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Abstract: Soil and water erosion has long been regarded as a serious environmental problem in the
world. Thus, research on reducing soil erosion has received continuous attention. Different conser-
vation measures such as restoring low-function forests, closing hillsides for afforestation, planting
trees and grass, and constructing terraces on slope land have been implemented for controlling soil
erosion problems and promoting vegetation cover change. One important task is to understand the
effects of different conservation measures on reducing water and soil erosion problems. However,
directly conducting the evaluation of soil erosion reduction is difficult. One solution is to evaluate the
patterns and magnitudes of vegetation cover change due to implementing these measures. Therefore,
this research selected Changting County, Fujian Province as a case study to examine the effects
of implementing conservation measures on vegetation cover change based on time series Landsat
images and field survey data. Landsat images between 1986 and 2021 were used to produce time
series vegetation cover data using the Google Earth Engine. Sentinel-2 images acquired in 2021 and
Landsat images in 2010 were separately used to develop land cover maps using the random forest
method. The spatial distribution of different conservation measures was linked to annual vegetation
cover and land cover change data to examine the effects on the change in vegetation cover. The
results showed a significant reduction in bare lands and increase in pine forests. The vegetation
coverage increased from 42% in 1986 to 79% in 2021 in the conservation region compared with an
increase from 73% to 87% in the non-conservation region during the same period. Of the different
conservation measures, the change magnitude was 0.44 for restoring low-function forests and closing
hillsides for afforestation and 0.65 for multiple control measures. This research provides new insights
in terms of understanding the effects of taking proper measures for reducing soil and water erosion
problems and provides scientific results for decisionmaking for soil erosion controls. The strategy and
method used in this research are valuable for other regions in understanding the roles of different
conservation measures on vegetation cover change and soil erosion reduction through employing
remote sensing technologies.

Keywords: soil and water conservation measures; vegetation cover; patterns and magnitudes;
Landsat time series; Changting County

1. Introduction

Water and soil erosion has long been regarded as a serious environmental problem
in the world, and research on reducing erosion has received substantial attention for
decades [1–3]. One consequence of soil erosion is the loss of topsoil, which is a fundamental
resource for food production and water conservation [4–7]. Because of soil erosion, the
remaining soils may become poor in soil structure and fertility, as well as in water and
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nutrient holding ability, threatening the sustainability of the land [4,8]. The erosive soils
may further result in increased sediments in rivers and reservoirs and deteriorated water
quality [9]. Therefore, great efforts have been undertaken to reduce soil erosion problems
through various conservation measures, such as engineering projects (e.g., terracing), tree
or grass planting, and closing hillsides for afforestation [10–12].

Direct evaluation of soil erosion reduction is challenging; however, implementing
different conservation measures for controlling water and soil erosion will alter the land sur-
face features, particularly vegetation coverage [13]. Thus, we can examine how vegetation
cover changes over time to better understand the effects of implementing conservation mea-
sures on reducing soil erosion problems [14]. The traditional methods for monitoring soil
erosion and assessing the effects of controlling measures are based on field survey through
runoff plot experiments [15] and sediment collectors [16]. Although field measurements
provide the most reliable data regarding soil loss, they cannot provide erosion observations
at spatial and temporal scales due to their time-consuming and labor-intensive nature. The
complexity of land surface features and terrain conditions also makes it difficult to produce
the spatial distribution of soil erosion based on a limited number of field measurements.
The same problem exists for the field measurement of vegetation sample plots.

Another possible method is the use of soil erosion models to estimate the erosion
amount based on the factors affecting soil erosion. Such factors include soil properties,
topography (slope steepness and slope length), rainfall (amount and intensity), vegetation
cover, and human intervention practices [17,18]. However, the different quality and char-
acteristics of data sources (e.g., soil, topography, climate data, and remotely sensed data)
make estimation highly uncertain in mountainous regions using the erosion models, thus
resulting in difficulty to quantitatively assess whether the land is degraded or restored [19].
The possible solution may be the use of remote sensing technologies, especially satellites,
because of the ability to capture data coverage in large areas and repetitive acquisition.
The advantages of remote sensing technology over traditional methods make it the major
source for obtaining Earth surface features such as land cover types and vegetation change
at low cost. Because of the close relationship between land surface features and soil ero-
sion, remote sensing data become an indispensable means for monitoring soil erosion and
evaluating the effectiveness of soil erosion controls on ecosystem functions [20,21].

Vegetation cover is one of the most important factors influencing soil erosion, especially
in mountainous regions [21,22]. The presence of vegetation cover can reduce and prevent
splash erosion by intercepting rain, increased infiltration, and slow surface runoff, thus
significantly reducing sheet erosion [20]. The vegetation root system anchors and reinforces
soil and stabilizes slopes. Generally speaking, the more vegetative cover, the lower the risk
of soil erosion. Therefore, increasing vegetation cover is considered an effective measure for
controlling soil erosion, and vegetation restoration level is an important indictor to evaluate
the effectiveness of a conservation measure in controlling soil and water erosion [22–24].
Research has shown that, in mountainous areas, restoring vegetation cover to more than
78% can significantly reduce soil erosion caused by water [22].

Vegetation cover can be estimated by optical remote sensing data such as MODIS,
Landsat, and Sentinel-2 images [25–27]. Although MODIS data have the advantage for
monitoring vegetation cover dynamics with high temporal resolution, the coarse spatial
resolution limits vegetation cover extraction at a fine scale. In contrast, Sentinel-2 data can
provide fine-resolution vegetation cover data [28], but the short historical record is not able
to provide vegetation cover dynamics in the long term. Because of the availability of long-
term data archives at no cost [29,30], Landsat becomes the most common data source for
the extraction of vegetation coverage. In general, vegetation distribution is often developed
from Landsat imagery using classification algorithms such as maximum likelihood and
machine learning [31–33]. These methods usually provide pixel-level vegetation coverage.
Considering the complexity of land cover types, one solution is to develop fractional
vegetation cover using spectral mixture analysis [34]. However, this method takes time to
unmix multispectral images into fractional images, whose fractional values are influenced
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by external conditions such as atmospheric conditions; thus, the fractional images have
uncertainty, and time series fractional vegetation images may be ineffective for the detection
of vegetation cover change. Lu et al. (2007) proposed a surface cover index (SCI) based
on fractional images that were derived from the multispectral image for examining land
degradation in the Amazon basin [35]. In addition to the fractional images, vegetation
cover that can be extracted from the normalized difference vegetation index (NDVI) can
also be used as an index to explore the land degradation or restoration [22].

Contrary to prior studies that solely concentrated on the effect of vegetation cover,
vegetation components, or vegetation patterns on runoff and soil erosion [22–24,36], the
current investigation strives to explore the effects of different conservation measures for
water and soil loss controls on patterns and magnitudes of vegetation cover change. The
research selects a subtropical region—Changting County, Fujian Province—as a case study
to examine how vegetation cover changes respond to different conservation measures for
better understanding the impact of diverse interventions on the mitigation of soil erosion.
Changting was listed as one of three major soil erosion control experimental areas in China
(the other two were Chang’an in Shaanxi Province and Tianshui in Gansu Province) as early
as the 1940s. Soil erosion in Changting is characterized by a large extent, high severity, great
risk, and a long history of controlling. It is the most serious and representative area of red
soil erosion in southern China. This research will be valuable for making proper decisions to
take measures to reduce soil erosion problems in similar climates and geographical regions.
Because vegetation restoration is widely known as an effective measure of ecological
construction and soil erosion control across a variety of environmental conditions [37,38]
and Landsat time series data are available globally, the methods used in this research may
be applicable in different climates and terrains in tropical and subtropical regions.

2. Study Area

Changting County is located in the mountainous area of western Fujian Province,
China (Figure 1). It consists of 18 townships, covering a total area of 3104 km2. The
terrain of this county is complex, with mainly low hills (about 71.1%) and uplands, and
has the common characteristics of ‘eight mountains, one water and one field’ in Fujian
Province. The climate in Changting belongs to subtropical monsoon, with hot and humid
summers and mild and dry winters. The average annual temperature is 18.3 ◦C, with
January averaging 12.5 ◦C and July averaging 27.8 ◦C. Extreme temperatures range from
39.7 ◦C to −3.5 ◦C. The annual average precipitation is 1730 mm, with varying occurrences
of typhoon-induced heavy rains ranging between 200 and 350 mm [39]. There are rich river
systems in the county, including the Han, Min, Gan, and Ting Rivers, of which the Ting
River forms the largest watershed.

