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Abstract: Uncrewed-Aerial Vehicles (UAVs) and hyperspectral sensors are emerging as effective
alternatives for monitoring water quality on-demand. However, image mosaicking for largely
featureless coastal water surfaces or open seas has shown to be challenging. Another pertinent
issue observed is the systematic image misalignment between adjacent flight lines due to the time
delay between the UAV-borne sensor and the GNSS system. To overcome these challenges, this
study introduces a workflow that entails a GPS-based image mosaicking method for push-broom
hyperspectral images, together with a correction method to address the aforementioned systematic
image misalignment. An open-source toolkit, CoastalWQL, was developed to facilitate the workflow,
which includes essential pre-processing procedures for improving the image mosaic’s quality, such
as radiometric correction, de-striping, sun glint correction, and object masking classification. For
validation, UAV-based push-broom hyperspectral imaging surveys were conducted to monitor coastal
turbidity in Singapore, and the implementation of CoastalWQL’s pre-processing workflow was
evaluated at each step via turbidity retrieval. Overall, the results confirm that the image mosaicking
of the push-broom hyperspectral imagery over featureless water surface using CoastalWQL with
time delay correction enabled better localisation of the turbidity plume. Radiometric correction and
de-striping were also found to be the most important pre-processing procedures, which improved
turbidity prediction by 46.5%.

Keywords: remote sensing; water quality monitoring; software; image stitching; image mosaicking;
pre-processing

1. Introduction

Remote sensing plays an increasingly important role in water quality monitoring
due to its potential to monitor over a larger spatial scale compared to other traditional
methods, such as in-situ sampling and fixed-location samplers. In recent years, Uncrewed-
Aerial Vehicles (UAVs), light-weight multispectral imagers (MSIs), and slightly heavier
hyperspectral imagers (HSIs) have emerged as effective alternatives to satellite imagery
for monitoring water quality. UAV-borne imagery offers several advantages over satellite
imagery, including the ability to conduct water quality monitoring on-demand with greater
flexibility in flight schedules as well as image acquisition with higher spatial resolutions [1].
Furthermore, UAV-borne imagery can mitigate the effect of extensive cloud cover in satellite

Remote Sens. 2024, 16, 708. https://doi.org/10.3390/rs16040708 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040708
https://doi.org/10.3390/rs16040708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0168-3782
https://orcid.org/0000-0003-3116-9012
https://orcid.org/0000-0002-2593-6361
https://doi.org/10.3390/rs16040708
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040708?type=check_update&version=2


Remote Sens. 2024, 16, 708 2 of 37

imagery, which can hinder effective water quality monitoring, particularly in the tropical
and subtropical regions, as in the case of Hong Kong [2] and Brazil [3]. Additionally, due to
UAVs’ flexibility in flight scheduling, they are well-suited for the monitoring of dynamic
and transient events. For instance, [4,5] conducted UAV-based monitoring of turbidity
plumes associated with marine dredging activities and reported that turbidity attributed
to dredging activities varied spatially (range of turbidity concentration exceeded 50 FNU
within 100 m) and temporally ([5] reported a change in 2% of turbidity concentration per
minute), which makes satellite imagery unsuitable for turbidity monitoring under such
scenarios. In contrast, the monitoring of seasonal changes in turbidity using Sentinel-2′s
satellite imagery [6] is adequate for environments with relatively homogenous and stable
turbidity concentrations.

However, significant challenges remain in UAV-based water quality monitoring, par-
ticularly in producing orthomosaics over water bodies. Currently, most of the available
software in the market utilises the presence of distinctive features in the scene for coregis-
tration (the matching of features) based on the identification of correspondence in adjacent
image frames through algorithms such as scale-invariant feature transform (SIFT), speed
up robust feature (SURF), and structure from motion (SfM) photogrammetry techniques
(used by popular software such as PIX4D Mapper and Agisoft Metashape, e.g., [7–9]). The
presence of dense distinctive features in the scene can significantly improve the localisation
accuracy of UAV imagery even under GNSS denial scenarios, where [10] demonstrated a
very low error rate of 0.356 m for image mosaicking using the SuperGlue deep learning
neural network that conducts image extraction and image matching.

Correspondingly, the accuracy reduces drastically when there is a lack of distinctive
features in the scene, such as imaging over open seas or large water bodies [11]. In addition,
poor illumination conditions and shadows, as well as low contrast imagery, can also result
in mosaicking failure (e.g., SfM [12,13]). This major issue was highlighted in a recent study
mapping submerged plastic in a coastal environment using the Bayspec’s OCI-F push-
broom hyperspectral sensor [14] when limited illumination together with the dynamic
sea surface and featureless water surface resulted in the failure in orthomosaicking of
push-broom imagery. As such, most of the current studies involving UAV-based water
quality monitoring are conducted at near-shore regions, over small lakes/reservoirs, or
flown at higher altitudes to capture more textures in the scene, such as shorelines [3,14–20].
Instead of the above feature-based approach, direct georeferencing of the UAV imagery
using the coordinate information and positioning data from the GPS module and Inertial
Measurement Unit (IMU) have been used to facilitate orthomosaicking.

