourier domain is obtained as follows:

H∗ =
G
F

. (4)

Then, the objective function can be expressed as follows:

min
H∗

=
m

∑
i=1

|H∗Fi − Gi|2 (5)

where Fi denotes the result of the FFT operator on the training images, fi denotes those in
the Fourier domain, and Gi denotes the result of the FFT on the training outputs gi in the
Fourier domain. By minimising the objective function, we obtain the following:

H∗ =
∑i=1

m Fi ⊙ G∗
i

∑i=1
m Fi ⊙ F∗

i

. (6)

Then, the position where the maximum response between the template and RoI is found is
the position of the target in the current frame.

2.2.2. KCF

Based on MOSSE, CSK provides a combination of samples and circulant matrices on
the one hand. On the other hand, it combines the kernel function, which helps to map the
original linear space problem into nonlinear space and thus solves the low-dimensional
linear inseparability problem. Compared to the above methods, KCF contributes to feature
selection and multi-channel feature kernel correlation, which are detailed as follows.

Assume a training sample set (xi, yi ) with a Ridge regression function f (xi) = wTxi,
where xi and yi denote the samples and their regression targets, respectively. Moreover, w
represents the weight coefficient, which can be optimised as follows:

min
w ∑

i
( f (xi)− yi) + λ∥w∥2, (7)
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where λ is used to control the importance of the two terms, with the second term being the
structural complexity of the system, which is used to control overfitting. The close-form
solution of Equation (15) is as follows:

w = (XTX + λI)−1XTy, (8)

where matrix X has one sample per row xi and each element in y is a regression target yi.
Moreover, I is an identity matrix. By converting Equation (8) into a complex version, we
obtain the following:

w = (XHX + λI)−1XHy, (9)

where XH is the Hermitian transpose, i.e., XH = (X∗)T , and X∗ is the complex conjugate
of X.

In general, a large system of linear equations must be solved to compute the solution;
however, this type of approach is time-consuming. To meet the standards of real-time
tracking, KCF also introduces a special case of xi. Consider an image patch with the object
of interest being denoted by a vector x = [x1, x2, . . . , xn]T as a base sample; as such, KCF
reconstructs matrix X by cycle shifts x as follows:

X = C(x) =


x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . .
...

x2 x3 x4 · · · x1

, (10)

where X is a circulant matrix. As all circulant matrices are made diagonal by the discrete
Fourier transform (DFT), we obtain the following:

ŵ =
x̂∗ ⊙ ŷ

x̂∗ ⊙ x̂ + λ
(11)

where the hatˆdenotes the DFT of a vector. The fraction denotes element-wise division.
In addition, by projecting the inputs of a linear problem to a non-linear feature-space

φ(x) with the kernel tricks, i.e., w = ∑i αi φ(xi), the variables under optimization are α
instead of w. By introducing a kernel function, the solution to the kernelised version of the
Ridge regression in [15] is as follows:

α = (K + λI)−1y, (12)

where K is kernel matrix and α is the vector of coefficient αi. In KCF, K represents the
circulant matrix for the data sets of cyclic shifts. As such, by diagonalising Equation (12),
we obtain the following:

α̂ =
ŷ

k̂xx + λ
, (13)

where kxx denotes the first row of the kernel matrix K = C(kxx).
In the next frame, we can compute the regression function for all candidate patches with

the following:
f̂ (z) = k̂xz ⊙ α̂. (14)

As for the details of the kernel values kxx and kxz, readers can refer to [16] for more
details. Intuitively, evaluating f̂ (z) at all locations can be seen as a spatial filtering operation
over the kernel values kxz. Each f̂ (z) is a linear combination of the neighboring kernel
values from kxz, and they are weighted by the learned coefficients α. Since this is a filtering
operation, it can be formulated more efficiently in the Fourier domain. Through the inverse
Fourier transform, the final corresponding response in the real domain will be obtained.
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3. The Proposed TDNet

Figure 3 shows the proposed pipeline for multi-target tracking. Figure 4 shows the
flowchart of the proposed method. The whole architecture consists of four modules: object
detection; multi-target tracking (MT-KCF); detecting-assisted tracking (DAT); and new
emerging target recognition (NTR). The four modules in TDNet are processed as follows:
(1) The pre-trained R-FCN is used to detect the ships and planes in the first frame of a video
so as to obtain the coordinate information and category information of all the targets to
be tracked. Then, all the detected targets are numbered in-class as the basis for MT-KCF.
(2) MT-KCF is used to accomplish multi-target tracking. (3) DAT is used to assist the
tracking process, such as, for example, tracking lost targets. (4) NTR is used to realise the
recognition of new targets.