The soil in Changting County is primarily red soil developed by granite, which is
easily weathered in high-temperature and humid subtropical areas [40]. Historically, it was
covered by dense vegetation with light soil erosion [41]. However, the primary evergreen
broadleaf forests were almost destroyed due to long-term human destruction (e.g., multiple
wars during the mid-17th to the early 20th century, disputes over mountain and forest own-
erships, and feudal clan conflicts throughout dynasties), or replaced by secondary forest
vegetation, commonly coniferous forests (mainly Pinus massoniana), secondary evergreen
broadleaf forests, shrubs, and others, causing significant reductions in vegetation cover-
age [42,43]. The ecological condition was worsened due to anthropogenic activities such as
cutting down trees for fuel and cultivating on steep slopes. Those human interventions
and natural factors, such as concentrated intense rainfall, frequent tectonic movement,
high soil erodibility, and less vegetation cover, have made Changting County a fragile
ecological environment, becoming one of the most typical soil erosion cases in southern
China’s hilly red soil regions [19,44]. Thus, Changting County was once notorious for
‘flaming mountains’ due to red soil exposure [45].
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Figure 1. The location of study area—Changting County, Fujian Province, China ((a)—County bound-
aries of Fujian Province; (b)—elevation map of Changting County, overlaid by the conservation area).

Water and soil erosion in Changting have long been problems faced by the local
government and residents. A survey conducted in 1985 by the local government found
that about 100,000 hectares of land, accounting for 31.5% of the county’s area, were subject
to water and soil erosion, involving seven townships, including Hetian, Sanzhou, and
Cewu. The annual soil loss reached 5000–12,000 tons/km2, and the vegetation cover rate
was as low as only 5% [46]. In 1983, efforts to control and curb water and soil erosion
were initiated by the Fujian provincial government, and Changting was listed as a key
trial area for such efforts. Joint research on water and soil conservation was carried out by
the local government, universities, and institutes. Since then, the provincial government
has increased its financial and technological support for the county to harness soil erosion
and water loss. Adhering to ecological priorities and green development in building an
ecological civilization in China, the integration of biological and engineering measures was
implemented for vegetation restoration to alleviate water and soil erosion. After decades
of efforts, Changting County has undergone a complete transformation from “flaming
(barren) mountains” to “lushly green mountains”. As of 2021, the forest cover rate in
Changting reached 80%, while the soil erosion area shrank to 210 km2, accounting for only
6.78% of the county area. Changting has achieved a worldwide reputation for its efforts and
success in controlling water loss and soil erosion, and ‘Changting’s experience’ was shared
at the United Nations Biodiversity Conference (COP15), providing a Chinese approach to
environmental protection to the world [47].

3. Datasets and Methods

In order to examine the effect of soil and water conservation measures on patterns and
magnitudes of vegetation cover change in Changting County, we designed the following
scheme (Figure 2) showing the major steps of processes, including data collection (e.g.,
field survey data, historical records of conservation measures, and remotely sensed data),
land cover map creation using Sentinel-2 imagery in 2021 and Landsat imagery in 2010,
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separately, land cover change detection using the post-classification comparison method
based on classified results between 2021 and 2010, annual fractional vegetation cover
(FVC) extraction using time series Landsat images between 1986 and 2021, and analysis
of FVC changes in relation to land cover changes as well as the conservation measures.
Considering the importance of producing accurate land cover classification results, Sentinel-
2, due to its higher spatial resolution and more spectral bands than Landsat imagery, was
selected for land cover classification in 2021 using random forest algorithm. However, only
Landsat imagery in 2010 was available for land cover classification. Before conducting
land cover change detection, the classified image with 10 m spatial resolution in 2021 was
resampled to 30 m spatial resolution using the majority function, the same cell size as the
2010 classified image.
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FVC—fractional vegetation cover; RF—random forest).

3.1. Data Collection and Preprocessing

Landsat time series images from 1986 to 2021, Sentinel-2 multispectral data in 2021,
field survey samples of different land cover types, historical records of implementing
conservation measures, and ancillary data were collected and preprocessed.

3.1.1. Collection of Field Survey Data for Land Cover Mapping

Field surveys of different land cover types were conducted in August 2021 and January
2022. The information about land cover type, topography, and vegetation status (e.g., age
and tree species) was recorded. The collected samples of land cover types were allocated
on the Sentinel-2 image and scrutinized to ensure their validity. Moreover, 60% of samples
were randomly selected and used as a training set for image classification, and the rest
were used as a validation set for accuracy assessment. According to the field survey, there
are some fruit lands, such as Chinese bayberry and orange; however, their areas are tiny,
and fruit tree crowns are small; thus, they are hardly differentiated from bare bands on
satellite image acquired in the winter season. Therefore, fruit lands were not considered in
the classification. The land cover types included Masson pine, Chinese fir, broadleaf forest
(such as chestnut forest and mixed broadleaf forest), bamboo forest, farmland, bare land,
impervious surface area (ISA), and water body.
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3.1.2. Collection of Data Related to Water and Soil Conservation Measures

Various conservation measures for controlling soil erosion have been practiced in
Changting County since the 1980s, depending on local biophysical and socio-economic
conditions. These measures can be categorized into six types: restoring low-function forests,
closing hillsides for afforestation, planting fruit trees, planting trees and grass, constructing
terraces on slope land, and multiple control measures (due to failure in previous measures).
Table 1 presents the detailed descriptions of six conservation measures. Because the spatial
information of conservation measures in the early years was not available, we only collected
the conservation records from 2010 to 2021, containing conservation measures, locations,
and implementation dates, from Changting’s Bureau of Soil and Water Conservancy. These
data were organized into polygon vectors within GIS platform (Figure 3). The regions where
conservation measures were implemented are called the conservation zones, while the
regions outside of the conservation zones are named non-conservation zones. In addition,
we selected three typical areas (barren land, contrast land, and non-erosion area) within
the non-conservation zones according to vegetation coverage conditions for comparison
purposes later. Their explanations can also be found in Table 1.

Table 1. Brief descriptions of different conservation measures used in this study area.

Conservation Measures Descriptions Area (ha)

Restoring low-function forests

Implementing forest management, including
replacement and transformation, replanting, and
tending, to improve the forest stand structure,
increase the production potential of forestlands, and
to enhance forest quality and benefits.

1347

Closing hillsides for afforestation

Taking advantage of the regeneration capacity of
forests and closing mountainous areas to promote
forest regeneration and growth by prohibiting
interference from external factors, such as people and
livestock on forestlands.

24,711

Planting trees and grass
Planting suitable trees and grass to increase
vegetation coverage, prevent soil erosion, and
improve land productivity.

4625

Planting fruit trees Planting fruit trees of high cash value for both
ecological and economic benefits. 26

Constructing terraces on slope land
Transforming slope land that is prone to water, soil,
and fertilizer losses into terraces for convenient
farming.

131

Multiple measures Continuously implementing different conservation
measures after the failure of the previous efforts. 1457

Barren land
Without vegetation cover, experienced soil erosion
problems without implementing any conservation
measures.

278,262
Contrast land

With little vegetation cover, experienced soil erosion
problems without implementing any conservation
measures.

Non-erosion High vegetation cover without soil erosion problems.
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and 2021; (b)—the practiced conservation measures).

3.1.3. Collection and Preprocessing of Remotely Sensed Data

Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) Land
Surface Reflectance (LSR) time series images covering Changting County from 1986 to
2021 were obtained with the GEE platform (https://earthengine.google.com (accessed on 1
March 2023)). Due to the failure of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
scan line corrector (SLC), the images collected after 31 May 2003 exhibit wedge-shaped
scan-to-scan gaps; thus, Landsat 7 ETM+ images were not included in this research. Because
no Landsat images are available in 2012, to avoid data gap in the time series, we used the
averages of 2011 and 2013 to replace the 2012 image.

The LSR data were atmospherically corrected using LEDAPS (Landsat Ecosystem
Disturbance Adaptive Processing System) (for Landsat 5 TM) [48] and LaSRC (Landsat
8 Collection 1 Land Surface Reflectance Code) (for Landsat 8 OLI) [49] algorithms. The

https://earthengine.google.com
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images acquired between April and October with cloud coverage of less than 50% were
collected. Based on the associated QA (quality assessment), the pixels labeled with low
quality, such as clouds, snow, and shadows, were removed, and then NDVI for each selected
image was calculated. The median value of NDVI during a year was extracted as a yearly
NDVI composite, and then the yearly NDVI from 1986 to 2021 formed the time series NDVI
datasets that were used to calculate annual FVC later.

Since 2010, Changting County has started to implement intensive management for
soil erosion control, resulting in tremendous land cover changes. Thus, Landsat-5 TM
multispectral data dated 14 January 2010 and Sentinel-2 Level-2A multispectral product
with spatial resolution of 10 m dated 31 January 2021 were obtained from GEE. These
images were geometrically corrected with a registration error of less than 0.5 pixels. Then,
the topographic correction was conducted based on the Shuttle Radar Topography Mission
(SRTM) DEM data using SCS + C method [50], which was proven to be the most appropriate
in forested terrain. The corrected images were used to develop land cover maps in 2010
and 2021.