Recent studies by [21,22] adopted a direct georeferencing method for high-resolution
UAV RGB/multispectral snapshot imagery, in which the MosaicSeadron from [22] achieved
an error rate (standard deviation) of 2.51 m at a ground sample distance (GSD) of 0.5 m/px,
as well as increased the ground coverage to 33 hectares as compared to 13.45 hectares with
the SfM to mosaic snapshot images of water bodies. However, the direct-georeferencing
method for snapshot imagery may not always be applicable to push-broom imagery where
the image output, metadata, and the temporal resolution of the captures and measurement
of flight parameters are vastly different from that of snapshot imagery due to the nature of
the imaging principles that differ significantly between push-broom and snapshot imaging
(see Appendix A) [23,24]. As such, specialised software from the manufacturers of push-
broom sensors are typically used instead to process push-broom imagery [14,24]. Further,
the accuracy of direct-georeferencing depends highly on the accuracy of the GPS module
providing the geographical coordinates [25], and any missynchronisation between the GPS
module and the imager can lead to significant misalignment, as demonstrated by [26].

In light of this, this study aims to (1) establish a mosaicking workflow independent
of distinctive features for push-broom imagery acquired over open seas, (2) propose an
efficient method for correcting the image misalignment attributed to the time delay between
the on-board GNSS and the imager, (3) evaluate the performance of each data processing
step for a highly modular hyperspectral push-broom system, and (4) validate the applicabil-
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ity of the developed workflow developed in this study on the retrieval of coastal turbidity
in the coastal region of Singapore. An open-source code with a graphical user interface,
CoastalWQL (https://github.com/pakhuiying/CoastalWQL) (accessed on 13 February
2024), is also provided for end-to-end processing and analysis for public access.

2. Materials and Methods
2.1. Study Site

Successful field surveys were conducted at the Southwestern tip of Singapore, as
shown in Figure 1, where active land reclamation is currently being conducted. The
land reclamation activities involve the dumping of sediments by split hopper barges and
dredging of the seabed, which generates high-turbidity sediment plumes [27,28]. This
provides a suitable scenario for monitoring low to high turbidity concentrations. The UAV
flights were conducted in the inner basin while land reclamation activities were still active,
and the water depth was less than 20 m, with generally calmer waters due to surrounding
caissons separating the inner basin from the open channel of the Singapore Straits.
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Figure 1. Study site at the southwest region of Singapore (enclosed by the red polygon) (Map data
©2022 Google).

2.2. UAV Flight Surveys and Data Acquisition

The UAV flights were conducted during the morning and the afternoon, following
the logistical framework outlined by [28]. The flight’s course angles were planned such
that the flight course was perpendicular to the prevailing solar azimuth to avoid sun
glint. The flight altitude was set at 58–60 m above ground level as the maximum flight
height was imposed at 200 feet (60.96 m) by the Civil Aviation Authority of Singapore
(CAAS). As such, only an area of 150 × 150 m2 can be covered by the UAV, limited by the
15–20 min of battery life on the UAV. Parallel flight swaths (i.e., “lawn-mowing” pattern)
and a ground speed of 5 m/s were configured to achieve at least 80% frontal overlap and
30% side overlap. To locate high turbidity plumes generated by transiting split hopper
barges dumping sediments, a sampling vessel with a turbidity probe—YSI ProDSS (YSI,
Yellow Springs, USA) was first used to detect and measure high turbidity concentrations,
and the coordinates of the turbidity plume were then sent to the UAV pilot to plan a flight

https://github.com/pakhuiying/CoastalWQL
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survey over the turbidity plume. After the UAV flight commenced, the sampling vessel
trailed behind the UAV and measured turbidity readings in the Formazin Nephelometric
Unit (FNU) at one-second intervals for ground truth.

2.3. UAV Hyperspectral System

A rotary-wing DJI Matric M600 Pro (M600 Matrice Pro, DJI, Shenzhen, China) was
deployed during the field surveys with the following payloads (Figure 2).
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• A spectroradiometer (Flame VIS-NIR, Ocean Insight, Orlando, FL, USA) that covers
the spectral range of 350 nm to 1000 nm was used for measuring the downwelling
irradiance at one-second intervals.

• A GPS receiver module with a USB interface (U-blox 8 engine, U-blox, Thalwil, Switzer-
land) was used to record the geographic coordinates and the corresponding times-
tamps at every one-second interval.

• A commercial push-broom hyperspectral imager (HSI) (OCI-FTM, Bayspec, San Jose,
CA, USA) that covers the spectral range of 400 nm to 1000 nm (visible to near-infrared)
with 61 bands was used for imaging the scene. Its field of view is 19.3◦ (16 mm lens)
with a sensor resolution of 1024× scan-length, and its spectral resolution (Full width
at half maximum (FWHM)) is 5–7 nm.