In this section, we mainly describe the four modules in TDNet that were mentioned
above: object detection, MT-KCF, DAT, and NTR.

3.1. Object Detection

We use pre-trained R-FCN, whose backbone network is ResNet101, to complete the
object detection task in TDNet. Here, we introduce R-FCN from two aspects: data set
composition and sample selection, as well as parameter setting and optimization.

3.1.1. Data Set Composition and Sample Selection

R-FCN should be first trained with labeled samples; therefore, we split all the videos
in the data set by frame. Since the resolution of the Jilin No. 1 optical remote sensing
video satellite is relatively low and the target’s motion speed in the video is relatively
slow, we selected an image every 20 frames as the training image. Experiments have
shown that selecting a sample every 20 frames can satisfy the demand well. We la-
beled the object proposals via the intersection over union (IoU) parameter, which is the
area overlap ratio between the proposal and ground truth. If the IoU is in the range of
[0.5, 1], the corresponding proposal is defined as a positive sample; otherwise, the proposal
is defined as a negative sample.

3.1.2. Parameter Setting and Optimisation

The loss function defined on each region of interest (RoI) was composed of two
parts: the classification part and the regression part (i.e., L(c, zx,y,w,h) = Lcls(cc∗) + µ[c∗ >
0]Lreg(z, z∗)). Among them, c∗ is the label of an RoI (where c = 0 represents the RoI as a
background), Lcls is the cross-entropy loss for classification, Lreg is the bounding boxes loss
for regression, and z∗ is the coordinates of the ground-truth box. In order to obtain better
detection results, we used an online hard example mining (OHEM) strategy to accomplish
training. In the training process, we set the balance weight µ to 1 and the learning rate for
the first 20k mini-batches to 0.001; in addition, the learning rate was reduced 10 times for
each additional 10k mini-batches and a total of 40 k mini-batches were trained.

We used the pre-trained R-FCN to detect the ships and planes in the first frame of
the video; furthermore, we also obtained the coordinate information (x1i, y1i, x2i, y2i) and
category information ci of all the objects to be tracked. Then, the coordinate information
was converted into the top left coordinate (x1i, y1i), as well as into the height and width
coordinate (h1i, w1i), where i ∈ m and m represents the number of all detected objects. Next,
we performed in-class numbering for all m targets and used the numbered information
as the basis for multi-object tracking. Figure 5 shows the object detection results and the
in-class numbering results.
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Figure 5. (a,c) The detection results of R-FCN for planes and ships. (b,d) The in-class numbering
results according to the detection results.

3.2. Multi-Target Tracking (MT-KCF)

Since KCF [16] is an excellent single-target tracking method, we proposed a multi-
target tracking method named MT-KCF (which is based on KCF) to solve the problem
where there are usually multiple targets. The structure of MT-KCF is shown in Figure 6.

Let us take a video as an example. We assumed that a total of m objects (p1, p2, ...,
pq, sq+1, sq+2, ..., sm) were detected in the first frame of the video, where q is the number
of planes, namely, trackers (trp1, trp2, ..., trpq, trsq+1, trsq+2, ..., trsm). Taking a plane target
t as an example, the tracker training sample set is (pt, yt), where pt denotes the training
sample set of the t-th target (plane) and yt is their regression set. Then, the following KCF,
where the optimal wt of the t-th target is obtained by solving the optimization problem, is
obtained:

min
wt

∑
i
( f (pt)− yt) + λ∥wt∥2. (15)

As in KCF, wt can be optimised by solving α in the nonlinear space φ(pt), which is
achieved via following Equations (8)–(13). There are m targets and, in order to track
them simultaneously, m filters (w1, w2, ..., wm) corresponding to each target should be
learned.

Tgp

3
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2

Tracked

Tracked

Trp

3

Trp

2

..
.

Tgp

1
Tracked

Trp

1

..
.

Tgs

(k+1)
Tracked

..
.