3.1.4. Ancillary Data

The ancillary data include the Changting County boundary and the digital elevation
model (DEM). Changting County boundary shapefile was extracted from China admin-
istrative divisions at county level, which was downloaded from the National Catalogue
Service for Geographic Information (https://www.webmap.cn (accessed on 15 November
2022)). The boundary file was used to delineate the study area through clipping all other
datasets. The SRTM DEM data with a resolution of 30 m were downloaded from the USGS
website (https://lpdaac.usgs.gov/ (accessed on 15 November 2022)), which were used
in topographic correction of Landsat and Sentinel-2 images and for deriving topographic
features (elevation, slope, and aspect) as additional inputs in image classification.

3.2. Methods
3.2.1. Land Cover Classification and Change Detection

With land cover samples collected in 2021–2022 as ground truth data, the land cover
classification was first implemented using the 2021 Sentinel-2 images due to their higher
spatial resolution and more spectral bands than Landsat imagery. The potential features
for classification included 10 spectral bands, 3 vegetation indices (NDVI, Normalized
Difference Wetness Index (NDWI), and Enhanced Vegetation Index (EVI)), 320 textures
derived using the Gray Level Co-occurrence Matrix (GLCM) based on 10 spectral bands
with window sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9, and 3 topographic features (elevation,
slope, and aspect) derived from SRTM DEM. Random forest (RF) was used to provide
the importance rankings of these variables. Based on the features’ importance rankings
and correlations between these features, the most important features were chosen for
classification using RF algorithm [51]. The parameters in RF classification were set as 500
for the number of trees, ‘square root’ for the number of features, and default values for
other parameters. The classification result was further processed with a majority filter tool
(3 × 3 pixels) to remove noise.

The development of land cover map for 2010 was more complex due to lack of ground
truth data. We took the 2021 land cover map developed from Sentinel-2 images as a
reference and collected the land cover samples from it. First, we resampled the land cover
classification image of 2021 into 30 m to match the Landsat image. Then, with the aid of
the vegetation change trend from the NDVI time series and the resampled land cover map,
land cover samples for 2010 were chosen from the areas where there were no significant
NDVI changes. Finally, the same classification procedures were applied to the 2010 Landsat
5 TM image for developing a land cover map.

The land cover classification result of 2021 was evaluated using test samples and
overall accuracy, producer’s accuracy, user’s accuracy, and kappa coefficient were cal-
culated from the confusion matrix. Because of a lack of ground truth data in 2010, the

https://www.webmap.cn
https://lpdaac.usgs.gov/
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classification accuracy in 2010 was not assessed but was assumed to be similar to the 2021
classification results. The post-classification comparison approach was used to detect land
cover change based on the 2010 and 2021 classification results, and a detailed land cover
conversion matrix was created. Major land cover change categories, particularly those
related to conservation efforts such as the conversion from bare soils to various forest types
and croplands, were examined.

The area and percentage of each land cover type within Changting County, the conser-
vation zones, and non-conservation zones in 2010 and 2021 were calculated and compared.
The changes in forest types, especially the expansion of various forest types within these
zones (entire county, conservation zones, and non-conservation zones), were examined.

3.2.2. Extraction of Annual Fractional Vegetation Cover (FVC) from the Time Series
Landsat NDVI Images

The dimidiate pixel model is a commonly used linear model for pixel decomposi-
tion [52]. It assumes that the spectral response of a pixel is the linear mixture of responses
from vegetation and non-vegetation (i.e., bare soil), and the NDVI value of each pixel is the
weighted sum of the NDVI values corresponding to pure vegetation and bare soil, while
the weight sizes are the areal percentage occupied by two parts within a pixel. Thus, the
proportion occupied by the vegetation in each pixel, i.e., the fractional vegetation cover
(FVC), can be calculated from NDVI using Equation (1) [53,54]:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(1)

where FVC is the fractional vegetation cover within a pixel, NDVI is the normalized
difference vegetation index of a pixel, NDVIveg and NDVIsoil are the NDVI values of a
pixel with vegetation and bare soil, respectively. In this study, for a given yearly median
composite NDVI image, the NDVI value at the 95th percentile was taken as NDVIveg
and NDVI value at the 5th percentile as NDVIsoil. The annual FVC time series images
from 1986 to 2021 were calculated using Equation (1). To examine and compare the FVC
change trends over time, the average FVC at Changting County, conservation zones, and
non-conservation zones for each year were computed.

3.2.3. Patterns and Magnitudes of FVC Change

The ‘shape selection forest’ method [55] for fitting nonparametric shape-restricted
regression splines to Landsat time series images was used to examine vegetation cover
change in this research. For each pixel of a selected spectral band or a vegetation index in
Landsat time series, this method can produce a smooth temporal trajectory, representing
one of seven possible ‘shapes’ or ‘trend patterns’—flat, decreasing, sudden jump, double
jump, vee, inverted vee, and increasing, which reflect the responses of forestland pixels to
different disturbances occurring in forested ecosystems. The detailed meanings of these
shapes can be found in Moisen et al. [55]. In this study, the FVC time series from 1986 to
2021 were used as the input to ShapeSelectForest package in R software, and the fitting and
shape matching methods based on goodness of fit and a penalty were applied to determine
the optimal shape to derive the patterns of vegetation changes over time in Changting.
According to local FVC characteristics, sudden jump and double jump were combined as
jump shape; thus, six shapes were identified, and their change patterns are illustrated in
Figure 4.
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Figure 4. Typical shapes of vegetation change patterns.

The output shape parameters from ShapeSelectForest include the onset year of a
change, change duration, change magnitude, and others. The change magnitude is de-
fined as

Magnitude =
∣∣∣∣ FVCstart − FVCend

FVCstart

∣∣∣∣ (2)

where magnitude is the change in intensity caused by a disturbance event, FVCstart and
FVCend are FVC values at the start and at the end of the disturbance event, respectively.
The change magnitude was classified into five levels: non-change (<0.05), light (0.05–0.15),
moderate (0.15–0.30), severe (0.30–0.50), and extreme (>0.50).

The spatial distributions of shapes (change patterns) and change magnitudes in
Changting County were generated from ShapeSelectForest. Overall FVC change patterns
and magnitudes within Changting County, the conservation zones, and non-conservation
zones were analyzed, respectively. Some typical sites were selected in both conservation
zones and non-conservation zones in Hetian Township, where the soil erosion problems
were very severe. The typical sites in the conservation zones were chosen under different
conservation measures, while the ones in non-conservation zones were chosen based on
vegetation cover conditions at the beginning of the study period and named as ‘barren
land’, ‘contrast land’, and ‘non-erosion land’. Both ‘barren land’ and ‘contrast land’ ex-
perienced soil erosion problems, but no conservation measures had been implemented.
The difference between them was no vegetation cover at all in ‘barren land’ and sparse
vegetation in ‘contrast land’. ‘Non-erosion land’ represents high vegetation cover regions
without erosion problems. The FVC change curves over time at those selected typical sites
were extracted, and their change patterns were analyzed.

3.2.4. Effects of Implementing Conservation Measures on Land Cover Changes

The distribution map of conservation measures was superimposed onto the land cover
map of 2021 and the land cover change map between 2010 and 2021. The area of each land
cover type under each conservation measure and its areal proportion in the total area of
each conservation measure were calculated using Equation (3).

FCij =
Areaij

Areai
(3)

where FCij is the areal percentage of land cover type j accounted for in the total area of
conservation measure i, Areaij is the area of land cover type j under conservation measure i,
Areai is the total land area in which conservation measure i was implemented. Because
the lands on which the conservation measures of ‘planting fruit trees’ and ‘constructing
terraces on slope land’ were implemented accounted for a very small portion and were
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mainly coincident with ‘multiple control measures’, they were not included for further
analysis.

3.2.5. Effects of Implementing Conservation Measures on FVC Changes

To understand the effects of implementing conservation efforts on vegetation recovery,
the areas and proportions of FVC change patterns and magnitudes were calculated for
the entire county, conservation zones, and non-conservation zones; the composites were
compared and analyzed. The distribution map of the conservation measures was superim-
posed onto the FVC change pattern map and the change magnitude map for calculating
the area and areal percentage of each change pattern to the total area of each conservation
measure. The minimum, first quartile, median, and third quartile, and the maximum
of FVC change magnitude under different conservation measures in conservation zones
and non-conservation zones were extracted and used for creating a boxplot showing the
differences in change magnitudes among conservation measures. A similar analysis was
also conducted based on the distribution of the conservation measures, the distribution of
forest types in 2021, and FVC change patterns and magnitude maps.

