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Abstract: The frequent occurrence of global flood disasters leads to millions of people falling into
poverty each year, which poses immense pressure on governments and hinders social development.
Therefore, providing more data support for flood disaster detection is of paramount importance. To
facilitate the development of water body detection algorithms, we create the DaliWS dataset for water
segmentation, which contains abundant pixel-level annotations, and consists of high spatial resolution
SAR images collected from the GaoFen-3 (GF-3) satellite. For comprehensive analysis, extensive
experiments are conducted on the DaliWS dataset to explore the performance of the state-of-the-art
segmentation models, including FCN, SegNeXt, U-Net, and DeeplabV3+, and investigate the impact
of different polarization modes on water segmentation. Additionally, to probe the generalization of
our dataset, we further evaluate the models trained with the DaliWS dataset, on publicly available
water segmentation datasets. Through detailed analysis of the experimental results, we establish a
valuable benchmark and provide usage guidelines for future researchers working with the DaliWS
dataset. The experimental results demonstrate the F1 scores of FCN, SegNeXt, U-Net, and DeeplabV3+
on the dual-polarization data of DaliWS dataset reach to 90.361%, 90.192%, 92.110%, and 91.199%,
respectively, and these four models trained using the DaliWS dataset exhibit excellent generalization
performance on the public dataset, which further confirms the research value of our dataset.

Keywords: dataset construction; water segmentation; synthetic aperture radar; deep learning; GF-3

1. Introduction

Frequent global flood disasters have become a pressing issue, resulting in millions of
people falling into poverty each year. These events not only impose enormous pressure on
governments, but also hinder social development significantly. In July 2021, catastrophic
rainfall in Zhengzhou, Henan Province, China, led to 302 deaths or disappearances [1]. In
February 2022, heavy rains in Queensland, Australia, caused eight deaths. In September
2022, Sudan experienced torrential rain and flooding that resulted in 146 deaths. The
economic losses caused by flood disasters worldwide in the 21st century have exceeded
USD 46 billion annually [2], and approximately 70% of the deaths caused by floods in
China are attributed to flash flood disasters [3,4]. These devastating impacts of flood
disasters highlight the urgency and importance of effective water resource management.
During floods, the prolonged duration and immense destructive power of the floodwaters
necessitate the timely and accurate acquisition of flood inundation extents [5], which is
crucial for minimizing disaster losses and monitoring floods.

Traditional methods for water body extraction often require extensive manpower
and material resources. These methods include direct comparison approaches such as
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the difference method, ratio method, regression analysis, as well as image transformation
approaches such as the Normalized Difference Vegetation Index difference (NDVI), change
vector analysis, principal component analysis, and texture-based analysis [6]. In the 1990s,
with the emergence of machine learning, researchers began to apply more sophisticated
approaches for water detection, including artificial neural networks [7], support vector
machines (SVM), decision trees, random forests [7–9], multi-kernel learning, and various hy-
brid methods such as spectral mixture analysis, fuzzy clustering analysis, and bio-inspired
evolutionary algorithms. In the early 21st century, researchers shifted their focus towards
object-based image analysis, introducing techniques like Markov random fields, conditional
random fields, object-level change vector analysis, and other technologies [6,10,11]. Simul-
taneously, object category comparison method emerged, including hybrid method at the
pixel and object levels. In the 2010s, with the advent of remote sensing big data and artificial
intelligence, deep learning such as autoencoders, neural networks [12], recurrent neural
networks, and knowledge graphs gradually found application in water body identification.

Deep learning exhibits the ability to dynamically learn by assessing the differences
between predicted outcomes and actual ground truth labels, wherein Convolutional Neural
Networks (CNNs) stand out as a prominent branch of this domain. Currently, owing to
ongoing innovations, CNNs have demonstrated remarkable success across a spectrum of
computer vision tasks. Today, diverse standard CNN models have been widely employed
for water body segmentation tasks. Several widely recognized and exceptional algorithms,
such as SegNet [13], U-Net [14], RefineNet [15], PSPNet [16], Mask R-CNN [17], Deeplab
series [18–21], DUPNet [22], CoANet [23], D-LinkNet [24], and PANet [25]. The advent of
deep learning techniques has revolutionized the segmentation paradigm from traditional
methods, significantly enhancing the accuracy and speed of water body segmentation.

As the data-driven algorithm, the deep learning model relies heavily on the quantity
and quality of training data. For water body segmentation tasks, the primary data sources
include optical imagery and Synthetic Aperture Radar (SAR) imagery [26]. Optical remote
sensing sensors utilize the reflection of sunlight to generate images, constituting a passive
imaging system. However, optical imagery is susceptible to factors such as weather condi-
tions, lighting variations, and cloud cover, making it unable to provide all-weather remote
sensing capabilities. On the other hand, SAR represents another remote sensing method
that relies on active high-resolution microwave radar sensors for imaging. It actively
emits electromagnetic waves towards the Earth’s surface, and the surface generates echoes
that are received by the radar sensor to generate SAR images. SAR images have notable
advantages over optical images, since SAR satellites can perform all-weather and all-day
data monitoring without being affected by factors such as clouds, fog, and illumination
conditions [27]. Researchers and practitioners are more inclined to use SAR images as the
preferred data source for water body segmentation tasks. Therefore, utilizing SAR images
for water body segmentation is a better choice. In recent years, with the continuous devel-
opment of SAR technology, the spatial resolution of SAR images has been progressively
improving and has now reached sub-meter levels [12,28–30], which facilitates achieving
high-precision water body extraction and provides feedback for promptly identifying
disaster-stricken areas and mitigating the associated losses.