Trs

(k+1)

Tgp

k
Tracked

Trp

k

Tgs

m
Tracked

Trs

m
The First Frame The Second Frame

Figure 6. The basic structure of MT-KCF. The green box indicates the stationary targets, while the
blue box indicates the moving targets.

After wt is trained, it is used to predict the location of the t-th target in the next frame.
Suppose z is a test batch of the target in the next frame. Then, we obtain the response of z
as follows:

ft(z) = k̂ptz ⊙ α̂ = (k̂ptz ⊙ ŷt

k̂pt pt + λ
), (16)

Response(z) = real(F−1( f (z))), (17)
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where F−1 represents the inverse Fourier transform; k̂ptz and k̂pt pt represent the kernel
values satisfying the relevant conditions as defined in KCF; and ⊙ indicates the Hadamad
product of the vector. For multi-target tracking, m targets will response simultaneously
( f1(z), f2(z), . . . , fm(z)). The position where the maximum ft(zi) is found is the position
of the target t in the current frame, where i ∈ N and N is the number of samples selected in
the current frame for a special target. The location of the m maximum responses are the
positions of the m-tracked targets in the current frame. MT-KCF is adaptive to changes at
the target scale. Moreover, the width w and the height h of the targets change if the next
DAT operation is performed. Through this step, we obtained the position information
(xj, yj, hj, wj) of all the targets, where (xj, yj) represent the center coordinates of the j-th
target and j ∈ n. In general, n = m.

In order to better accomplish the multi-target tracking tasks, we should not only track
the moving targets, but also detect the stationary targets. Due to the fact that the box
surrounding the stationary objects should stay the same in different frames, we used the
same box when an object is recognised as a stationary object to avoid gradual mistracking.
In order to achieve this function, we used indicators do and so to determine the stationary
objects. In detail, if do is over 0 and so is less than 0.95, the target is considered a moving
target; otherwise, the target is determined to be a stationary target. The indicators are
formulated as follows:

do = 2
√
(x f − x f−1)2 + (y f − y f−1)2, (18)

so =
S f ∩ S f−1

S f ∪ S f−1
, (19)

where the indicator do is formulated as the Euclidean distance between the center coordinate
(x f , y f ) of the target in the current frame and the center coordinate (x f−1, y f−1) of the target
in the previous frame. S f−1 denotes the area of the target in the ( f − 1)-th frame and S f
denotes the area of the target in the f -th frame.

Figure 7 shows an example of multi-target tracking where static targets are surrounded
by green boxes and moving targets are marked by blue boxes with azure lines as their
trajectories. The boxes of statistic targets should stay as statistics. However, due to the
slight variance in the learned filter, there may be certain errors that lead to changed boxes.
Therefore, we recognise the statistic targets via the location of their center and fix the
changed boxes. The behaviour of the moving targets can be analysed by their trajectories.
For example, the trajectory of Plane 5 was found to be longer than others (which meant
that Plane 5 was taking off).

Figure 7. An example of multi-target tracking, where the azure lines denote the trajectories of the
moving targets.



Remote Sens. 2024, 16, 724 12 of 22

3.3. Detecting-Assisted Tracking (DAT)

The detecting-assisted tracking (DAT) module was introduced due to two motivations:
(1) to improve the target tracking accuracy and precision of TDNet, as by introducing DAT
to continuously correct the coordinates of the tracked targets, the tracking lag occurrence
can be prevented, and thus, the performance will be significantly increased; (2) to retrieve
the “Tracking Lost” targets. By introducing DAT to detect certain frames of the video, the
lost targets can thus be retrieved in time.

Because DAT was used to constantly correct the tracked targets’ position, it was
important to match the position information and the category information of the detected
objects with the position information and IDs obtained by MT-KCF in the same frame. As
such, we propose a strategy called DAT-MS to match these two kinds of information. The
DAT process was performed every 10 frames unless a “Tracking Lost” target was found.