4. Results
4.1. Analysis of Land Cover Classification and Change Detection Results

The classification accuracy assessment result for the year 2021 (Table 2) indicates
an overall accuracy of 86% and a kappa value of 0.84. Both the user’s and producer’s
accuracies for all land cover types are over 75% but vary among land cover types. For
example, Masson pine, Chinese fir, and broadleaf forest have lower classification accuracy
values than other land cover types. Both Masson pine and Chinese fir are coniferous and
have similar spectral responses, making it difficult to differentiate between them. What is
more, Masson pine and Chinese fir often grow together with broadleaf species, forming
many mixed pixels, which also contributed to the low accuracies of these three forest types.
In contrast, bamboo has a higher reflectance in the green band than other land features,
resulting in high classification accuracy. In addition, the similar spectral responses between
the fallow farmland and bare land regarding the Sentinel-2 data caused their relatively low
accuracies.

Table 2. Confusion matrix from the classification results based on Sentinel-2 data in 2021.

Land Cover Types
Reference Data

UA (%)Masson
Pine

Chinese
Fir

Broad-
Leaf Bamboo Farmland Bare

Land ISA Water Subtotal

C
la

ss
ifi

ca
ti

on

Masson
pine 27 6 3 0 0 0 0 0 36 75.0
Chinese fir 5 24 3 0 0 0 0 0 32 75.0
Broadleaf 2 2 24 3 0 0 0 0 31 77.4
Bamboo 0 0 0 28 0 1 0 0 29 96.6
Farmland 0 0 0 0 28 2 1 2 33 84.9
Bare land 0 0 0 1 2 26 0 0 28 92.7
ISA 0 0 0 0 1 1 30 0 32 93.8
Water 0 0 0 0 1 0 0 28 29 96.6

Subtotal 34 32 30 31 32 30 31 30 250
PA (%) 79.4 75.0 80.0 90.3 87.5 86.7 96.8 93.3

Overall accuracy: 86.0%; kappa: 0.84

Note: ISA represents impervious surface area; UA and PA represent user’s and producer’s accuracy.

A comparison of the land cover maps of 2010 and 2021 indicates that the overall land
cover distributions are similar in the two years, with forests being the largest portion,
among which Masson pine forests occupied the largest area and were distributed all over
the county. Chinese fir forests were concentrated in the east and north of the county;
broadleaf forests were mainly distributed in the west, and Moso bamboo forests were
scattered in the northwest of the county. The obvious changes on the 2021 map compared to
the 2010 map include that a large area of bare land (dark red color) disappeared, while the
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Masson pine forests expanded on bare land (Figure 5). A close analysis of the percentages
of each land cover type in the two years determined that each land cover type experienced
changes to various degrees (Table 3). The area of bare lands shrank by 32,212 ha (from
48,969 ha in 2010 to 16,757 ha in 2021) in the whole county, of which 7274 ha (from 9758 ha
in 2010 to 2484 ha in 2021) was in the conservation zones and the rest was in the non-
conservation zones. Masson pine forests occupied the largest portion of Changting County.
From 2010 to 2021, the area of Masson pine forests increased by 9746 ha (from 136,101 ha
in 2010 to 145,847 ha in 2021), of which 6595 ha were located in the conservation zones,
particularly in the Hetian basin where soil erosion was severe, making the proportion of
Masson pine forests in the conservation zones increase from 45.9% to 66.4%. Chinese fir
forests accounted for a small portion, especially in the conservation zones, due to poor
site conditions. Their areas expanded from 18,636 ha in 2010 to 27,118 ha in 2021 for the
whole county, but most of them were found in non-conservation zones. Broadleaf forests
accounted for about one-fourth of the county’s area. Overall, their area increased by 3088 ha,
but this increase occurred in the non-conservation zones. Bamboo forests accounted for
a tiny portion and did not change much from 2010 to 2021, either in the conservation or
non-conservation zones. Farmland expanded to a large extent, by 7479 ha, mostly in the
non-conservation zones. ISA expanded outward from the original towns and villages; the
area increased by 3962 ha, of which about one fourth occurred in the conservation zones
and the remaining in the non-conservation zones. Overall, the large increase in Masson
pine forests and decrease in bare land in the conservation zones imply that Masson pine, the
well-known pioneer tree species for afforestation and reforestation, played an important
role in controlling water and soil erosion in the conservation zones as well as in the whole
county. Masson pine has strong adaptability and high tolerance to drought and barren
soil [56] and is able to grow and regenerate in a harsh environment. Once Masson pine
trees take root in soil-eroded areas and enlarge their crowns, they can effectively protect
the soil from being washed away by surface runoff, reducing the occurrence of soil erosion.

Table 3. The areas (ha) and proportions (%) of land cover types within Changting County, conserva-
tion, and non-conservation zones.

Land Cover
Types

Statistics in 2010 Statistics in 2021

Changting
County

Conservation
Zones

Non-
Conservation

Zones
Changting

County
Conservation

Zones
Non-

Conservation
Zones

Area (ha)
(%)

Area (ha)
(%)

Area (ha)
(%)

Area (ha)
(%)

Area (ha)
(%)

Area (ha)
(%)

Masson pine 136,101
(43.8)

14,835
(45.9)

121,266
(43.6)

145,847
(47.0)

21,430
(66.4)

124,416
(44.7)

Chinese fir 18,636
(6.0)

327
(1.0)

18,309
(6.6)

27,118
(8.7)

960
(3.0)

26,158
(9.4)

Broadleaf forest 77,519
(25.0)

4093
(12.7)

73,426
(26.4)

80,607
(26.0)

2796
(8.7)

77,811
(28.0)

Bamboo forest 7271
(2.3)

413
(1.3)

6859
(2.5)

7229
(2.3)

768
(2.4)

6461
(2.3)

Farmland 2408
(0.8)

571
(1.8)

1837
(0.7)

9887
(3.2)

788
(2.4)

9099
(3.3)

Bare land 48,969
(15.8)

9758
(30.2)

39,211
(14.1)

16,757
(5.4)

2484
(7.7)

14,274
(5.1)

Water 3061
(1.0)

327
(1.0)

2734
(1.0)

2558
(0.8)

206
(0.6)

2352
(0.9)

Impervious
surface area

16,595
(5.3)

1974
(6.1)

14,621
(5.3)

20,557
(6.6)

2866
(8.9)

17,691
(6.4)

Total 310,560
(100)

32,298
(100)

278,262
(100)

310,560
(100)

32,298
(100)

278,262
(100)
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Figure 5. Land cover distribution and change detection results ((a)—land cover classification based
on Landsat TM image in 2010; (b)—land cover classification based on Sentinel-2 image in 2021;
(c)—forest changes from 2010 to 2021; here, ‘increase’ means the conversions from other land cover
types to this type, and ‘loss’ means the conversion from forest to other land cover types).
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The changes in area and spatial distribution of various forest types within Changting
County, conservation zones, and non-conservation zones are presented in Table 4 and
Figure 5. The results show that, from 2010 to 2021, unchanged forestlands accounted for
the largest portion (about 40% of the land) in all three statistical zones, while Masson pine
expansion (i.e., converted from other land cover types) accounted for the second largest
portion. Particularly, the percentage of increased Masson pine in the conservation zones
was much greater (29.2%) than that in the non-conservation zones (17.8%). The opposite
situation occurred with Chinese fir and broadleaf forests, whose increased areas were
relatively lower in the conservation zones than in the non-conservation zones. This also
confirmed that Masson pine played an important role in ecological restoration in the soil
erosion area [57].

Table 4. Change areas (ha) and proportions (%) of various forest types between 2010 and 2021.

Forest Change Category

Statistical Units

Changting County
Area (ha)

(%)

Conservation Zones
Area (ha)

(%)

Non-Conservation Zones
Area (ha)

(%)

Increased Masson pine 58,603
(18.9)

9444
(29.2)

49,614
(17.8)

Increased Chinese fir 22,919
(7.4)

924
(2.9)

21,788
(7.8)

Increased broadleaf forest 46,273
(14.9)

1928
(6.0)

43,882
(15.8)

Increased bamboo forest 6584
(2.1)

743
(2.3)

5843
(2.1)

Forest loss 9037
(2.9)

1279
(4.0)

7875
(2.8)

Unchanged forests 126,398
(40.7)

12,913
(40.0)

113,698
(40.9)

Other changes 40,745
(13.1)

5068
(15.7)

35,562
(12.8)

Total 310,560
(100.0)

32,298
(100.0)

278,261
(100.0)