As is well known, publicly available datasets play a crucial role in driving advance-
ments in the computer vision field and documenting its development process [31]. However,
in the context of water body segmentation, there is a lack of accurately annotated high-
resolution SAR image datasets. This shortage poses challenges such as unclear targets and
inaccurate data, directly impacting the accuracy and generalization capability of models.
To address this issue, this study constructs a precisely annotated high-resolution SAR
image dataset for water body segmentation based on the GF-3 satellite imagery, termed the
DaliWS dataset. Furthermore, several state-of-the-art semantic segmentation models are
employed for experimental evaluation on our dataset. Through the analysis of experimental
results, a valuable performance benchmark has been established.

Our contributions are summarized as follows:



Remote Sens. 2024, 16, 720 3 of 22

1. To address the scarcity of publicly available accurately annotated high-resolution
SAR image datasets for water body segmentation, this paper provides a manually
annotated dataset using GF-3 satellite imagery. The dataset covers large rural water
bodies in Dali County and provides pixel-level annotations for the training and
validation of deep learning algorithms.

2. We explore the impact of different polarization modes, including HH polarization (sin-
gle copolarization, horizontal transmit/horizontal receive), HV polarization (single
copolarization, horizontal transmit/vertical receive), and HHHV (dual copolarization,
horizontal transmit/horizontal receive) on water body segmentation tasks. on the
water segmentation task, which provides reference for subsequent related research
and facilitates the application of our dataset.

3. To further understand the characteristics of the dataset, this study extensively eval-
uates its performance using several state-of-the-art segmentation algorithms. The
results demonstrate the dataset’s inherent challenges and provide new opportunities
for water segmentation research material.

4. This study conducts numerous experiments and establishes performance benchmarks
specifically for our dataset, laying the foundation for future research. It is anticipated
to provide valuable resources and references for the research and development of
water body segmentation.

The structure of this paper is as follows: Section 2 presents the processing procedure
for SAR images and the creation of the DaliWS dataset. Section 3 demonstrates the segmen-
tation networks used for evaluation, data augmentation methods, and evaluation metrics
employed in this study. Section 4 describes the experiments and presents the results. Finally,
in Sections 5 and 6, we discuss and summarize the findings of this research.

2. Dataset and Material
2.1. Study Area

The GF-3 satellite captured the study area of the DaliWS dataset in Dali County, Weinan
City, Shaanxi Province [32], China. Dali County is situated in the upstream region of the
Yellow River, adjacent to Henan Province and Shanxi Province. It is known for its abundant
water resources. In this area, multiple rivers converge, including the major Yellow River,
the moderate-sized Wei River, and the smaller Beiluo River, forming a unique and rich
water network. Additionally, there are numerous artificial water bodies, such as enclosed
ponds and reservoirs, which provide ample irrigation and drinking water resources for the
local population. Due to its special geographical location and abundant water resources,
Dali County is considered a natural and typical research area for hydrological studies, and
holds significant importance for water resource management and environmental protection.
The satellite orbit coverage of the research area and data source is illustrated in Figure 1.

The study utilized the GF-3 satellite to acquire three sets of images on 24 September 2019,
28 February 2020, and 23 May 2020, respectively. The majority of the covered areas in
these images overlap, with the geographical coordinates of the image center captured on
23 May 2020, being at 34°7’ N and 110°3’ E. The original dimensions of the three images
are 24,338 × 13,872, 22,553 × 14,384, and 20,312 × 18,480 pixels, respectively, employing a
dual-polarization (HH, HV) mode. The imaging mode is Fine Strip I mode of the FSI system,
with a resolution of 5 m and a bandwidth of 50 km, providing high-resolution support for
water body extraction. The high-quality data obtained from the satellite can be applied
in various fields, such as land use classification, environmental monitoring, and disaster
assessment. For detailed information, refer to Table 1.
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Figure 1. The DaliWS dataset. Geographic location of the study area in Shaanxi province, which is
adjacent to Henan province, Shanxi province.

Table 1. Information used in the construction of DailiWS in this article, including sensor, satellite
ground station, longitude, latitude, product level, incidence angle, etc.

Item Parameter

Sensor GF-3, China
Satellite Ground Station Sanya Station, China

Longitude 110.3
Latitude 34.7

Imaging band C bond
Imaging Mode FSI
Resolution (m) 5
Product Level L1A

Polarization mode HH, HV
Incidence Angle (°) 46∼49
Swath Width (km) 50

2.2. Data Sources

The data used in this study were obtained from the GF-3 satellite, which is China’s
first C-band high-resolution SAR satellite with significant importance in various fields such
as global ocean observation, disaster reduction [33], glacier identification, land resource
monitoring, and surface motion detection. GF-3 is also China’s first low-earth orbit remote
sensing satellite with a designed lifespan of 8 years, successfully launched in August
2016 [34,35]. To generate products adaptable to different environments, the SAR system of
the GF-3 satellite incorporates advanced technologies such as adaptive terrain background
classification, polarimetric SAR (PolSAR) [36], and cross-polarization ratio (XPOL), which
significantly enhance the quality and application value of SAR data. Furthermore, the GF-3
satellite is designed with 12 different operating modes, achieving a spatial resolution of up
to 1 m in spotlight mode.

SAR image products have different levels, and different processing of raw images
generates products with varying levels. For different levels of products, the pixel values
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represent different physical quantities, including Digital Number (DN) values, amplitude
values, intensity values, and backscatter coefficient values [37]. DN values are unsigned
integer values commonly used for storing complex SAR image data, while amplitude values
and intensity values correspond to the magnitude and squared magnitude of complex data,
respectively. Intensity values can be further processed to obtain backscatter coefficient
values after radiometric correction. The data products of the GF-3 satellite are classified
into L0, L1, L2, and L3 standard products, as well as L4 industry application products. Each
level of product undergoes different processing to generate subsequent levels of product.