• An onboard mini-computer (Intel NUC, Intel, Santa Clara, CA, USA) was connected to
the spectroradiometer, GPS module, and push-broom HIS via USB. The mini-computer
was used to calibrate the spectrometer using the OceanView software and calibrate
the sensor using BaySpec’s SpecGrabber software in the field.

• A stabilising gimbal (Ronin MX gimbal, DJI, Shenzhen, China) to reduce any distor-
tions to the image.

The OCI-F push-broom hyperspectral imager is a highly modular system where
the spectroradiometer and GPS module data are measured independently and are not
integrated with the captured images. Prior to the flight survey, sensor calibration was
conducted by using a calibrated white reflectance reference in the OCI-F wavelength range
(95% Lambertian reflectivity is measured against NIST traceable white reference targets)
provided by the original equipment manufacturer (OEM) and a dark reference was captured
with the lens cap cover.

While land reclamation activities were being carried out at the survey site, the move-
ment of the barges within the study area made the placement of ground control points
(GCP) (such as buoys in the water body) operationally unfeasible due to safety concerns.
Furthermore, the UAV flight survey usually took place at a significant distance from shore as
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they involved the mapping of high turbidity plumes from barge dumping operations. This
frequent lack of land features often resulted in the failure of mosaicking the images [11,29]
to generate a georeferenced orthomosaic using BaySpec’s CubeCreator and CubeStitcher
software. Therefore, an image mosaicking algorithm independent of the scene’s texture is
developed for the mosaicking of OCI-F’s images, as described in the following sections.

2.4. Image Mosaicking of Push-Broom Hyperspectral Imagery

A processing workflow is created to generate the mosaic directly from the raw binary
image file (Figure 3). In this workflow, each hyperspectral image is stored in a band
interleaved by line (BIL) format, where the hyperspectral data of each band is stored
along the columns of the hyperspectral matrix, with each hyperspectral matrix having a
dimension of 1024 × 1280. Given 61 bands in total spread out along the columns of the
hyperspectral matrix, each image band thus has a dimension of 1024 × 20 pixels. An image
is then reconstructed by stitching the image band along the swaths (i.e., flight path) with an
overlap ratio calculated from the UAV’s speed and frames-per-seconds (FPS) of the sensor
as detailed in the equations in Equation (1) and Table 1. The procedure is repeated for all
bands to obtain a hyperspectral cube.

D = 2rarcsin

(√
sin2

(
ϕ2 −ϕ1

2

)
+

(
1 − sin2

(
ϕ2 −ϕ1

2

)
− sin2

(
ϕ2 +ϕ1

2

))
· sin2

(
γ2 − γ1

2

))
(1)

where ϕ1 and ϕ2 are the latitudes, and γ1 and γ2 are the longitudes of any two GPS coordi-
nates along a swath of the flight path, which also corresponds to the central geographic
coordinates of the image. D represents the ground distance between the two GPS coor-
dinates. The timestamps of the two coordinates are used to calculate the time difference
between the two coordinates (∆t), and the average speed of the UAV (v = D/∆t) is cal-
culated, which is ultimately used to determine the overall average overlap ratio between
adjacent image bands along the swath (Table 1). It is noted that the UAV’s speed may
not be constant along the swath due to the presence of fluctuating wind conditions at the
site, but obtaining the average of these variables reduced additional geometric distortions
associated with random fluctuations in the UAV speed, height and FPS, which was similarly
conducted by [30].
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Table 1. Attributes of OCI-F BaysI’s HSI and calculation of overlap ratio.

Attributes Symbol/Dimensions/Equation

Sensor height (m) H
Frame rate (frames per second) r

Pixel size at sensor (p) 5.3 µm
Total number of pixels in x-direction (px) 20
Total number of pixels in x-direction (py) 1024

Focal length (mm) (f ) 16 mm
Number of lines per band (l) 8

Actual size of sensor along x direction (mm) (sx) (p × px)/1000
Actual size of sensor along y direction (mm) (sy)

(
p × py

)
/1000

Field-of-view in the x-direction (◦) (fovx) 2 × arctan(sx/2f)× 180/π
Field-of-view in the y-direction (◦) (fovy) 2 × arctan

(
sy/2f

)
× 180/π

Total ground coverage in the x-direction (m) (gx) 2 × H × tan(π× f ovx/360)
Total ground coverage in the y-direction (m) (gy) 2 × H × tan

(
π× f ovy/360

)
Ground resolution (m) gx/px

Overlap ratio in the x-direction gx−v/ f ps
gx

A tool is available in CoastalWQL for the user to select any two GPS coordinates
along the swath and to facilitate the mosaicking of the images between the selected two
GPS coordinates (Appendix B). The images located between the pair of GPS coordinates
are retrieved based on matching the timestamps of the GPS coordinates and the images
since every GPS coordinate and image have their corresponding timestamps. It is rec-
ommended to avoid the edge of the flight line to avoid distortions to the images, which
was also suggested by [31] for mosaicking push-broom imagery. Thereafter, direct geo-
referencing was conducted on the image based on the calculated coordinates on each corner
of the mosaicked image, where the open-source Python code can be found in CoastalWQL
(https://github.com/pakhuiying/CoastalWQL) (accessed on 13 February 2024).