Assume that the f -th frame needs to perform the DAT operation. Suppose that the
position information and IDs of all tracked targets in the f th frame are (xv, yv, hv, wv, cv),
where n indicates the number of tracked targets, cv is the ID of the vth tracked target, and
v ∈ [1, n]. After the object detection operation on the f -th frame, the position information
and the category information for all detected objects are obtained as (xr, yr, hr, wr, cr),
where m represents the number of objects detected by R-FCN, cr is the category of the r-th
detected object, and r ∈ [1, m]. In order to establish a one-to-one correspondence between
the location information and IDs obtained from MT-KCF, as well as between the location
information and category information obtained from R-FCN, we define DAT-MS (dv and
dr) as follows:

dv = min
r

∥ xv − xr ∥2
2 + ∥ yv − yr ∥2

2, v = 1, 2, ..., n, (20)

which helps us to find the object among all the m detected objects that best matches v from the
distance. If the category in cr is the same, with the category in cv and dv being less than a certain
threshold γ, we determine that the target r and the object v have a one-to-one correspondence.
Then, the target’s location information is updated based on the object detection result. If a v
cannot find the corresponding r, this target maintains the original information.

dr = min
v

∥ xr − xv ∥2
2 + ∥ yr − yv ∥2

2, r = 1, 2, ..., m. (21)

In addition to the successfully matched targets that are obtained through Equation (20),
if an r cannot find the corresponding v through Equation (21), we determine this target as a
“Tracking Lost” target. The “Tracking Lost" targets are then recovered by the information
from previous frames. However, if we still have not found the information of the detected
target after going back 10 frames, we consider the detected target as a “New Target” (we
will introduce new target recognition in the next subsection). Moreover, if the existing
target disappears, the IDs of the other tracked targets remained unchanged. Figure 8 shows
the basic structure of DAT. In addition to disappearing targets, there are also emergent
targets, which should be recognised during the tracking process.

DAT-MSR-FCN

The fth frame The fth frame The fth frame

Object 

detection: 

detect all the 

planes and 

ships and 

mark them by 

red boxes.

Correct the 

coordinates 

of tracked 

targets by the 

result of 

object 

detection.

Figure 8. The basic structure of DAT. The green boxes indicate the stationary target and the blue
boxes indicate the moving targets. The red boxes indicate the R-FCN-based detection results.
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3.4. New Target Recognition (NTR)

We also need to consider the case where new targets appear in a current frame. The
module of new target recognition (NTR) was used to recognise the newly emerged targets,
and it was implemented every five frames in order not to harm the tracking speed. Existing
new target recognition methods usually recognise the newly emerged targets frame-by-
frame [26]. However, in remote sensing videos, the targets are blurry but move relatively
slowly. Therefore, the recognition should have a high accuracy, but the time it takes to
achieve this is extensive. For the Kalman-based multi-target tracking method, if the target
is not detected in this frame, it will be treated as a new target if it is detected in the next
frame. Moreover, existing methods fail to handle stationary targets well.

Due to the low resolution of remote sensing videos, the speed of the targets in the
video will not be too fast, and there is no need to recognise the newly emerged target
frame-by-frame. R-FCN is applied every five frames, which decreases the computational
time. Then, a matching strategy similar to Equation (21) is used to find the targets that are
newly appearing in the scene. As described above, the “New Target” is defined according
to the information of the previous frames.

If a new target appears, then the interclass number for a certain category increases by
1, and the new target will be labeled and tracked. We call this process NTR-MS. Figure 9
shows the basic structure of NTR.

R-FCN

The fth Frame

NTR-MS

The fth Frame The (f+1)th Frame

Object 

detection：
detect all 

the planes 

and ships 

including 

new targets 

and mark 

them by red 

boxes.

Find the 

new targets 

and track 

them in the 

next frame.

Figure 9. The basic structure of NTR. The blue boxes indicate the moving targets. The red boxes
indicate the R-FCN-based detection results.

4. Experimental Results

In this section, we mainly introduce the following aspects: data sets, evaluation
metrics, and performance comparison.

4.1. Data Sets

We evaluated the performance of the proposed TDNet-based target tracking methods
on data sets that were obtained from optical remote sensing video of the Jilin No. 1 commer-
cial remote sensing satellite group, where the ground pixel resolution was 1.12 m and the
duration was about 30 s. Jilin No. 1 commercial satellites are China’s first self-developed
commercial remote sensing satellite group. It was developed by the Changchun Institute
of Optics, Fine Mechanics and Physics of the Chinese Academy of Sciences, and it was
launched by a Long March No. 2 carrier rocket at Jiuquan Satellite Launch Center at 12:13
on 7 October 2015. This satellite group operates in sun-synchronous orbits with an average
orbit height of 650 km.