4.2. FVC Change Trends over Time

The annual FVC results from 1986 to 2021 (Figure 6a) showed that the average FVC
values in the non-conservation zones were higher than in the conservation zones; both
exhibited increasing trends, but the increase rate is different, especially after 2010. In 1986,
the average FVC in the conservation zones was only 38%, but it reached 72% in 2021 after
decades of implementing soil and water conservation practices. Before 2010, the annual
average FVC in the conservation zones grew slowly, and the yearly growth rate was only
0.76%, but it reached 1.81% after 2010. In contrast, the average FVC in the non-conservation
zones was 67% in 1986 and reached 80% in 2021, with an annual growth rate of only 0.36%.
The discrepancy regarding average FVC between the conservation and non-conservation
zones has shrunk significantly from 31% in 1986 to 10% only in 2021, and the FVC values
became gradually closer to each other. We also found that the lowest FVC values during
1988–1994 corresponded to some historical events. During this period, the first wave of
rare mineral mining began, causing a large scale of vegetation damage in Hetian Township
and its surrounding areas; the whole region launched comprehensive development of
mountainous areas, planting fruit trees on hills without keeping up with the necessary
protective measures, resulting in soil erosion [58].
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Figure 6. The fractional vegetation cover (FVC) change trends from 1986 to 2021 in conservation zones
and non-conservation zones ((a)—average annual FVC; (b)—FVC trends in different conservation
measures and different situations without conservation; (c)—a comparison of FVC curves of different
forest types between conservation and non-conservation zones).
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Analysis of the FVC curves from 1986 to 2021 (Figure 6b) based on representative
sites with different conservation measures in the conservation zones and non-conservation
zones indicated that the FVC changes over time had significantly different patterns. In the
non-conservation zones, the FVC generated various patterns due to the initial vegetation
conditions. For ‘non-soil erosion’ with high vegetation cover, the FVC was relatively
stable at about 80% averagely, presenting a flat pattern; for ‘contrast land’, the FVC was
continuously low at the beginning, but it gradually increased and reached about 40%
after 2005, belonging to a vee pattern. The worst situation went to ‘barren land’ with no
vegetation cover, whose FVC stayed as low as 0% for a long time; it increased after 2014
but still stayed less than 10%, manifesting a flat pattern in general. The FVC increases in
‘barren land’ and ‘contrast land’ after 2014 may be attributed to the overall improvement
in local ecological quality and microclimate changes after conservation measures were
implemented. Previous research [59] showed that restored vegetation, especially forests
in the soil-eroded areas, has significant effects on near-surface temperature, humidity,
daily temperature variation, soil temperature, and soil moisture, creating better local
microclimates and a significantly improved ecological environment in the region. It is
worth noting that the low FVC values of ‘barren land’ and ‘contrast land’ imply that
vegetation restoration relying on only natural processing to reach a desirable level in those
areas takes a very long time without proper human efforts.

The FVC curves in the conservation zones were greatly different from those of the
non-conservation zones. In general, FVC largely increased during 1986–2021 but presented
various change paces among different conservation measures, reflected by various inflection
points of FVC change because of the dates when conservation measures were implemented,
in particular, around 2010. Figure 6b showed that, during the early years of the study
period, the FVC remained stable and, after some time, the FVC increased steadily or sharply
at different rates under conservation measures, presenting increasing or vee patterns. For
example, in the ‘closing hillsides’ implemented site, the initial FVC was relatively high and
stable at about 30% until 1997, and it sharply increased to about 60% in 1999, then kept
on for a couple of years with some fluctuations; after 2010, the FVC gradually grew and
stabilized at about 80%. For the site with ‘planting trees and grass’, the FVC remained
stable until 2000, then gradually increased, while, with ‘planting fruits’, the FVC sharply
increased after 2015. For the sites with ‘restoring low-function forest’, ‘constructing terraces
on slope lands’, and ‘multiple control measures’, the FVC experienced dramatic increases
after 2010, especially for ‘restoring low-function forest’. The FVC reached its highest at
about 80% in 2021, similar to the case of ‘non-soil erosion’, indicating the high effectiveness
of the ‘restoring low-function forest’ conservation method. The FVC under ‘multiple control
measures’ was lower than the FVC values of other conservation measures, implying the
obstinateness of those areas to be controlled effectively.

These FVC change patterns were very closely related to the characteristics of the
conservation measures and the particular dates. The ‘closing hillsides’ measure was
the earliest and most practiced in Changting County because it is the most economical,
effective, and quickest approach, especially to control light and moderate soil erosion
and to consolidate the management result. According to the report [58], during 1999–
2009, ‘closing hillsides’ was carried out on an area of 65,000 ha, accounting for 84% of the
total conservation area of 77,400 ha during the same period. Therefore, the FVC increase
inflection occurred the earliest among the various measures. The tenure reform of collective
forests in 1994 warranted villagers 50-year rights to freely use their allocated hilly lands,
starting the ‘first planting grass, then trees’ conservation mode; consequently, the FVC
increased slowly at the beginning (around 1995–2000), then sharply raised following the
tree growth patterns. A large scale of ‘restoring low-function forest’, which promotes tree
growth by fertilizing and tending, was implemented after 2010, and, corresponding to this
date, the FVC quickly rose after 2010. The practice of planting fruits (including other cash
shrubs, e.g., camellia) in a large area also started in 2012; due to the large space between
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fruit trees, the FVC in the first couple of years did not change obviously, then increased
quickly after 2015.

The yearly average FVC change for various forest types at typical sites selected from
the land cover map of 2021 in both the conservation zones and the non-conservation
zones from 1986 to 2021 (Figure 6c) clearly shows that, among the forest types, broadleaf
and Chinese fir forest have similar FVC values, which are higher than Masson pine and
bamboo forests in both the conservation zones and non-conservation zones. This can be
attributed to the fertile soil conditions in which broadleaf and Chinese fir forests typically
grow and the characteristics of the tree species. The FVC values of all the forest types
in the non-conservation zones were higher than those in the conservation zones. Even
in the early stages of conservation efforts, the differences in FVC values were significant,
ranging from 20% to 30%. However, after 2010, the differences in FVC values between the
same forest types gradually reduced to 5–8% in 2021. The FVC of all forest types in the
non-conservation zones fluctuated, with slight growing trends over the entire study period.
In contrast, the FVC values in the conservation zones fluctuated but were unchanged or
slowly increased before 2010 and dramatically increased after 2010 when conservation
measures were implemented. Although FVC increased rapidly for all the forest types in
the conservation zones, the rates of increase varied significantly among different forest
types. The FVC in 2021 increased by 33.9% for Masson pine, 22.2% for Chinese fir, 21.3%
for broadleaf, and 20.0% for bamboo compared to 2010. In contrast, the corresponding
increases in FVC for the same forest types in the non-conservation zones were 13.8%, 11.4%,
9.9%, and 8.9%, respectively. At the end of the study period, the FVC differences between
different forest types became narrower. For example, the FVC values of Masson pine and
bamboo forests were similar but still lower than those of broadleaf and Chinese fir forests
in the conservation zones. However, the FVC values of broadleaf and Chinese fir forests
reached as high as those of Masson pine and bamboo forests in the non-conservation zones.
The considerable FVC differences between the conservation and non-conservation zones
prior to the governance and the reduced gap after imply the important role of implementing
conservation measures for improving FVC, thus reducing soil erosion problems.

4.3. Effects of the Conservation Measures on Land Cover Changes

The areas and proportions of different land cover types under different conservation
measures in the conservation zones and non-conservation zones in 2021 (Table 5) showed
that Masson pine forests accounted for the largest portion (64–84%) of the total area under
the corresponding conservation measures, while other forests accounted for a smaller
portion (<10%), especially for cases with ‘multiple control measures.’ Over the past decade,
conservation efforts have led to the establishment of Masson pine-dominated forests in most
soil erosion areas in the conservation zones. In comparison, Masson pine forests accounted
for a relatively small portion (about 45%) in the non-conservation zones, while Chinese fir
and broadleaf forests made up 9.4% and 28.0%, respectively. Through conservation efforts,
bare land areas in the conservation zones are much smaller than in the non-conservation
zones, especially in the categories of ‘restoring low-function forest’ and ‘multiple control
measure’. However, there were still some bare lands uncovered in the area of ‘closing
hillsides to facilitate afforestation’. It is important to note that ‘closing hillsides’ relies on
the natural regeneration ability of vegetation to restore its original condition gradually.
This is achieved by prohibiting any forms of intrusion, such as reclamation, grazing, and
firewood cutting. In areas with severe soil erosion, the harsh soil and water conditions
make it difficult for plants to survive and grow. Therefore, it is impossible to turn barren
land into forests solely through the natural regeneration ability in a short time period. In
some cases, human investment is necessary to obtain satisfactory results. The small area of
bare land under ‘multiple control measures’ demonstrates that proper investment of labor
and resources in water and soil erosion control can enhance conservation outcomes.
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Table 5. Areas (ha) and proportions (%) of land cover types and their changes under different
conservation measures.