2.5. Image Alignment Correction

As mentioned previously, the images located between the pair of GPS coordinates
were retrieved based on matching the images’ timestamps that fall within the timestamps
of the pair of selected GPS coordinates. The retrieved images were used to produce the
image mosaic for each swath. However, if there is any time delay between the GNSS
system and the imaging system, there would be a mismatch in the timestamps of the image
captured at the location and the corresponding GPS coordinates. The images that matched
the misaligned time stamps of the GPS coordinates would result in the incorrect retrieval
of the set of images (Figure 4) and result in a systematic offset in all mosaicked images.

In a modular hyperspectral system where the GPS module operates independently
of the hyperspectral imager, the absence of the Pulse Per Second (PPS) signal for com-
municating time messages between the GPS module and the imager results in poor time
synchronisation between them. Therefore, there is an unknown latency associated with the
time delay between creating, sending, receiving, and processing the time message from
the GPS module to the imager. This could result in either a time delay in image capture
or a time delay in GPS retrieval (Figure 4). While the GPS module logs the time obtained
from GPS satellites, there is also an additional time delay attributed to the “clock drift”
on the onboard mini-computer, which determines the timestamp of the captured image.
Together, these time delays contribute to the unknown time delay offset ∆t. In other words,
it is challenging to determine the absolute time when the image is being captured relative
to the timestamp recorded by the GPS module because the timestamps on the images do
not necessarily correspond to the actual time of the image capture (Figure 4). As such, a
time delay correction is needed to correct the timestamps on the images instead of using
the GPS coordinates’ timestamps directly. In addition, there will be more uncertainties in
correcting the GPS coordinates since the time gap between adjacent GPS points (around
1 s) is significantly larger than the time gap between adjacent images (around 20 ms).

https://github.com/pakhuiying/CoastalWQL
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To estimate the time delay offset during the image processing step, ∆t ranging between
0 and 2000 ms with a timestep of 100 ms was iteratively added to the timestamps of the
images, where ∆t can be negative or positive as follows.

t′i = ti + xδt = ti + ∆t (2)

where t′i is the corrected timestamp, ti the uncorrected timestamp, x an integer step of
x ∈ Z by δt = 100 ms. The upper bound of 2000 ms for ∆t was heuristically chosen based
on past flight survey experience.

For each estimated time delay, a spectral similarity of the RGB bands, quantified
through Pearson’s correlation, was calculated between the overlapping regions of adjacent
image strips to quantify the quality of image alignment. The optimal ∆t, which achieves the
highest average spectral similarity across the RGB bands, could then be obtained. We note
that the overlapping regions between adjacent image strips are predetermined during the
flight mission planning, where the side overlap ratio is set at 30%. In the overlapping region,
Pearson’s correlation is conducted on each band of the RGB image mosaics as follows:

r(λ) =
∑(DNi,0(λ)−

¯
DN0(λ))(DNi,1(λ)−

¯
DN1(λ))√

∑ (DNi,0(λ)−
¯

DN0(λ))
2

∑ (DNi,1(λ)−
¯

DN1(λ))
2

(3)

where r(λ) is the pearson’s correlation coefficient as a function of the band in the over-
lapping region of adjacent image strips, DNi,0(λ) and DNi,1(λ), the digital numbers of

each pixel in the overlapping region of two adjacent image strips, respectively,
¯

DN0(λ)

and
¯

DN1(λ) the average digital number of the overlapping region of two adjacent image
strips respectively. From Equation (3), the DN of each pixel in an image strip is subtracted
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by the average DN, which makes the calculation of Pearson’s correlation invariant to the
brightness of the image strip.

As illustrated in Figure 4, a misalignment in adjacent image strips due to a time delay
would result in a low similarity, and a time delay correction would ideally correct the
timestamps on the images and hence realign the image strips by retrieving the images
based on their corrected timestamps. The time delay correction is iterated with different
time delays until the highest spectral correlation is achieved. The process is facilitated
by the alignment correction GUI of CoastalWQL, which realigns the image strips and
quantifies the spectral similarity of the overlapping regions in the adjacent image strips at
each estimated time delay. In this manner, an image alignment correction can be conducted
in real-time to ameliorate the problem of image misalignment (Appendix C).

2.6. Radiometric Correction

Varying irradiance during a field survey as a result of transient cloud cover can result
in different remote sensing reflectance distributions in different image strips [32]. As such,
the radiometric correction should be conducted such that the reflectance image can be
comparable under different illumination conditions. The calculated reflectance is a function
of the exposure settings of the sensor and digital number (DN) of the white calibration
(DNWhite) and dark calibration (DNDark) references (Equation (4)).