As the ground pixel resolution of the video satellite is only 1.12 m, it is challenging
to achieve target tracking in these data sets. In our work, we chose three cities, Santi-
ago, Bogota, and Hong Kong, as well as two categories of plane and ship for the experi-
ments. Since the size of each of the original videos was relatively large, and as there were
fewer areas where the target was densely distributed, we deducted densely targeted size
500 × 500 × 3 areas as our data sets. We selected a total of six data sets (Video 1, Video 2,
Video 3, Video 4, Video 5, and Video 6), of which three data sets (Video 1, Video 2, and
Video 3) were used for single-moving-target tracking experiments and four data sets
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(Video 3, Video 4, Video 5, and Video 6) were used for multi-moving-target tracking ex-
periments. The multi-moving-target tracking experiments were divided into three types:
a single-category and multi-moving-target tracking (SC_MT) experiment on Video 3 and
Video 4; a multi-category and multi-moving-target tracking (MC_MT) experiment on
Video 5; and a new emerging target recognition (NTR) and tracking experiment on Video 6.
Figure 10 shows several of the images in each data set. With the exception of Video 6, the
other images are the first frame of the corresponding data set. Images in the first, tenth,
and twenty-second frames in Video 6 are shown in Figure 10. Table 1 shows the detailed
information of each data set. For the target on the boundary line, we determined whether
the target was included in the statistical scope according to the position of the target’s center
of gravity.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. The total six data sets. (a) The first frame of Video 1. (b) The first frame of Video 2. (c) The
first frame of Video 3. (d) The first frame of Video 4. (e) The first frame of Video 5. (f–h) The first,
tenth, and twenty-second frames of Video 6.

It is worth noting that Video 5 is an artificial data set. When we were researching
the target tracking method for remote sensing videos, the airport was usually not near
the harbor. There was no scene in the data set where the planes and the ships could
be separated into the same video data set. In order to conduct the multi-target tracking
experiments, we created a data set of such images by splicing together airports and harbors.

As introduced in Section 3, R-FCN should be first trained on annotated data in order
to accurately recognise and locate the corresponding targets. In this paper, we followed the
basic training process of R-FCN [8], where it was first pre-trained on the ImageNet data
set [27], which is a large-scale image data set. Then, the layers of D, E, and F, as shown in
Figure 1, were fine-tuned with labeled frames that were extracted from a training video
captured on a Jilin No. 1 commercial remote sensing satellite. A training frame is exhibited
in Figure 11, where many patches were extracted to train the proposal network, which
was used to generate the proposal boxes that contain targets. The samples include patches
containing targets and no targets. The classifier was trained on image patches with a single
object, and these were used to distinguish different targets, as well as the background. As
introduced above, a frame was selected in the consecutive 20 frames, which was found to
be enough to adequately train R-FCN.
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Table 1. Data set details.

The Six Data Sets
Video 1 Video 2 Video 3 Video 4 Video 5 Video 6

Category plane ship ship plane ship and
plane plane

Moving targets 1 1 3 3 3 2

Stationary targets 10 11 16 3 0 0

Total 11 12 19 6 3 2

Samples for training the proposal network
Samples for training 

the classifier

Figure 11. Illustration of a training frame for R-FCN.

4.2. Evaluation Metrics

Regarding the single-moving-target tracking tasks, we used the evaluation metrics
of mean precision and mean frames per second (fps), which were also used in [16]. These
metrics were used as the basis to compare the performance of our method with that of the
compared methods. Since the performance of our tracking method depends on the perfor-
mance of the object detection method to a certain extent, we used the index mean average
precision (mAP) metric (which is frequently used in object detection methods [8,23,28]) to
evaluate the performance of the object detection method when used in TDNet. The mAP
metric represents the area under the precision vs. recall curve (PRC) of the object detection
method [29]. The definitions of precision (P) and recall (R) in ref. [29] are as follows:

P =
TP

TP + FP
, (22)