Land Cover Types

Different Conservation Measures

Restoring
Low-Function

Forest

Closing
Hillsides

Planting Trees
and Grass

Multiple
Measures

Non-
Conservation

C
la

ss
ifi

ca
ti

on
re

su
lt

s
fo

r
20

21

Masson pine 957
(71.1)

15,730
(63.7)

3451
(74.6)

1229
(84.4)

124,416
(44.7)

Chinese fir 29
(2.2)

845
(3.4)

73
(1.6)

12
(0.8)

26,158
(9.4)

Broadleaf forest 100
(7.4)

2365
(9.6)

285
(6.2)

42
(2.9)

77,811
(28.0)

Bamboo forest 44
(3.3)

574
(2.3)

122
(2.6)

19
(1.3)

6461
(2.3)

Farmland 31
(2.3)

641
(2.6)

98
(2.1)

15
(1.0)

9099
(3.3)

Bare land 81
(6.0)

1959
(7.9)

316
(6.8)

72
(4.9)

14,274
(5.1)

Water 10
(0.7)

166
(0.7)

15
(0.3)

8
(0.5)

2352
(0.8)

Impervious
surface area

94
(7.0)

2431
(9.8)

263
(5.7)

61
(4.2)

17,691
(6.4)

Total 1347
(100.0)

24,711
(100.0)

4625
(100.0)

1457
(100.0)

278,262
(100.0)

Forest Change
Restoring

Low-Function
Forest

Closing
Hillsides

Planting Trees
and Grass

Multiple
Measures

Non-
Conservation

C
ha

ng
e

de
te

ct
io

n
re

su
lt

s
be

tw
ee

n
20

10
an

d
20

21

Increased
Masson pine

323
(24.0)

7066
(28.6)

1476
(31.9)

542
(37.2)

49,614
(17.8)

Increased
Chinese fir

29
(2.2)

813
(3.3)

72
(1.6)

12
(0.8)

21,788
(7.8)

Increased
broadleaf forest

88
(6.5)

1564
(6.3)

235
(5.1)

35
(2.4)

43,882
(15.8)

Increased
bamboo forests

43
(3.2)

551
(2.2)

119
(2.6)

19
(1.3)

5843
(2.1)

Forest loss 45
(3.3)

1021
(4.1)

164
(3.6)

39
(2.7)

7875
(2.8)

Unchanged
forest

648
(48.1)

9532
(38.6)

2033
(44.0)

696
(47.7)

113,698
(40.9)

Other changes 170
(12.6)

4164
(16.9)

526
(11.4)

115
(7.9)

35,562
(12.8)

Total 1347
(100.0)

24,711
(100.0)

4625
(100.0)

1457
(100.0)

278,262
(100.0)

In terms of changes in land cover within conservation zones, all the conservation
measures generally protected the existing forests and expanded the Masson pine forests.
According to Table 5, the proportions of unchanged forests under different conservation
measures ranged from 38.6% to 48.1%. Only small proportions of forests were lost or
degraded to other land cover types, such as farmland, ISA, or bare land. Among the
different conservation measures, ‘closing hillsides’ resulted in the largest expansion of
Masson pine forests (by 7065 ha). Following Masson pine, broadleaf forests were the second
largest forest type that expanded under various conservation measures.
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4.4. Effects of the Conservation Measures on FVC Changes
4.4.1. Comparison of FVC Change Patterns and Magnitudes at Spatial Scales

The areas and proportions of the FVC change patterns and magnitudes within Changt-
ing County, the conservation zones, and the non-conservation zones (Table 6) and their
spatial distributions (Figure 7) indicated that, in terms of change patterns, FVC presented
growth trends generally in the entire county, revealed by the highest percentages of in-
creasing shape (49.0%) and vee shape (12.1%). About 17.7% of Changting County did
not change much in FVC (the flat shape), while only small areas (6.7%) experienced FVC
reduction (2.6% decreasing pattern and 4.1% inverse vee pattern), and 14.5% of the area
underwent large fluctuations (the jump shape) during the study period. The FVC-reducing
areas were mainly located around towns with more human activities and were distributed
in strips, while the jump patterns were widely distributed, mainly in the west of Changting,
where the ecological environment is better. In addition, the flat pattern and the decreasing
pattern were often accompanied by each other in space. The comparison of change patterns
between the conservation and non-conservation zones indicated that the total proportion
of growing patterns (increasing and vee shapes) made up 70.7% of the conservation zones,
which is higher than 60.0% in the non-conservation zones. This demonstrated the great
effect of the conservation measures on vegetation recovery.

Table 6. The area (ha) and percentage (%) of fractional vegetation cover (FVC) change patterns and
intensities in Changting County, conservation zones, and non-conservations zones.

FVC Change Patterns Changting
County

Conservation
Zones

Non-Conservation
Zones

C
ha

ng
e

pa
tt

er
ns

Flat 54,969
(17.7)

1442
(4.5)

53,527
(19.2)

Decreasing 7950
(2.6)

298
(0.9)

7652
(2.7)

Increasing 152,205
(49.0)

12,772
(39.5)

139,433
(50.1)

Vee 37,702
(12.1)

10,068
(31.2)

27,634
(9.9)

Inverse vee 12,764
(4.1)

5024
(15.6)

7740
(2.8)

Jump 44,969
(14.5)

2694
(8.3)

42,275
(15.2)

C
ha

ng
e

in
te

ns
it

ie
s Non-change 59,721

(19.2)
1920
(5.9)

57,801
(20.8)

Light 39,958
(12.9)

1098
(3.4)

38,860
(14.0)

Moderate 81,578
(26.3)

4627
(14.3)

76,951
(27.7)

Severe 68,139
(21.9)

8275
(25.6)

59,864
(21.5)

Extreme 61,164
(19.7)

16,378
(50.7)

44,786
(16.1)

Total 310,560
(100.0)

32,298
(100.0)

278,262
(100.0)
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Figure 7. The change patterns and change magnitudes in fractional vegetation cover (FVC) from 1986
to 2021 in Changting County, Fujian Province ((a)—change patterns; (b)—change magnitudes).

Regarding the change magnitudes, one third of the entire county did not experience
strong disturbances and the FVC did not change obviously (no change and light), while the
rest of the land underwent strong degrees of FVC changes at some time points between
1986 and 2021, of which the moderate degree accounted for the largest portion, followed
by severe and extreme. The FVC change intensities in the conservation zones and non-
conservation zones appeared to be very different. For example, the change magnitude at
severe and extreme levels accounted for 76.3% of the conservation zones and only 37.6%
of the non-conservation zones. In contrast, no change and light accounted for 9.3% of the
conservation zones and 34.8% of the non-conservation zones. This also confirmed that the
conservation action significantly stimulated vegetation coverage changes.

Comprehensive analysis of change patterns and magnitudes indicated that flat change
patterns were associated with non-change intensity, increasing patterns were associated
with light and moderate change intensities, and vee, inverse vee, and jump patterns were
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associated with severe and extreme change intensities. These high agreements may be
attributed to the definitions of the change patterns and change intensities based on FVC
value changes.

4.4.2. Effects of Different Conservation Measures on FVC Change Patterns and Magnitudes

Within the conservation zones, the compositions of FVC change patterns varied under
different conservation measures (Table 7). For example, under the ‘restoring low-function
forest’ and ‘closing hillsides’ measures, the FVC change patterns are similar, with the
increasing shape being the largest, followed by vee, inverse vee, jump, flat, and decreasing
patterns. However, for ‘planting trees and grass’ and ‘planting fruit trees’, the order of
increasing shape and vee shape was reversed. The ‘constructing terraces’ conservation
measure had a different pattern of FVC change compared to the four other measures
mentioned above. The vee shape accounted for a large proportion of 63.0%, followed by the
inverse vee (17.2%) and increasing shape (14.7%), while the other patterns accounted for a
relatively small portion. With the ‘multiple measures’ conservation approach, the growing
patterns accounted for the largest portion of 77.7%, of which the vee shape accounted for
48.4%, and the decreasing and flat patterns accounted for the smallest portion.

Table 7. Areas (ha) and proportions (%) of fractional vegetation cover (FVC) change patterns under
different conservation methods.

Conservation Measures
Patterns of FVC Change

Flat Decreasing Increasing Vee Inverse Vee Jump Total

Restoring low-function
forests

75
(5.6)

12
(0.9)

586
(43.5)

378
(28.1)

216
(16.0)

80
(5.9)

1347
(100.0)

Closing hillsides 1196
(4.8)

262
(1.1)

10,164
(41.1)

7006
(28.4)

3778
(15.3)

2306
(9.3)

24,711
(100)

Planting trees and grass 153
(3.3)

19
(0.4)

1591
(34.4)

1885
(40.8)

730
(15.8)

247
(5.3)

4625
(100.0)

Planting fruit trees 2
(6.9)

0.4
(1.5)

7
(25.6)

11
(42.7)

4
(14.5)

2
(8.6)

26
(100.0)

Constructing terraces 4
(2.8)

0.4
(0.3)

19
(14.7)

83
(63.0)

23
(17.2)

3
(2.0)

131
(100.0)

Multiple measures 12
(0.8)

5
(0.3)

405
(27.8)

705
(48.4)

273
(18.8)

56
(3.9)

1457
(100.0)

Total conservation zones 1442
(4.5)

298
(0.9)

12,772
(39.5)

10,068
(31.2)

5024
(15.6)

2694
(8.3)

32,298
(100.0)

Non-conservation 53,527
(19.2)

7652
(2.7)

139,433
(50.1)

27,634
(9.9)

7740
(2.8)

42,275
(15.2)

278,262
(100.0)

The common characteristics of the conservation measures ‘planting trees and grass’,
‘planting fruit trees’, ‘constructing terraces’, and ‘multiple control measures’ are that the vee
shape accounted for the largest portion (40.8–63.0%), which was significantly higher than
that in non-conservation zones. The vee shape represents a situation where FVC remained
unchanged or decreased for a long time and then increased. In the conservation zones,
the areas affected by soil erosion often have little to no vegetation cover, resulting in a
stable FVC value at the beginning of the study period. After implementing conservation
measures, FVC gradually increased, exhibiting the vee pattern, indicating the effectiveness
of these measures regarding vegetation recovery. The inverse vee shape is associated with
a situation where FVC increased for a period and then experienced a downward trend. In
the conservation zones, this pattern reflects the recurrence of soil erosion in some areas,
which is confirmed by the large proportion of the inverse vee pattern under the ‘multiple
measures’ approach.