RT(%) =
DNraw/expraw − DNDark/expDark

DNWhite/expWhite − DNDark/expDark
× RT,White (4)

where RT represents the reflectance image, DNraw, DNWhite, and DNDark are DNs of the raw
images, white reference and dark reference, respectively, and expraw, expWhite and expDark
are exposure times of the raw images, white reference, and dark reference, respectively,
RT,White is the reflectance of the white Lambertian reference (95%). DNWhite was captured
during sensor calibration using the 95% calibrated white Lambertian reflectance reference
prior to every flight survey.

To facilitate the relative radiometric correction, various white and dark calibrations
were conducted under different illumination conditions over 15 independent field surveys,
and the relationship between the ratio of DN to exposure time and irradiance was modelled
using a third-order polynomial curve fitting. This was similarly conducted by [2], where
the DN is normalised with respect to the exposure time. The calibration curves for each
wavelength were recorded in a calibration file, which was used for subsequent radiometric
correction. Given the prevailing irradiance measured, the calibration curve calculates the
corresponding ratio of DN to exposure time for the white and dark reference, and they are
used in Equation (4) to radiometrically correct each image.

2.7. Sun Glint Correction

During UAV-based water quality monitoring missions, sun glint contamination can be
especially prevalent. Specular reflections that result in sun glint can deteriorate the image
quality by reducing the signal-to-noise ratio and limiting the accuracy of extracted spectral
information, rendering the data unusable [33–35]. In particular, in coastal regions, sun glint
effects can be intensified by wind-roughened water surfaces [34,36].

A sun glint correction is proposed in this study, based on the modification of the Sun
Glint Aware Restoration (SUGAR) algorithm [37] to correct the sun glint in the mosaicked
image. Sun glint pixels exist as bright pixels amidst a darker sea/ocean background,
and thus, they manifest as a high spatial intensity gradient (high-frequency information),
especially in high-resolution UAV imagery, which can be detected easily with a Laplacian
of Gaussian (LoG) kernel (Equation (5)).

LoG(i, j) = − 1
πσ4

[
1 − i2 + j2

2σ2

]
e−

i2 + j2

2σ2 (5)
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where the LoG is a kernel that approximates the second derivative of a Gaussian, σ repre-
sents the standard deviation of the gaussian, typically set at σ = 1, and i, j represents the
coordinates of the LoG kernel.

High-frequency information, such as sun glint pixels, are identified by convolving the
LoG kernel with the reflectance image (RT) to obtain L(x, y, λ) (Equation (6)).

L(x, y, λ) = LoG(i, j) ∗ RT(x, y, λ) (6)

where x, y, and λ represent the image coordinates of RT and the image band (wavelength),
respectively. Since the LoG approximates the second spatial derivative of RT , the more
negative L(x, y, λ) is, the brighter the pixel, and the higher the likelihood that the pixel
is a glint pixel. As such, a negative threshold t can be applied to L(x, y, λ) to obtain the
potential glint pixels (Equation (7)).

G(x, y, λ) =
{

0, i f L(x, y, λ) ≥ t
1, i f L(x, y, λ) < t

(7)

where G(x, y, λ) = 0 and G(x, y, λ) = 1 represent pixels with no glint and glint, respectively.
However, if t is chosen to be too high (less negative), sun glint pixels and small variations
in intensity spatial gradient, such as variations in water colour, will also be corrected,
which is undesirable. As such, to be more conservative, t should be chosen to be low
enough (more negative) to identify bright sun glint pixels. To automate the selection
of t, data binning is conducted on L(x, y, λ), where the number of bins is heuristically
selected as 10 (equivalent to obtaining a histogram or probability distribution function
(PDF) of L(x, y, λ)) (Equation (8)). L(x, y, λ) is a unimodal distribution, with a sharp peak
at L(x, y, λ) = 0, which corresponds to a smooth spatial intensity gradient (due to RT
generally having more non-glint pixels than glint pixels). Thus, any values on the left side
of the distribution’s peak would guarantee a negative value (Equation (9)), provided that
the number of bins is sufficiently small (e.g., around 10).

[Li, Li+1] = argmax({p1, p2, . . . pi . . . , pn}) (8)

t = Li−1 (9)

In Equation (8), {p1, p2, . . . pi . . . , pn} represents the set of binned L(x, y, λ). pi corre-
sponds to the bin with the highest frequency (i.e., the peak of the distribution), with its
corresponding interval values [Li, Li+1]. Thus, to ensure a negative threshold, t should be
smaller than the interval values of the highest frequency bin (i.e., t < Li), which yields the
interval value of the bin located to the right of pi (Equation (9)).