R =
TP

TP + FN
, (23)

where TP, FP, and FN denote the number of true positives, the number of false positives,
and the number of false negatives, respectively.
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Regarding the multi-moving-target tracking tasks, we adopted the CLEAR MOT
metrics, which are widely used to evaluate the performance of multi-moving-target tracking
methods [30–32]. Furthermore, they were also utilised to quantitatively evaluate the
performance of the multi-moving-target tracking methods used in our work. The CLEAR
MOT metrics include multiple object tracking accuracy (MOTA), multiple object tracking
precision (MOTP), mostly tracked (MT—i.e., the percentage of ground truth objects whose
trajectories are covered by a tracking output this is at least 80%) targets, mostly lost
(ML—i.e., the percentage of ground truth objects whose trajectories are covered by a
tracking output that is less than 20%) targets, the total number of false positives (FP),
the total number of false negatives (FN), the total number of ID switches (IDS), and the
number of frameworks processed in one second (Hz). MOTA and MOTP can be formulated
as follows:

MOTA = 1 − ∑t(mt + f pt + mmet)

∑t gt
, (24)

MOTP =
∑i,t di

t

∑t ct
, (25)

where t represents the current frame, mt is the missing numbers in the t-th frame, f pt is the
misjudged numbers in the t-th frame, mmmet is the mismatched numbers in the t-th frame,
gt is the number of tracked targets in the t-th frame, ct is the number of matched targets
in the t-th frame, and dt

i is the calculated matching errors for each pair of matches in the
t-th frame.

4.3. Performance Comparison of the Single-Moving-Target Tracking Experiments

We compared our methods (TDNet(DAT) with DAT and TDNet(NO DAT) without DAT)
with seven other state-of-the-art single-target-tracking methods (KCF [16], C-COT [19],
CASAMF [33], CAMOSSE [33], CASTAPLE [33], ECO-HC [12], and ECO [12]) in terms of mean
precision (Mean P) and mean fps (fps) on Video 1, Video 2, and Video 3 for plane11, ship6,
and ship4, respectively. TDNet(NO DAT) was the method (TDNet) without a DAT module
(Table 2).

Table 2. Single-moving-target tracking comparisons.

Video 1

CASAMF [33] CAMOSSE [33] KCF [16] CASTAPLE [33] C-COT [19] ECO-HC [12] ECO [12] TDNet(NO DAT) TDNet(DAT)

Mean P 74.71% 77.01% 89.82% 92.29% 92.76% 93.08% 93.81% 89.82% 94.65%

Fps 6.08 89.99 93.59 14.32 0.20 15.89 1.06 93.59 82.84

mAP(od) - - - - - - - 100% 100%

Video 2

CASAMF [33] CAMOSSE [33] KCF [16] CASTAPLE [33] C-COT [19] ECO-HC [12] ECO [12] TDNet(NO DAT) TDNet(DAT)

Mean P 92.06% 93.44% 93.89% 93.94% 93.97% 94.16% 94.69% 93.89% 97.25%

Fps 6.02 90.49 90.60 14.85 0.15 16.89 1.05 90.60 79.34

mAP(od) - - - - - - - 90.91% 90.91%

Video 3

CASAMF [33] CAMOSSE [33] KCF [16] CASTAPLE [33] C-COT [19] ECO-HC [12] ECO [12] TDNet(NO DAT) TDNet(DAT)

Mean P 87.91% 92.51% 92.75% 93.78% 93.80% 93.85% 95.39% 92.75% 97.69%

Fps 8.64 86.43 125 15.00 0.19 18.02 1.05 125 97.59

mAP(od) - - - - - - - 94.74% 94.74%

There was no “Tracking Lost” phenomenon observed on these data sets for all of the
methods. TDNet(DAT) performed better than the compared methods in terms of mean P
(94.65% on Video 1, 97.69% on Video 2, and 97.25% on Video 3). In terms of tracking speed,
our tracking methods were not the fastest, but they did demonstrate an acceptable level
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with a mean fps of 82.84. In addition, due to the scale among the targets being essentially
uniform (in addition to several ships), the targets could easily be detected by the object
detection method. Moreover, the mAP of R-FCN in Video 1 was 1.