Currently, one of the important research directions in remote sensing is water body
extraction. In this study, we utilized GF-3 satellite imagery to create a corresponding dataset
and trained multiple deep learning models, demonstrating through experiments that GF-3
satellites can provide high-precision data for water body extraction.

2.3. Data Preprocessing

This study is based on Single-Look Complex (SLC) images from the GF-3 satellite,
which belong to the L1A level product, to create a SAR water body segmentation dataset.
The raw data received by the SAR sensor is in the form of raw data (L0 level), which
can be processed using the focusing algorithm to generate slant-range SLC images [38].
The pixel values of this level of product are 16-bit complex data composed of real and
imaginary parts [39], where the real part reflects the intensity and the imaginary part
reflects the phase [26]. To facilitate subsequent operations, SLC data undergoes a series
of preprocessing steps aimed at reducing image noise, correcting terrain, and improving
overall image quality for better extraction and analysis of target objects.

Intensity is one of the main characteristics of SAR images, and information about
objects can be extracted based on intensity images. Therefore, SAR complex data needs
to be converted to SAR intensity data. Also, because radar echo signals are coherently
added together, SLC data products have a lot of speckle noise that needs to be removed
using multi-look processing. Multi-look processing involves averaging the SLC data in the
azimuth and range directions to weaken the impact of speckle noise on object imaging. The
resulting data from multi-look processing are intensity data, completing the transformation
from complex data to intensity data. As multi-look processing averages the noise, it
improves radiometric resolution but reduces the spatial resolution of the product image.

Speckle noise is inherent in SAR images because the SAR system itself is a coherent sys-
tem. Since speckle noise can significantly affect the interpretation of SAR image objects [40],
in addition to multi-look processing, specialized speckle noise filtering is required during
the preprocessing stage. Commonly used SAR filters include Lee [41], Frost [42], Kuan [43],
and Gamma MAP filters [44], among others. The Frost filter is one of the most popular
adaptive speckle filters and is an exponentially weighted adaptive filter that suppresses
speckle noise in the image using the Minimum Mean Square Error (MMSE) estimation
method. Within the kernel size of n-by-n, the center pixel value is replaced by a weighted
sum of the values of the neighborhood in kernel [45]. In this study, a 5 × 5 Frost filter
was chosen to smooth the obtained intensity data, as shown in Formula (1). Among the
formulas, f (i, j) represents the filtered pixel value, g(i, j) represents the original pixel value,
m(i, j) indicates the average value of surrounding pixels, w(i, j) indicates the weighting
factor, V(i, j) is the variance of pixel values in the neighborhood, N(i, j) is the number of
pixels in the neighborhood, and γ and β are adjustable parameters.

f (i, j) = w(i, j)× g(i, j) + (1 − w(i, j))× m(i, j)

w(i, j) = e
−(

γ×V(i,j)
N(i,j)β )

(1)

After multi-look processing and Frost filtering, SAR images need to be geocoded and
radiometrically calibrated [46]. After the SAR system acquires reflection information from
the Earth’s surface, it is encoded in the radar coordinate system, known as the slant-range
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coordinate system. Generally, before applying SAR data, it needs to be transformed from the
slant-range coordinate system to the geographic coordinate system. This process is known
as SAR geocoding. The SAR system observes the ratio between the transmitted pulse and
the received signal intensity, which is referred to as the backscattering [47]. Different SAR
sensors or different receiving modes can affect the backscattering values. Radiometric cali-
bration normalizes the backscattering values to a unified standard, mitigating differences
between different SAR sensors. This process is known as SAR radiometric calibration.

The overall processing workflow of remote sensing imagery is shown in Figure 2.
These steps complete the preprocessing of SAR images. The preprocessed SAR images are
then input into image annotation software for the annotation task.

Figure 2. Processing workflow of GF-3 SLC imagery. (a) Original SLC imagery; (b) multi-view
processing result imagery; (c) Frost filtering result imagery; (d) geocoding and radiometric calibration
result imagery.

2.4. Label Generation

In this study, the DaliWS dataset is constructed from three scenes of GF-3 satellite
images as described in Section 2.1. Due to significant overlap in most regions of the three
images, we primarily use imagery from 23 May 2020 as the main reference, while the
other two scenes are utilized to supplement areas not covered by the main image, ensuring
comprehensive coverage of most water bodies within Dali County. The generation of
dataset labels involved a purely manual annotation process, leveraging domain expertise
and calibration with reference to Google Earth [39,48] and other historical images. This
approach ensures more accurate annotation of the DaliWS dataset, providing crucial
support for further scientific research and practical applications, particularly in the field of
SAR image water body segmentation. Such a dataset not only enhances the reliability of
the study, but also yields more precise results for practical applications [28].

2.4.1. Chip Creation and Sampling

Figure 3 shows the example used for dataset creation. From the figure, it can be
observed that the main land features in the image are water bodies, mountains, and plains.
The objective of this study is to create a high-resolution SAR image water segmentation
dataset. Therefore, to reduce manual annotation effort and improve annotation accu-
racy, the image is divided into smaller image blocks before the formal annotation process.
Additionally, in later stages of model training, large image blocks can lead to increased
computational, memory, and GPU requirements, thereby reducing the parallel training ca-
pability of the models [49]. Considering these factors, in this study, the image is segmented
into non-overlapping 256 × 256 image blocks. It is important to note that the width and
height of the image are not divisible by 256, resulting in overlapping regions between the
last column and last row image blocks with their preceding blocks. After completing the
image segmentation process, image blocks containing water body areas are selected for
annotation, while image blocks without water body areas are left unmarked. Algorithm 1
describes the process of image partitioning.
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Algorithm 1 Image block segmentation

Input: Assigning the original size image as “Img”, the image block size is “BlockSize”.