The correction of the sun glint is then conducted by propagating the neighbourhood
values across the sun glint pixels since water quality in a small local region is highly
spatially correlated (Equation (10)). The assumption is reasonable as the typical GSD
of UAV imagery is in the scale of centimeters that is comparable to the typical length
scale of the capillary wave, which is responsible for most of the sun glint artefacts for
high-resolution imagery [38].

RT(x, y, λ) =
{

RT(x, y, λ), i f G(x, y, λ) = 0
min{5×5}RT(x, y, λ), i f G(x, y, λ) = 1 (10)

where min{5×5}RT(x, y, λ) represents taking the minimum value of a 5 × 5 neighbourhood
at RT(x, y, λ) to obtain the background spectra. It can be observed from Equation (10)
that the correction is only conducted on glint pixels, leaving non-glint pixels unaltered.
This ensures that the sun glint correction is focused only on the sun glint pixels, and other
features in the scene are kept unchanged, such as turbidity plume or shoreline.
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2.8. Removal of Stripe Noises

The presence of stripe noises is one of the most common sources of noise that largely
affects hyperspectral imaging. It affects the signal-to-noise ratio and generally degrades the
quality of the image. Most importantly, the presence of stripe noises affects the accuracy of
the extracted spectral information, leading to inaccurate observations.

Prior to every flight survey, white and dark calibrations are performed to facilitate
radiometric correction. The homogeneity of the white calibration surface allows for the
quantification of the intensity and spatial distribution of the stripe noises. Therefore, it
is important to ensure that no shadows are cast on the calibrated white reference during
sensor calibration. The stripe noises generally occurred at the same location, as in the case
with Bayspec’s OCI-F push broom camera. The stripe noises were most distinct at the edges
of the images, and they occurred intermittently throughout the images, as demonstrated in
the ‘n’ shape latitudinal DN profile with sharp depressions in DN (Figure 5).
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Figure 5. (a) Longitudinal average DN profile of the calibrated white reference in the mid-band where
the x-axis represents the rows of the white reference image, (b) Hyperspectral push broom image
strip of the white reference in the mid-band with the dimension of 1024 × 20.

The goal of de-striping is to flatten the latitudinal DN profile of the calibrated white
reference for each band as much as possible, with respect to its maximum DN, as it is
assumed that the maximum DN is unaffected by stripe noises. A de-striping factor of
max(DNWhite(λ))/DNWhite(x, y, λ) was multiplied by each pixel in the mosaicked image
for de-striping (Equation (11)). At the same time, this also provides an efficient method for
correcting vignette effects at the edges of the image.

de − striped image(λ) =
max(DNWhite(λ))

DNWhite(x, y, λ)
× RT(x, y, λ) (11)

2.9. Masking and Classification

Masking of non-water bodies is essential for UAV-based water quality monitoring,
especially if in-situ sampling is carried out simultaneously. This is because vessels carry-
ing out in-situ sampling or other vessels may be captured in the UAV imageries. Thus,
extraction of spectral information from these vessels has to be avoided to prevent the
introduction of noises in the extracted spectral information. Furthermore, due to the nature
of the survey site in this study, vessels have to be masked for confidentiality reasons as well.
The presence of high-concentration sediment plume and sun glint on the water surface
may affect the result of image segmentation and hence affect the reliability of the output
mask. Therefore, it is imperative that a robust and efficient image segmentation model can
be used for various scenarios. An XGBoost model was trained for the classification task
as follows.
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A total of 66 image lines that contain vessels and/or caissons inside the scene (out
of 129 image lines) were acquired over four independent field surveys on separate days
with differing illumination conditions. The vessels and caissons were annotated manu-
ally by hand to produce the ground truths (labels) for the segmented classes (0 = water;
1 = vessels; 2 = land/caisson) from the 66 false-composite image lines. Therefore, 66 pairs
of false composite images and their corresponding labels were produced. The XGBoost
model was trained on 70% of the data and evaluated on the remaining 30% of the data.

The multi-class cross-entropy was used as the loss function for the XGBoost’s evalua-
tion metric (Equation (12)). The training of the classification model was conducted until the
loss metric had not improved in 10 rounds.

Loss(Y, P) = −logPr(Y|P) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,klogpi,k (12)

where Loss(Y, P) represents the log loss, Y is the labels represented as 1-of-K binary indica-
tor matrix, K represents the labels, and P is the matrix of probability estimates.

Class-wise Intersection-over-Union (IoU) (Equation (13a)), Frequency-weighted IoU
(Equation (13c)), mean IoU (Equation (13d)), accuracy (Equation (13e)) and error rate
(Equation (13f)) were used to evaluate the performance of the image segmentation for the
above models.

IoUi =
TPi

TPi + FPi + FNi
(13a)

Wi =
Pi

∑C
i Pi

(13b)

IoU f requency =
C

∑
i
(IoUi ∗ Wi) (13c)

¯
IoU =

∑C
i IoUi

C
(13d)

accuracyi =
TPi + TNi

TPi + FPi + TNi + FNi
(13e)

Error ratei = 1 − accuracyi (13f)

where i represents the ith class out of C total classes, TP, FP, TN, and FN represent true
positives, false positives, true negatives, and false negatives, respectively, Pi represents the
number of pixels in the ith class.