Figure 12 shows the tracking results of the TDNet(DAT)-based method on Video 1 and
Video 2. There were eleven planes in Video 1, in which there was one moving target and
ten stationary targets. TDNet(DAT) detected a total of eleven planes, in which there was
one moving target and ten stationary targets. There were twelve ships in Video 2, which
contained one moving target and eleven stationary targets. TDNet(DAT) detected a total of
ten targets, with one moving, nine stationary, and two missed targets. Table 3 shows the
state statistics for TDNet(DAT) when used on Video 1, Video 2, and Video 3. By comparing
TDNet(NO DAT) with TDNet(DAT), it could be found that the introduction of DAT was able to
improve the tracking performance. Figure 13 shows the precision plots for TDNet(DAT)

and the compared methods. It is worth noting that TDNet(NO DAT) was the same as KCF
for single-moving-target tracking performance. Therefore, the precision plots no longer
drew the method TDNetNO DAT. Due to the relatively large targets and simple backgrounds
in Videos 1, 2, and 3, it was found to be less challenging for the methods to track them
correctly. When the pixel constraints between the center points were slowly relaxed, the
accuracy was close to one. This experiment proved the effectiveness of DAT in TDNet in a
single-moving-target tracking experiment.

(a) (b)

Figure 12. Visualization of the SC_ST tracking results as captured via TDNet(DAT) on Video 1 and
Video 2.
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Figure 13. Precision plots of the moving target as captured by TDNetDAT and the other seven compared
methods on (a) Video 1, (b) Video 2, and (c) Video 3.
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Table 3. State Statistics.

State statistics

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6

Category plane ship ship plane
plane
and
ship

plane

TDNetDAT (moving targets) 1 1 3 3 3 2
TDNetDAT (stationary targets) 10 9 15 3 0 0

4.4. Performance Comparison of the Multi-Moving-Target Tracking Experiments

TDNet can not only achieve single-moving-target tracking tasks, but also achieve
single- and multi-category and multi-moving-target tracking tasks and monitor the newly
emerging targets in a scene. Therefore, in this part of the paper, we designed three kinds
of experiments as follows: single-category and multi-moving-target tracking (SC_MT
tracking); multi-category and multi-moving-target tracking (MC_MT tracking); and new
target recognition and tracking (NTR tracking). For these tasks, we compared our methods
with the Markov decision process (MDP) [34]. TDNet(NO DAT) was the method (TDNet) that
was used without a DAT module.

4.4.1. SC_MT Tracking

To verify the TDNet-based SC_MT tracking performance, we compared our method
with the MDP on Video 3 and Video 4.

Table 4 shows the SC_MT tracking performance comparison results. The values in the
table are the average values of Video 3 and Video 4 for every metric.

Table 4. Single-category and multi-target tracking comparisons.

SC_MT Tracking on Video 4 and Video 3

Methods MOTA MOTP MT ML FP FN IDS Hz

MDP [34] 80.21% 87.31% 90.37% 3.21% 0 421 3 8.52
CenterTrack [10] 82.10% 87.62% 91.25% 2.43% 0 411 2 21.80

TDNet(NO DAT) 84.62% 89.41% 91.56% 1.06% 0 398 0 11.36
TDNet(DAT) 85.31% 91.38% 93.41% 0.83% 0 347 0 10.21

The TDNet-based method (TDNet(DAT)) had the highest MOTA and MOTP compared
to TDNet(NO DAT) and MDP. In terms of tracking speed, TDNet(NO DAT) ranked first, but it was
found that it can also maintain it within ten frames.

Figure 14 shows the tracking visualization of the TDNet(DAT)-based SC_MT tracking
method when used on Video 3 and Video 4. There were nineteen targets in Video 3, which
contained three moving targets and sixteen stationary targets. TDNet(DAT) detected a total of
eighteen targets, with three moving and fifteen stationary targets. There were six targets
(five of which were detected and one that was not) in Video 4, with three moving targets
and three stationary targets. TDNet(DAT) detected a total of six targets, with three moving
and three stationary targets. Table 3 shows the state statistics for TDNet(DAT) when used
on Video 3 and Video 4. By comparing TDNet(DAT) with TDNetNO DAT, it could be found that
the introduction of DAT improves the tracking performance. This experiment proved the
effectiveness of TDNet in tracking multiple targets.
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(a) (b)

Figure 14. Visualisation of the TDNet-based SC_MT tracking results of Video 3 (a) and Video 4 (b).

4.4.2. MC_MT Tracking

To prove the superiority of the TDNet-based MC_MT tracking performance, we
compared our methods with the MDP on Video 5.