Output: ImageBlocks

1: ImageBlocks = []

2: H,W = Img.shape

3: // Calculating the segmentation points for the dimensions “h” and “w”.

4: h = Range(0,H,BlockSize)

5: w = Range(0,W,BlockSize)

6: h[−1] = (H-BlockSize)

7: w[−1] = (W-BlockSize)

8: for h → i do // Iterating through “h” and assigning each iterated element to “i”.

9: for w → j do

10: ImageBlock = Img[i:i+BlockSize,j:j+BlockSize]

11: ImageBlocks.add(ImageBlock)

12: end for

13: end for

14: return ImageBlocks

Figure 3. A GF-3 remote sensing image used to create the water body segmentation dataset.
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In Algorithm 1, H and W represent the height and width of the original remote sensing
image, respectively. BlockSize is the size of the image block. Range (a, b, c) is a sequence
generation function that generates a sequence within the range [a, b] with a step size of c.
After the sequence is generated, the last segmentation point needs to be updated to avoid
boundary issues.

2.4.2. Hand Labeling

This section describes the process of water area annotation using the labeling tool
Labelme. Labelme [50] is an offline annotation tool developed in Python that allows
annotations to be made using polygons, rectangles, circles, points, and line segments.

The water segmentation dataset created in this study is a binary classification dataset.
Non-water land features such as plains, farmland, and mountains are labeled as “back-
ground”, while the remaining areas are labeled as “water”. In addition to rivers, the water
areas also include features such as rice fields and ponds, which pose challenges for this
annotation task due to their small size. To improve the accuracy of the annotations, other
data sources were used for auxiliary calibration. Specifically, Google Earth [48], expert
judgment, and online maps from the National Geospatial Information Sharing Service
Platform were used as reference data to calibrate features that were difficult to annotate.

In addition to small water bodies, accurately annotating the transition edges between
water and background is also challenging. The suitability of annotating the edge regions
will affect the effectiveness of subsequent model learning. During the annotation pro-
cess, special attention was paid to carefully calibrating the transition edges between the
background and water.

For annotated images, Labelme records the coordinates of the polygons in JSON
format files. During model training, the labels are required to be binary images, where “0”
represents the background region and “1” represents the water region. Therefore, after
completing the annotation work for all image blocks, the JSON format labels are batch
converted to binary PNG format images using the tools provided by Labelme. An example
of the DaliWS dataset is shown in Figure 4, which includes five common types of water
bodies (ponds, lakes, rivers, rice fields, and reservoirs) and their corresponding ground
truth annotations. The first row displays the SAR image, and the second row displays the
corresponding labels.

Figure 4. Examples of DaliWS dataset. The images in the top row are SAR images and those in the
bottom row are corresponding annotation.

3. Experimental Study
3.1. Dataset Description
3.1.1. DaliWS Dataset

The DaliWS dataset (We provide the DaliWS dataset at: https://github.com/Dataset-
RFGroup/DaliWS-Dataset) is a high-resolution SAR dataset for water body segmentation

https://github.com/Dataset-RFGroup/DaliWS-Dataset
https://github.com/Dataset-RFGroup/DaliWS-Dataset
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created in this paper based on GF-3 satellite imagery. The original SLC images undergo
multi-view processing, frost filtering, geocoding, and radiometric calibration to generate
three SAR images. Subsequently, the image is divided into blocks to obtain 2033 images of
size 256 × 256 pixels. Finally, the water bodies are accurately annotated using the Labelme
annotation tool to create a complete dataset.

Prior to training, the dataset is divided approximately in a 6:2:2 ratio. Data augmenta-
tion techniques such as flipping, contrast and brightness enhancement, translation, random
noise, and rotation are applied to expand the training and validation sets.

3.1.2. HISEA-1 Dataset

To validate the generalization capability of the models trained on the DaliWS dataset,
we selected a publicly available dataset for testing. This dataset, named HISEA1 flooding
dataset [51] and abbreviated as HISEA-1 dataset in this paper, was created using HISEA-1
satellite images for water body segmentation. The HISEA-1 satellite carries a synthetic
aperture radar (SAR), which is an active remote sensing system for observing the Earth.
The HISEA-1 dataset comprises 2340 non-overlapping SAR images with VV polarization.
Each image has a size of 256 × 256 pixels. The dataset covers an area of 20,000 square
kilometers and includes various landforms such as rivers, tributaries, reservoirs, lakes, and
rice fields.

3.2. Evaluation Methods

The workflow of this study on DaliWS is illustrated in Figure 5. Four models, namely
FCN-8s, SegNeXt, U-Net, and DeeplabV3+, are selected for training on the DaliWS training
set. After training, the models are evaluated on the DaliWS testing set by comparing the
predicted results with the ground truth labels to obtain evaluation metrics. To test the
generalization performance of the models trained on the DaliWS dataset, water extraction
and evaluation metric calculations are performed on the publicly available HISEA dataset.