2.10. Assessment of Pre-Processing Methods with Turbidity Retrieval

To assess the effectiveness of each pre-processing procedure, turbidity retrieval was
conducted at each step according to the following sequence: (1) uncorrected reflectance
(original), (2) time delay correction, (3) de-striping, (4) radiometric correction, and (5) sun
glint correction. Masking of the vessels was applied prior to pre-processing for confiden-
tiality purposes.

Prior to turbidity retrieval, spectral reflectances were extracted using CoastalWQL
from a region of 40 × 40 pixels surrounding the in-situ turbidity measurements based
on their GPS coordinates, which corresponds to a ground coverage of 0.8 × 0.8 m2. The
spectral reflectances were then averaged within the 40 × 40 pixels. Observations with
negative reflectances and invalid values were removed as they were outside the dark and
white calibration values, which may lead to erroneous results. Additionally, spatially
overlapping sampling points where the sampling vessel traversed the same location at least
once were also removed (see Appendix D). This is because the region where the sampling
vessel has traversed before has already been disturbed and may cause greater dispersion in
the turbid region, affecting the accuracy of the in-situ measured turbidity and the retrieval
of the turbidity.
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The reflectance images were converted to turbidity in FNU using Nechad et al.’s
(2010) semi-analytical turbidity algorithm (Equation (14)) [39], which is a single-band
semi-analytical algorithm that is largely applicable for most turbid waters [40]:

Turbidity[FNU] =
Aτ RT(λRed)

(1 − RT(λRed)
C )

(14)

where Aτ and C are wavelength dependent calibration coefficients to be optimised using
the least squares method, and RT(λRed) refers to the reflectance values in the red or NIR
band. The calibration coefficients were optimized for each set of extracted reflectances to
ensure that the calibrated coefficients are not biased towards any pre-processing step.

Variants of the algorithm involving its applicability on red to NIR wavelengths were
reported in various studies, where [4,21] used 660 nm and 668 nm, and [41] chose 710 nm
instead. [39] suggested 681 nm, which has the lowest error rate for suspended particle
matter (SPM) retrieval. As an extension of Nechad et al. (2010), [39,40] suggested an NIR
band at 859 nm for turbidity retrieval in moderate to high turbid waters and proposed the
red band at 645 nm band for medium to low turbid waters.

An analysis was conducted to determine the quantitative effect of these bands on
turbidity retrieval. The closest bands in the hyperspectral sensor that matched these bands
were 641 nm, 660 nm, 678 nm, 715 nm, and 860 nm, which ranged from the red to NIR
wavelength.

The coefficient of determination (R2), root mean squared error (RMSE), and mean
absolute percentage error (MAPE) were quantified to assess the performance of the semi-
empirical turbidity algorithm.

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(15a)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15b)

where N refers to the number of data points, and yi and ŷi refer to the observed turbidity
and predicted turbidity, respectively.

In summary, the entire workflow procedure to generate georeferenced mosaics from
the raw binary image files, data and image processing steps such as radiometric correc-
tion, sun glint correction, de-striping and masking, and prediction of the water quality is
summarised in Figure 6. Additional information regarding the inputs and outputs of the
workflow executed in CoastalWQL is available in Appendices E and F.
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3. Results
3.1. Evaluation of Image Pre-Processing Methods
3.1.1. Image Alignment

To assess the effectiveness of the direct geo-referencing method together with the time
delay correction method, hyperspectral images were taken over a scene with a diversity
of features at Nanyang Lake, Singapore. The UAV hyperspectral system was flown at
35 m AGL. Distinctive features were identified as GCPs in the Google satellite imagery
tiles, which serve as ground-truth images (Figure 7a). They include easily distinguishable
features such as corners and edges along the wooden boardwalk and zebra crossing. The
corresponding features were identified and marked in the geo-referenced UAV imagery.
The alignment errors between the GCPs in the ground-truth satellite imagery and the UAV
imagery without applying the time delay correction ranged from 3.15 to 8.90 m (with an
average error of 5.35 m) (Figure 7b), while the alignment error with the UAV imagery after
applying the time delay correction ranged from 1.07 to 8.58 m (with an average of 4.08 m,
and a standard deviation of 2.69 m). The mosaicked image’s central geographic coordinates
were verified to match the recorded GPS coordinates by the GPS module (see Appendix G),
which indicates that the alignment error was largely attributed to the lower accuracy of the
longitudinal geographic coordinates recorded by the GPS module.