All the conservation measures inevitably caused FVC change intensively. The per-
centages of change magnitude levels under each conservation measure (Table 8) showed
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that extreme change in FVC accounted for the largest portion (38.6–84.0%) under all the
conservation measures, except for ‘restoring low-function forest’ and ‘closing hillsides’;
extreme change made up over 60% under the other conservation methods. Severe changes
were the second largest allocations among the magnitude levels, while no change, light, and
moderate levels accounted for small portions. According to Table 8, ‘restoring low-function
forest’ and ‘closing hillsides’ had a similar effect on the FVC change intensities, while the
four other conservation measures were similar.

Table 8. Areas (ha) and proportions (%) of fractional vegetation cover (FVC) change magnitudes
under different conservation methods.

Conservation Measures
Magnitudes of FVC Changes

No Change Light Moderate Severe Extreme Total

C
on

se
rv

at
io

n
m

ea
su

re
s

Restoring
low-function forests

111
(8.2)

27
(2.0)

216
(16.0)

473
(35.1)

520
(38.6)

1347
(100.0)

Closing hillsides 1579
(6.4)

1013
(4.1)

3932
(15.9)

6480
(26.2)

11,708
(47.4)

24,712
(100.0)

Planting trees and
grass

204
(4.4)

53
(1.1)

405
(8.8)

1034
(22.4)

2929
(63.3)

4625
(100.0)

Planting fruit trees 5
(19.2)

0
(0)

1
(3.8)

2
(7.7)

18
(69.2)

26
(100.0)

Constructing
terraces

5
(3.8)

0
(0)

4
(3.1)

13
(9.9)

110
(84.0)

131
(100.0)

Multiple measures 16
(1.1)

4
(0.3)

71
(4.9)

273
(18.7)

1093
(75.0)

1457
(100.0)

Total conservation zones 1920
(5.9)

1098
(3.4)

4627
(14.3)

8275
(25.6)

16,378
(50.7)

32,298
(100.0)

Non-conservation zones 57,801
(20.8)

38,860
(14.0)

76,951
(27.7)

59,864
(21.5)

44,786
(16.1)

278,262
(100.0)

Analysis of the boxplot of the FVC change magnitude with different conservation
measures (Figure 8) revealed that both the mean and median FVC change magnitudes
in the conservation zones were much higher than those in the non-conservation zones.
This suggests a clear effect of conservation on vegetation restoration. When comparing
the various conservation measures, it was found that ‘restoring low-function forest’ and
‘closing hillsides’ had similar FVC change magnitudes, with mean values of about 0.50.
This was lower than the FVC change magnitudes of ‘planting trees and grass’ and ‘planting
fruit tress’ at 0.6 and ‘constructing terraces’ and ‘multiple measures’ at 0.67. Among the
conservation measures, ‘multiple measures’ specifically targeting recurrent and severe soil
erosion areas resulted in the highest FVC change magnitude. This indicates that the input
of labor and resources in these areas achieved the greatest success in vegetation restoration.
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4.5. Effects of Different Conservation Measures on FVC Change Patterns and Magnitudes of Major
Forest Types
4.5.1. FVC Change Patterns of Major Forest Types under Different Conservation Measures

The areas and areal percentages of FVC change patterns of different forest types under
different conservation measures were computed and presented in Table 9. Because of the
small areas of bamboo forests, and the implemented ‘planting fruit trees’ and ‘constructing
terraces’, they were not included in the analysis. In different conservation measures, the
FVC change patterns for the forest types were dominated by the vee and increasing shapes,
accounting for the largest portions (78.8–89.4%), which were much higher than those of the
same forest types in the non-conservation zones (61.9–69.6%). However, there were some
differences among the conservation measures. Under the ‘restoring low-function forest’
and ‘closing hillsides’ measures, the proportions of increasing shape were higher than the
vee shape for all the forest types. Moreover, ‘restoring low-function forest’ was carried out
on the moderate and severe soil erosion areas by fertilizing and tending to improve the
growth of Masson pine, Chinese fir, Schima superba, and Liquidambar styraciflua, while
‘closing hillsides’ involved the enforced closure of the designated areas to promote the
natural growth of forests and vegetation recovery, mainly Masson pine. With ‘planting
trees and grass’ and ‘multiple measures’, the vee shape accounted for larger portions than
the increasing shape for Masson pine forests because Masson pine is tolerant to poor soil
and is one of the tree species to plant for soil erosion control. In terms of forest types, the
largest proportion of inverse vee shape was associated with Masson pine, accounting for
8–10% under all the conservation measures, which was larger than for Chinese fir and
broadleaf forests. The flat shape and jump shape were more related to broadleaf forests
under most of the conservation measures.
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Table 9. Areas (ha) and proportions (%) of FVC change patterns of forest types under different
conservation methods.

Conservation
Methods

Forest Types
Patterns of FVC Change

Total
Flat Decreasing Increasing Vee Inverse

Vee Jump

Restoring
low-function

forests

Masson pine 48
(5.0)

4
(0.4)

471
(49.2)

313
(32.7)

77
(8.0)

46
(4.8)

958
(100.0)

Chinese fir 1
(2.0)

0
(0.0)

17
(57.5)

9
(31.9)

1
(4.7)

1
(4.0)

29
(100.0)

Broadleaf
forest

7
(7.2)

0.2
(0.2)

61
(60.7)

23
(22.7)

4
(4.0)

5
(5.1)

100
(100.0)

Closing
hillsides

Masson pine 661
(4.2)

71
(0.5)

7264
(46.1)

5456
(34.7)

1225
(7.8)

1069
(6.8)

15,746
(100.0)

Chinese fir 37
(4.4)

2
(0.2)

523
(61.8)

194
(22.9)

25
(2.9)

66
(7.8)

848
(100.0)

Broadleaf
forest

160
(6.8)

15
(0.6)

1390
(58.8)

497
(21.0)

75
(3.2)

228
(9.7)

2365
(100.0)

Planting trees
and grass

Masson pine 77
(2.2)

6
(0.2)

1316
(38.1)

1610
(46.6)

299
(8.7)

146
(4.2)

3454
(100.0)

Chinese fir 3
(4.2)

0.1
(0.1)

39
(52.9)

23
(31.5)

3
(4.1)

5
(7.2)

74
(100.0)

Broadleaf
forest

20
(7.0)

0.3
(0.1)

161
(56.5)

72
(25.3)

13
(4.6)

18
(6.5)

285
(100.0)

Multiple
measures

Masson pine 5
(0.4)

2
(0.1)

412
(33.5)

646
(52.5)

125
(10.2)

41
(3.3)

1230
(100.0)

Chinese fir 0
(0)

0
(0)

5
(44.4)

5
(41.3)

1
(8.0)

1
(6.3)

12
(100.0)

Broadleaf
forest

0.4
(1.0)

0.1
(0.1)

22
(52.3)

15
(36.5)

3
(7.9)

1
(2.1)

42
(100.0)

Non-
conservation

Masson pine 20,541
(16.5)

2177
(1.7)

65,281
(52.5)

16,722
(13.4)

3621
(2.9)

16,087
(12.9)

124,428
(100.0)

Chinese fir 4243
(16.2)

228
(0.9)

15,187
(58.1)

2998
(11.5)

233
(0.9)

3270
(12.5)

26,158
(100.0)

Broadleaf
forest

15,516
(19.9)

1253
(1.6)

41,069
(52.8)

7073
(9.1)

942
(1.2)

11,960
(15.4)

77,811
(100.0)