3.2.1. FCN-8s

In 2015, Jonathan Long first applied deep learning to the field of semantic segmentation
and created Fully Convolutional Networks (FCN) [52]. By adopting the fully convolutional
approach, FCN can accept input images of arbitrary sizes and perform pixel-level classifi-
cation tasks in an end-to-end manner. The characteristics of FCN include replacing fully
connected layers with convolutional layers for end-to-end pixel-level training. Additionally,
the introduction of skip connections allows for the fusion of multi-scale features [53]. The
FCN architecture consists of three series: 32s, 16s, and 8s, which employ different fusion
strategies for prediction. Among them, FCN-8s has more parameters and computational
complexity, and it achieves higher segmentation performance. Thus, in our experiments,
we selected FCN-8s as the model for water segmentation.

3.2.2. SegNeXt

SegNeXt [54] network was proposed in 2022 and achieved the highest ranking in
the Visual Object Classes (VOC) challenge at that time. Additionally, the network has
demonstrated significant performance improvements on several mainstream semantic
segmentation datasets. The major significance of SegNeXt lies in the search for a more
cost-effective convolutional attention mechanism beyond transformer-based multi-head
attention. SegNeXt introduces a novel Multi-Scale Convolutional Attention (MSCA) mod-
ule. The MSCA module consists of three parts: deep convolution for aggregating local
information, multi-branch deep stripe convolution for enlarging receptive fields, and 1 × 1
convolution for modeling relationships between different channels. SegNeXt network
offers four different overall segmentation model sizes, and taking into account model size
and performance, we have decided to use the SegNeXt-B model size in our dataset.



Remote Sens. 2024, 16, 720 10 of 22

Inference

DeeplabV3+U-NetSegNeXtFCN-8s DeeplabV3+U-NetSegNeXtFCN-8s DeeplabV3+U-NetSegNeXtFCN-8s

Data Augmentation

.
..

Test dataTest dataTrain dataTrain data Val dataVal dataVal data

Model

HISEA-1 dataHISEA-1 data

HH

HV

S
A

R
 i

m
ag

es
 

p
re

p
ro

ce
ss

in
g

DaliWS dataset generation

Im
ag

e 
b

lo
ck

in
g

H
an

d
 l

ab
el

in
g

S
A

R
 i

m
ag

es
 

p
re

p
ro

ce
ss

in
g

DaliWS dataset generation

Im
ag

e 
b

lo
ck

in
g

H
an

d
 l

ab
el

in
g

S
a
m

p
le

 g
en

er
a
ti

o
n

E
v
a
lu

a
ti

o
n

 m
et

h
o
d

s
G

en
er

a
li

z
a
ti

o
n

 a
n

a
ly

si
s Inference

Output Output

Figure 5. Model training, testing and generalization evaluation flow chart in this paper.

3.2.3. U-Net

As the name suggests, U-Net [14] is a network architecture that resembles the letter
“U” and is commonly used for semantic segmentation tasks. It was initially proposed by
Ronneberger for medical segmentation. The U-Net architecture consists of a contracting
path and an expanding path, making it a typical encoder–decoder network. U-Net incorpo-
rates skip connections between the encoder and decoder to enable multi-scale information
fusion. Due to its simplicity and effectiveness, U-Net can achieve high accuracy with
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limited training samples, making it widely applicable in various image segmentation tasks,
including remote sensing image segmentation.

3.2.4. DeeplabV3+

Deeplab is a series of deep learning models for image semantic segmentation, initially
proposed by the Google team and continuously improved. The final version of the Deeplab
series, DeeplabV3+ [21], was introduced in 2018. It utilizes the Xception [55] architecture as
the backbone network for extracting abstract and high-level semantic features and incorpo-
rates new decoders to achieve more precise object boundary segmentation. In this paper,
we selected ResNet50 [56] as the backbone network for DeeplabV3+. One notable feature
of DeeplabV3+ is the adoption of the Atrous Spatial Pyramid Pooling (ASPP) module. Ad-
ditionally, the decoder module in DeeplabV3+ is simple yet effective, gradually recovering
spatial features of the targets and achieving finer segmentation of object boundaries. These
advantages make DeeplabV3+ stand out among many other methods.

3.3. Experimental Settings
3.3.1. Implementation Details

As shown in Table 2, all experiments were conducted on a workstation equipped with
a 64-bit Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz processor, RECC DDR4 128 GB
memory, and NVIDIA GeForce RTX 3090Ti graphics card, using the PyTorch framework.
The network’s input was images of size 256 × 256 pixels. Additionally, each deep learning
model was trained for 100 epochs with the Adam optimizer [57], using an initial learning
rate of 1 × 10−5 and a batch size of 16. The training time depends on the complexity of
the model.

Table 2. The experimental environment used in this study.

Item Configuration Version

Operating system Linux CentiOS7.9

Processor 64 Intel(R) Xeon(R) Gold 6226R CPU @ 2.90
GHz

GPU NVIDIA GeForce RTX 3090
CUDA CUDA 11.6

Depth framework PyTorch 1.13.1

3.3.2. Data Augmentation

Data augmentation plays a crucial role in data preprocessing before model training.
As networks become deeper, the number of parameters to learn increases, which can lead
to overfitting. To address this issue, many researchers employ data augmentation methods
to increase the amount of data, enhance data diversity, alleviate overfitting, and improve
the generalization and robustness of deep learning models [14,58].

To enhance data diversity and improve model performance, we applied the data
augmentation methods listed in Table 3 to the original image patches obtained dur-
ing the image segmentation stage. Specifically, these methods include: (1) horizon-
tal/vertical/diagonal flipping; (2) contrast enhancement; (3) brightness enhancement;
(4) random noise; (5) random translation; and (6) random rotation.
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Table 3. Parameters of different data augmentation methods. / indicates that no parameter is set.