Table 5 shows the SC_MT tracking performance comparison results. The TDNet-based
method (TDNet(DAT)) had the highest MOTA and MOTP when compared to the other meth-
ods. In terms of tracking speed, TDNet(NO DAT) ranked first. Although a category was added,
the performance was not found to be lower than that of the SC_MT tracking approach.
Figure 15 shows a visualization of the TDNet(DAT)-based MC_MT tracking method’s tracking
performance on Video 5, as well as a visualization of the TDNet(DAT)-based NTR tracking
method’s tracking performance on Video 6. There were three targets in Video 5, which
contained two moving ships and one moving plane. As shown in Figure 15a, TDNet(DAT)

detected a total of three targets, with two moving ships and one moving plane. Table 3
shows the state statistics for TDNet(DAT) on Video 5. Although the resolution of the data sets
was relatively low, our method could still detect and track all the targets in Video 5.

(a) (b) (c)

Figure 15. Visualisation of the tracking results of the TDNet(DAT)-based MC_MT tracking method on
Video 5, as well as a visualisation of tracking results of the TDNet(DAT)-based NTR tracking method on
Video 6. (a) Video 5. (b,c) Video 6.

Table 5. Multi-category and multi-target tracking comparisons.

MC_MT Tracking on Video 5

Methods MOTA MOTP MT ML FP FN IDS Hz

MDP [34] 80.21% 79.31% 100% 0% 0 0 2 8.52
CenterTrack [10] 83.50% 81.25% 100% 0% 0 0 0 21.80

TDNet(NO DAT) 84.62% 83.51% 100% 0% 0 0 0 11.36
TDNet(DAT) 89.31% 85.62% 100% 0% 0 0 0 10.21
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4.4.3. NTR Tracking

TDNet can not only achieve SC_ST tracking, SC_MT tracking, and MC_MT tracking,
but it can also recognise and monitor targets that newly appear in a scene. Moreover, we
also compared our methods with the MDP on Video 6.

Initially, there are no targets in Video 6. The first target appears in the tenth frame, and
the second target appears in the twenty-second frame. Both targets are moving. As shown
in Figure 15, TDNet(DAT) recognised and tracked the two targets in turn.

Table 6 shows the NTR tracking performance comparison results. As with the NTR
tracking approach, the TDNet(DAT)-based method obtained the highest MOTA and MOTP
values when compared to other methods. In terms of tracking speed, TDNet(NO DAT) ranked
first and it was also within ten frames. Although a new target emerged, the performance
was not harmed. In addition, the experiment verified the effectiveness of NTR and DAT
in TDNet.

Table 6. NTR tracking comparisons.

NTR Tracking on Video 6

Methods MOTA MOTP MT ML FP FN IDS Hz

MDP [34] 93.95% 89.38% 100% 0% 0 0 0 15.52
CenterTrack [10] 94.30% 91.03% 100% 0% 0 0 0 21.80

TDNet(NO DAT) 95.97% 92.04% 100% 0% 0 0 0 76.26
TDNet(DAT) 97.98% 93.10% 100% 0% 0 0 0 72.27

5. Concluding Remarks

This paper presented a tracking pipeline called TDNet for detecting and tracking
ships and planes in optical remote sensing videos. As it is a newly emergent technology
in the field of remote sensing data, remote sensing videos have only been researched by
a few scholars, yet the initial results are promising. The tracking of ships and planes is
of great significance in military applications. The proposed TDNet is composed of four
modules: target recognition via R-FCN, multi-target tracking via the proposed MT-KCF,
detecting-assisted tracking (DAT), and new target recognition (NTR). The ships and planes
were first recognised in the first frame of the video, and they were then tracked via MT-KCF
in the following frames. DAT was used to improve the tracking performance by recovering
the tracking-lost targets and preventing the tracking lag occurrence. For newly emerged
targets, NTR was used to recognise them and to track them during the tracking process.
The quantitative comparison results on the six- and two-category optical remote sensing
data sets demonstrated a huge performance gain when using the proposed method. The
experimental results demonstrate the effectiveness and the state-of-the-art performance of
the proposed method. The proposed method can achieve more than 90% performance in
terms of precision on single-target tracking tasks and more than 85% performance when
using MOTA on multi-object tracking tasks. However, as we know, our newly added
DAT will introduce an additional computational cost. Hence, in our future work, we will
focus on the TDNet model and look to integrate learning methods that can reduce the
computational burden without compromising the performance.
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