4.5.2. FVC Change Magnitudes of Major Forest Types under Different Conservation
Measures

The variations in the FVC change magnitudes of the major forest types under different
conservation measures (Figure 9) indicated that the FVC change magnitudes (median
and mean) of all the forest types in the conservation zones were larger than those in the
non-conservation zones. When the same conservation measure was implemented, the FVC
of Masson pine forests changed the most dramatically compared with those of Chinese
fir and broadleaf forests, while Chinese fir forests and broadleaf forests were similar. For
example, under ‘closing hillsides’ conservation, the median FVC change magnitude of
Masson pine forests was 0.48, while it was 0.33 for Chinese fir and 0.31 for broadleaf forest.
However, different conservation measures had greatly different impacts on the magnitude
of FVC change. Indeed, ‘multiple measures’ resulted in the highest FVC change magnitude
for all three forest types (median values 0.48–0.68), followed by ‘planting trees and grass’
(median 0.40–0.61), while ‘restoring low-function forest’ (median 0.22–0.30) and ‘closing
hillsides’ (median 0.19–0.29) had relatively lesser effects on the FVC change magnitudes.
Among all the forest types and conservation methods, the FVC of Masson pine forests
under ‘multiple measures’ changed the most, suggesting that Masson pine forests under
‘multiple measures’ had the greatest effect on vegetation restoration.
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5. Discussion
5.1. Importance of Improving Vegetation Structure and Composition in Reducing Soil Erosion
Problems

Vegetation restoration is a promising strategy to control soil erosion and improve
ecosystem services from small watersheds to large regions [60]. Increasing vegetation
cover can considerably reduce soil erosion, while decreasing vegetation cover may cause
increased runoff and soil loss [61]. In general, when the vegetation cover rate is greater
than 70%, soil erosion will be effectively controlled. This study evaluated the impact of
various conservation measures on FVC changes in soil erosion areas. Compared with
previous studies assessing the effectiveness of soil and water conservation [62] and the
spatial variations in soil and water loss, this study emphasized the FVC dynamic changes
of different forest types under various conservation measures, thus better revealing the
responses of FVC change to different conservation measures during vegetation recovery
and soil erosion control. The spatial and temporal changes in FVC based on a long-term
Landsat time series in Changting County are consistent with previous research [63]. After
conservation was implemented, the FVC in intensively eroded areas increased sharply,
with a rate of 90%, much better than in non-conservation areas, implying an immediate
effect of the management practices in terms of reducing soil erosion problems.

Based on time series FVC data, the “ShapeSelection” algorithm [55] was used to
examine the FVC change pattern and intensity at the pixel level, providing detailed spatial
and temporal information regarding vegetation changes and intuitively showing where
soil erosion situations were mitigated or controlled with a particular conservation measure
and where they still needed intensive management. For example, vee patterns of FVC
change, which are mainly distributed in the Hetian Basin and represent sharp increases
in vegetation coverage, indicate that these areas achieved the best outcomes regarding
the conservation efforts, while the inverse vee patterns of FVC changes were found in the
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hinterland of the Hetian Basin, where the soil erosion problems recur year after year and
thus require intensive control practices with multiple control measures.

Except for vegetation cover, vegetation types, vegetation diversity, and vegetation
structure, the vertical forest structure also particularly influences runoff and soil erosion [64].
In Changting County, the large area of regenerated or planted Masson pine forests and high-
value fruit trees significantly increased the vegetation coverage and achieved remarkable
success in controlling soil erosion problems [65]. However, because of the lack of understory
vegetation or litter to closely cover the surface soil, soil erosion still occurred moderately
or even severely in some forested areas [66]. Therefore, to better control under-forest soil
erosion, it requires not only increasing the vegetation cover but also optimizing the forest
compositions and structures [67]. Mixed forests or multi-layered vegetation compositions
with complex vertical forest structures can largely increase rainfall interception, mitigate
the raindrop impact on the ground, and reduce runoff. They are more efficient than
monoculture in restoring eroded land and enhancing soil fertility [68]. Currently, Masson
pine forests account for the largest portion of all the forests in Changting County. The spread
of destructive pine wilt disease among the Masson pine forests and high fire risk are serious
threats to the great achievement of decades of soil erosion control. Thus, transformation
of pure and low-quality Masson pine forests into mixed pine and broadleaf forests or
into forests with high structural diversity may be an optimal conservation method in the
future, not only increasing vegetation cover and structure but promoting biodiversity of
forest ecosystems.

5.2. Effects of Different Conservation Measures on Improving Forest Coverage

Increasing vegetation cover is essential for soil erosion control. However, different
conservation measures have various effects on vegetation cover recovery. This study found
that three conservation methods, i.e., ‘multiple control measures’, ‘constructing terraces’,
and ‘planting trees and grass’, enabled trees or grass to grow in the regions with dominant
bare soils where natural vegetation restoration was difficult. The FVC increased from a
very low level to about 70% in a relatively short time period, and this region turned the
previous “flame mountains” into green forests; a similar result was achieved in previous
research conducted by Zhang et al. [69]. Among the various control measures, ‘multiple
control measures’ brought the largest changes in FVC, which is also consistent with the
previous research finding that the combined use of multiple control measures in areas
with severe soil erosion is effective [70]. ‘Planting trees and grass’ and ‘planting fruit
trees’ led to a moderate intensity of FVC changes, while ‘closing hillsides’ and ‘restoring
low-function forests’ resulted in the least intensity of FVC changes due to less involvement
regarding human activities. Those measures were more suitable to the light and moderate
soil erosion conditions.

Different conservation measures affected the FVC change patterns and magnitudes.
The percentage of the inverted vee shape in the FVC change pattern under ‘multiple control
measures’ was the highest among all the conservation measures. Although ‘multiple
control measures’ proved to be very effective in increasing vegetation cover, major labor
input, material, money, and time were required. Therefore, caution should be taken
regarding the areas where soil erosion recurred after one and another type of control
method were implemented. The ‘closing hillsides’ measure is the least effective among
all the conservation measures in terms of vegetation cover recovery because it relies on
the capability of natural regeneration by restricted or prohibited human intervention to
promote vegetation establishment from natural seed fall, achieving the goal of soil erosion
control. It does not require much human input but takes longer to allow vegetation to
recover to the level at which soil erosion can be effectively controlled. Therefore, it is
more suitable on a large scale, especially in areas where environmental conditions such as
temperature and rainfall are favorable. This research implies that the measures taken to
control soil erosion should consider the soil and original vegetation conditions, and cost
and labor needed, in addition to soil erosion severity.
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5.3. Limitations of the Research and Perspective for Future Work

The analyses of FVC change trends and change patterns in this research relied solely
on FVC derived from the Landsat time series. Cloud cover on the Landsat image is a
major issue in the subtropical region due to the frequent rainy and cloudy weather, which
limits the number of valid pixels to form accurate yearly NDVI time series. The lack of
usable Landsat 7 ETM+ images led to missing data for 2012, which were filled with the
averages of 2011 and 2013. The calculation of FVC from NDVI involves the determination
of NDVIveg and NDVIsoil values (Equation (1)), which was likely an arbitrary decision,
although the choice was based on statistical metrics. Thus, the FVC time series itself already
has some uncertainty.

The ShapeSelectionForest algorithm used in this study to identify FVC change patterns
based on FVC time series did not consider meteorological effects such as rainfall and
extreme temperature, which greatly impact vegetation growth, inducing unreasonable
fluctuation in NDVI along time. Thus, the resulting FVC change patterns or magnitudes
may contain some discrepancies. Due to a lack of ground truth data, those patterns cannot
be validated properly. Therefore, the methodology used in this research has the potential to
be improved regarding both the data source and algorithm. Incorporating different sensors
is a promising way to enhance the data availability.

Soil and water management is a long-term and arduous task and requires a compre-
hensive analysis of the local environmental conditions and economic and cultural activities,
based on which a scientific management plan is formulated. According to soil erosion
situations, the key prevention areas that are highly prone to soil erosion and the key control
areas where serious soil erosion occurs are mapped out, and suitable conservation measures
targeting different situations are created and implemented. It is also important to monitor
the governance effect, ensuring quality of management. In Changting County, after 30
years of conservation efforts, soil erosion has been considerably controlled. However, some
re-greened areas still have a probability of suffering secondary soil erosion. Thus, it is
necessary to continuously monitor vegetation growth, such as FVC change.

6. Conclusions

This study analyzed the land cover changes and FVC dynamics using time series
Landsat imagery after different soil and water conservation measures were implemented
in Changting County, Fujian Province. The results show a considerable increase in Masson
pine forest with a significant decrease in bare soils. The overall FVC increases all over
the county, especially average FVC, are higher in the non-conservation regions than in
the conservation regions, but the increase rate is inverse, especially since 2010 with the
implementation of soil and water conservation measures, implying the important role of
conservation measures in reducing soil erosion problems and restoration of forest coverage.
The FVC change magnitudes show ‘planting trees and grass’ and ‘constructing terraces’
have better performance in improving FVC than ‘restoring low-function forest’ and ‘closing
hillsides’. Of the different conservation measures, ‘multiple measures’ has the highest
change magnitudes, implying the largest impact of this measure on FVC change, but the
higher “inverse vee” patterns than other measures indicate difficulty regarding improving
forest coverage, thus requiring more attention for these regions.
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