Augmentation Methods Parameter

Horizontal flip /
Vertical flip /

Diagonal flip /
Contrast enhancement [0.5, 2.5]

Brightness enhancement [0.5, 2.5]
Random noise [0, 0.1]

Translation [−1,1]

Random rotation [−π
4 , π

4 ]

Diagonal flipping flips the image along the top-left to bottom-right diagonal. Contrast
enhancement is applied with a factor ranging from 0.5 to 2.5, while brightness enhancement
is applied with a factor ranging from 0.5 to 2.5. Random noise enhancement randomly
assigns 0–10% of pixels in each image to have a value of 255. Translation augmentation
shifts the image along the top-left to bottom-right diagonal, where negative values indicate
shifting from the bottom-right to top-left and positive values indicate shifting from the
top-left to bottom-right. Random rotation randomly selects an angle within the range of
[−π

4 , π
4 ] for rotation around the center. Figure 6 shows examples of the aforementioned

data augmentation techniques.

Figure 6. Diagrams of different data augmentation methods. (a) Original image. (b) Horizontal flip.
(c) Vertical flip. (d) Diagonal flip. (e) Contrast enhancement. (f) Brightness enhancement. (g) Random
noise. (h) Translation. (i) Random rotation.

3.3.3. Evaluation Metrics

The distribution of water and background in the DaliWS dataset is imbalanced, mak-
ing it challenging to accurately segment the water regions. To comprehensively evaluate
the performance of the selected four models on the DaliWS dataset, we employ multiple
evaluation metrics. The specific evaluation metrics include accuracy, recall, precision, F1
score, mean Intersection over Union (mIoU), and segmentation time. Pixel accuracy (PA)
refers to the ratio of correctly classified pixels to the total number of pixels. Recall (Rec)
describes the ability to find all positive samples of a specific class. Precision (Pre) represents
the ability of the classifier to label negative samples as positive samples [59]. The F1 score
(F1) is a composite metric that balances precision and recall. mIoU is the average of Intersec-
tion over Union for each class. Since inference time is critical for disaster monitoring [51],
the speed of water extraction is also included in the evaluation. Segmentation time refers
to the time required for the model to complete the water segmentation task in an image.
Higher image resolutions require more time.
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Based on the confusion matrix shown in Table 4, the calculation formula is as follows:

PA =
TP + TN

TP + FN + FP + TN
(2)

Rec =
TP

TP + FN
(3)

Pre =
TP

TP + FP
(4)

F1 =
2 × Pre × Rec

Pre + Rec
(5)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(6)

In the formulas, TP represents the number of pixels correctly predicted as water, FN
represents the number of water pixels falsely predicted as background, FP describes the
number of background pixels falsely predicted as water, and TN represents the number of
background pixels correctly predicted as background.

Table 4. The confusion matrix.

Prediction
Water Background

Ground truth
Water TP FP

Background FN TN

4. Results
4.1. Quantitative Analysis of Four Networks on DaliWS Dataset

To comprehensively explore the DaliWS dataset, we train four segmentation networks,
e.g., FCN, SegNeXt, U-Net, and DeeplabV3+ on the training set. Subsequently, we evaluate
the trained models using the test set. We then perform a quantitative comparison of the
segmentation results of these four models on the DaliWS dataset and conduct an in-depth
investigation into the impact of polarization modes on segmentation performance. To
ensure experimental fairness, we employ consistent evaluation metrics, evaluation code,
and maintain identical network parameter configurations as described in Section 3.3.2.

In the first experiment, we focus on examining the water body extraction performance
of different models on the DaliWS dataset. Results from Table 5 indicate that all four
models achieve F1 scores of over 85%, with U-Net exhibiting the best performance. In
the dual-polarization mode, U-Net achieves F1, PA, and mIoU scores of 92.110%, 98.371%,
and 85.374%, respectively. DeeplabV3+ closely followed, achieving F1, PA, and mIoU
scores of 91.199%, 98.188%, and 83.822% in the dual-polarization mode. In comparison,
FCN-8s and SegNeXt networks demonstrate relatively poorer performance in water area
segmentation, with F1 scores of 90.361% and 90.192% in the dual-polarization mode. Table 6
displays the GFLOPs and Params for these four models with an input size of (1,1,256,256),
revealing that the order of GFLOPs from highest to lowest is U-Net, DeeplabV3+, Seg-
NeXt, and FCN. U-Net has the smallest parameter count while also having the highest
computational workload.

In the second experiment, we delve into the impact of different polarization modes
on segmentation performance. Firstly, FCN, SegNeXt, U-Net, and DeeplabV3+ achieve
F1 scores of 90.361%, 90.192%, 92.110%, and 91.199%, respectively, on HH + HV dual-
polarization data, demonstrating superior performance compared to HH and HV single-
polarization data. This is understandable, as the fusion of HH and HV dual-polarization
data provides more comprehensive and richer spatial features for water body segmentation
models. On HH and HV single-polarization data, U-Net consistently performs the best,
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with F1 scores of 91.173% and 90.198%, respectively. Overall, dual-polarization outperforms
single-polarization, with HH polarization being superior to HV polarization.

Table 5. Quantitative comparison of different models in terms of F1 score(%) , PA(%), Rec (%), Pre
(%), and mIoU(%) on the DaliWS dataset.

Models Polarization F1(%) PA(%) Rec(%) Pre(%) mIoU(%)

FCN
HH 89.762 97.889 90.235 89.294 81.426
HV 88.823 97.687 89.605 88.055 79.893

HH+HV 90.361 98.012 90.853 89.875 82.417

SegNeXt
HH 90.090 97.967 90.101 90.080 81.967
HV 87.894 97.605 84.779 91.246 78.403

HH+HV 90.192 98.023 88.659 91.780 82.137

U-Net
HH 91.173 98.197 90.800 91.549 83.778
HV 90.198 98.002 89.624 90.779 82.146

HH+HV 92.110 98.371 92.744 91.484 85.374

DeeplabV3+
HH 90.898 98.170 89.126 92.742 83.315
HV 89.994 97.906 91.844 88.216 81.808

HH+HV 91.199 98.188 91.555 90.845 83.822

Bold indicates the maximum value of each evaluation index.

Table 6. The parameter sizes of each model are listed in the table below.

Model Input-Size GFLOPS Params(M) Time(s)

FCN (1,1,256,256) 7.78 46.24 0.0100
SegNeXt (1,1,256,256) 7.96 27.54 0.0324

U-Net (1,1,256,256) 31.81 16.69 0.0093
DeeplabV3+ (1,1,256,256) 26.51 40.48 0.0138

“Times” refers to the inference time for a single image.

4.2. Qualitative Analysis of Four Networks on DaliWS Dataset

Figures 7 and 8 illustrate the partial water body prediction results of FCN-8s, SegNeXt,
U-Net, and DeeplabV3+ on the DaliWS test dataset. From the figure, it can be observed
that all models are able to predict large water bodies to some extent. However, they exhibit
limitations in accurately segmenting boundaries, shadows, and small water bodies.

In the first row, it can be seen that SegNeXt and U-Net incorrectly identify a small
tributary as water, while FCN and DeeplabV3+ correctly classify it as background. However,
most methods erroneously label farmland as water. In the second row, U-Net misses a
portion of the water body in the river. In the last row, none of the methods are able to
effectively segment the water body and path boundaries in the shadow areas. Among these
four models, FCN produces relatively coarse predictions due to the final feature map output
not being of the same size as the original input. It requires 8-fold upsampling to restore the
prediction map size. While this approach reduces computational complexity, it results in
the loss of significant detail. For the DaliWS dataset, which has a spatial resolution of 5 m,
such coarse boundaries severely impact the accuracy of water body extent calculations.
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FCN-8s SegNeXt

Figure 7. Comparison example images of FCN-8s and SegNeXt models trained on differently
polarized data for water segmentation.

U-Net DeeplabV3+

Figure 8. Comparison example images of U-Net and DeeplabV3+ models trained on differently
polarized data for water segmentation.
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The four models are trained using three different modes: HH, HV, and HH+HV. By ob-
serving the results in the first and second rows of Figures 7 and 8, it can be seen that U-Net
achieves the best segmentation performance across all three modes. The models trained
with HV single-polarization data performed the worst. In the fourth row of Figures 7 and 8,
the models trained with HH single-polarization data show better segmentation perfor-
mance compared to HH+HV dual-polarization data, particularly in accurately segmenting
elongated rivers. In the fifth row of Figures 7 and 8, all four models struggled to segment
water bodies with indistinct boundaries.

4.3. Generalization Analysis of Four Models Trained on the DaliWS Dataset

To assess the generalization capabilities of models trained on the DaliWS dataset,
we conduct generalization experiments on the HISEA-1 dataset. To do this, different
polarization data from DaliWS are used to train segmentation models like FCN-8s, SegNeXt,
U-Net, and DeeplabV3+. These models are then tested on the HISEA-1 dataset to obtain
segmentation metrics. The DaliWS dataset has two polarization modes, HH and HV,
while the HISEA-1 dataset only has VV polarization. For each model, we perform three
sets of experiments: (1) HH testing on VV, (2) HV testing on VV, and (3) HHHV testing
on VV. It is noteworthy that, in experiment (3), we duplicate the VV data to create a
dual-channel image.

The partial water body prediction results of FCN-8s, SegNeXt, U-Net, and DeeplabV3+
on the HISEA-1 dataset are shown in Figures 9 and 10. From the figures, it can be observed
that HH polarization data overall outperformed HV and HH+HV, with the latter two
polarization data showing instances of interrupted flow in predicting water bodies. The
higher rate of false detections in the U-Net prediction map in Figure 10 demonstrates that
for HH+HV polarization data; the models do not efficiently extract complementary features
from both data types.

FCN-8s SegNeXt

Figure 9. Comparison of example images for generalization predictions by FCN-8s and
SegNeXt models.
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U-Net DeeplabV3+

Figure 10. Comparison of example images for generalization predictions by U-Net and
DeeplabV3+ models.

The generalization test results in Table 7 show that models trained with HH polariza-
tion data from the DaliWS dataset obtain F1 scores higher than 80% on the VV polarization
data from the HISEA-1 dataset, showing better generalization performance. The models
that are trained with HH+HV dual-polarization data come in second. Except for FCN, the
HH+HV dual-polarization data exhibits commendable performance on the other three
models. The generalization capability of HV polarization data are the weakest, signif-
icantly lower than that of HH and HH + HV. In terms of overall model generalization
performance, SegNeXt exhibits the best results, with F1 scores of 85.276%, 77.307%, and
82.608% for HH, HV, and HH+HV, respectively. DeeplabV3+ follows closely, achieving F1
scores of 85.982%, 77.446%, and 81.650%. FCN demonstrates the poorest generalization
performance. In summary, the four models trained on the DaliWS dataset in this study
display excellent generalization capabilities on the public dataset, affirming the dataset’s
value for research purposes.

Table 7. Generalization results of four models trained on the DaliWS dataset.

Models Polarization F1(%) PA(%) Rec(%) Pre(%) mIoU(%)

FCN
HH 83.890 93.543 82.770 85.040 72.250
HV 62.070 83.645 65.886 58.672 45.001

HH+HV 75.867 91.597 65.028 91.042 61.117

SegNeXt
HH 85.276 94.177 83.023 87.654 74.331
HV 77.307 92.064 66.553 92.206 63.008

HH+HV 82.608 93.468 76.379 89.944 70.369
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Table 7. Cont.

Models Polarization F1(%) PA(%) Rec(%) Pre(%) mIoU(%)

U-Net
HH 85.391 94.313 81.827 89.280 74.506
HV 68.426 87.234 68.110 68.746 52.006

HH+HV 80.365 91.937 81.240 79.508 67.175

DeeplabV3+
HH 85.982 94.553 82.241 90.080 75.411
HV 77.446 90.715 78.487 76.433 63.194

HH+HV 81.650 93.297 73.428 91.945 68.990

Bold indicates the maximum value of each evaluation index.

5. Discussion

In order to support research on Deep Neural Network (DEN)-based water body
segmentation algorithms, this paper creates a high-resolution SAR image water body seg-
mentation dataset. The dataset consists of L1A-level SLC images from the GF-3 satellite,
captured on 24 September 2019, 28 February 2020, and 23 May 2020, respectively. The origi-
nal images underwent multi-view processing, Frost filtering, geocoding, and radiometric
calibration to generate the final images used for dataset creation. Subsequently, the images
are partitioned and sampled, dividing the large image into non-overlapping 256 × 256
image blocks and selecting the parts containing water bodies for the dataset. Finally, the
Labelme tool was used for image annotation.

After completing the construction of the DaliWS dataset, this study selects four seg-
mentation networks, namely FCN, SegNeXt, U-Net, and DeeplabV3+, for training and
evaluation on the dataset. Figure 11 shows a full comparison of how well these four models
can segment and generalize across three polarization modes on the DaliWS dataset. All
four models demonstrate outstanding segmentation performance on the DaliWS dataset.
Among them, U-Net exhibits the best segmentation accuracy and inference time, achieving
an F1 score of 92.110%. However, there is still room for improvement in the segmentation
results, particularly in capturing details at the edges.

The performance of SegNeXt in Section 4.1 prompted deep reflection. Despite ranking
highest in the VOC challenge, SegNeXt shows the poorest segmentation performance on
the DaliWS dataset. In response, we provide a reasonable explanation by comparing the
differences between the two datasets. Firstly, although the SegNeXt model excelled on
the VOC dataset, it cannot be assumed that it would achieve the same performance on
SAR images due to domain differences between natural images and SAR images, which
may hinder effective knowledge transfer. Secondly, water body segmentation is a binary
classification task, while SAR images are primarily composed of black and gray. A complex
SegNeXt network may struggle to allow each parameter to learn sufficiently, whereas
simpler segmentation networks like U-Net and Deeplabv3+ are more suitable for binary
segmentation tasks on SAR images.

In Table 6, U-Net has the highest GFLOPS among the four models and the shortest
inference time per image. In contrast, SegNeXt has significantly lower GFLOPS than U-Net,
yet it has the longest inference time per image. Additionally, by comparing the GFLOPS and
inference time of other models in Table 6, we conclude that GFLOPS is only a theoretical
indicator for measuring model speed and cannot represent the actual inference speed of
the model.

In the generalization experiments shown in Table 7, the HH polarization mode per-
forms the best in generalization testing, while models trained using HV polarization data
show significantly lower performance than HH polarization. We provide an explanation
for this phenomenon: the HISEA-1 dataset used VV polarization, corresponding to HH,
making the data distribution of these two modes more similar. On the other hand, although
the HH+HV polarization mode integrates HH polarization information, the presence of
HV polarization interferes with the overall segmentation results.
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(a) DaliWS (b) HISEA-1

Figure 11. (a) F1 score histograms for four models trained on the DaliWS dataset with three different
polarization modes; (b) F1 score histograms for four models trained on the DaliWS dataset with three
polarization modes, evaluated on the HISEAR-1 dataset.

In summary, the experimental results of this study validate the effectiveness of the
DaliWS dataset and compare and analyze the water body segmentation performance under
different segmentation networks and polarization modes. This research holds significant
implications for water remote sensing image analysis and water resource management,
providing valuable insights for related studies and applications.

6. Conclusions

In conclusion, despite the rapid advancements in computer vision technology, its high-
precision performance still relies heavily on precisely annotated datasets. This study aims
to contribute significantly to SAR image water body segmentation tasks and offer valuable
insights for future research endeavors. We meticulously create and extensively explore
the DaliWS dataset, assessing it through a range of network models. While achieving
satisfactory segmentation results across diverse network models, there remains room for
enhancement in capturing finer details at water body edges.

Our investigation also delves deeply into the impact of different polarization modes on
segmentation performance. And the experimental results demonstrate a certain correlation
between datasets sharing similar polarization modes, thereby contributing to superior
generalization performance. Notably, models trained on HH+HV datasets perform worse
on the VV dataset. This shows that more research is needed to figure out how to combine
multi-polarization data effectively.

DaliWS provides multi-polarized information and precise annotations, facilitating
the extraction of practical disaster-related information. However, the dataset’s sources
are not yet comprehensive enough. In the future, we will continue to upgrade DaliWS by
collecting multi-source remote sensing data and conducting pixel-level annotations, thereby
offering greater convenience for flood disaster emergency responses. To sum up, our work
establishes a high-resolution SAR image water body segmentation dataset, analyzes the
performance of various segmentation networks and polarization modes, and provides
crucial practical insights and references for water body remote sensing image analysis and
water resource management.
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