Figure 8 shows the effect of various time delay corrections (i.e., between the GPS
timestamps and image timestamps) on the image alignment, where time delay may be a
significant issue for highly modular camera systems with independent GPS and image
acquisition modules. It can be observed that without any time delay correction, the
systematic offset can be visibly observed in adjacent image lines in the first panels of
Figure 8a,b. After applying the time delay correction, the imageries in Figure 8a,b showed
the best alignment in the images after a time delay correction of 1 s, with an average spectral
correlation of 0.9662 and 0.9668.
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Figure 7. Common key distinctive features identified in Nanyang Lake, Singapore (a) high-resolution
Google satellite imagery which serves as ground-truth (b) mosaicked UAV false composite image
without time delay correction (c) mosaicked UAV false composition image with time delay correction.

Depending on the speed of the UAV, a small time delay could result in significant
discrepancies between the ground truth and the imaged scene, and the misalignment
attributed to the time delay may become more severe with increasing UAV speed. For
instance, a time delay of one second with a UAV speed of 6 m/s could result in around 6 m
of discrepancy.

3.1.2. Radiometric Correction—Calibration Curve

The third-order polynomial curve fitting for the white and dark reference demon-
strated a strong relationship between the ratio of DN to exposure time and the measured
irradiance for most of the wavelengths, with an R2 exceeding 0.94 for most wavelengths
(Figure 9). However, it is observed that the signal-to-noise ratio for wavelengths smaller
than 450 nm and larger than 940 nm is relatively low, where the calibration curves for
the white and dark reference lie close to one another, especially at low irradiance values.
This also implies that radiometric correction at these wavelengths under low illumination
conditions would be highly limited and could result in numerical instability, as reflectance
values for the white and dark reference are very similar.
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false composite images in DN without any corrections applied).

3.1.3. Classification and Masking

The classification of the water body, vessels and caisson/land categories yielded 0.99
in accuracy, with the highest class error rate of 0.0087. The class IoU metric was the lowest
for vessels at 0.5401, and it achieved at least 0.93 for water bodies and caisson land. The
frequency-weighted IoU, mean IoU, and overall model accuracy were 0.9824, 0.6175, and
0.9903, respectively. Therefore, the trained XGBoost is deemed to be adequate for masking
and classification tasks (Figure 10).
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3.1.4. Noise Removal—Sun Glint Correction and De-Striping

The sun glint correction employed in this study was compared with traditional NIR-
based sun glint correction methods—Hedley et al.’s (2005) [42], Goodman et al.’s (2008) [43],
and Kutser et al.’s (2009) [44] algorithms, which are commonly applied to high-resolution
imagery. As observed from Figure 11, the NIR-based sun glint correction methods by
Hedley, Goodman and Kutser significantly altered the reflectance of the turbidity adjacent
to the shoreline as well as the shoreline itself. These algorithms exhibit overcorrection in
these regions because the NIR-leaving radiance is not negligible in these regions, which
may affect the retrieval of water quality parameters like turbidity [33]. The overcorrection is
particularly prominent for Goodman’s algorithm as reflectance values became negative in
the extreme wavelengths, where turbidity regions near the shoreline darkened significantly.
In the magnified view of the glint region, the glint pixels are still clearly visible for the NIR-
based methods, but the glint pixels are much reduced for this study’s method. Additionally,
in the longitudinal profile of our method, the sharp peaks associated with glint pixels are
significantly reduced, while sharp peaks are still present in the NIR-based methods. The
total variance for all algorithms was significantly reduced, except for Kutser’s algorithm,
but the reduction in total variance for this study’s algorithm was largely attributed to the
reduction in the intensity of the glint’s pixel whilst keeping the reflectance of the shoreline
unaltered. As such, a texture-aware total variation-based sun glint correction such as
that proposed [45] similarly overcomes the general limitation of overcorrection in turbid
regions since NIR is not used as a surrogate for sun glint intensity. The sun glint correction
proposed in this study is thus solely focused on the sun glint pixels while leaving other
features in the scene unaltered.

It is also noteworthy to mention that modelling statistical models of the sea state, such
as the Cox and Munk model [46], together with radiative transfer theory to predict the dis-
tribution of sun glint, generally performs poorly for high-resolution UAV imagery [33]. This
is because the spatial distribution of the high-resolution sun glint pixels cannot be located
exactly using the statistical sea state model [47]. Thus, a pixel-based correction is generally
a more effective approach for correcting sun glint in high-resolution imagery [33,48].
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In contrast to sun glint, where the presence of sun glint can at times dominate the at-
sensor total reflectance, the presence of stripe artefacts in hyperspectral images can degrade
the image quality and significantly reduce the signal-to-noise ratio. This was observed
in Figure 12, where the stripe noises manifest as dark lines with varying thicknesses
that occur intermittently throughout the image. Correcting for the stripe noises also
significantly reduced the vignetting effects that occur around the boundary of the image,
which improved the overall contrast of the images. This indicates that the method of de-
striping using the calibrated white reference captured prior to every flight survey to obtain
the prevailing intensity of the stripe noises was effective in the overall reduction of intrinsic
noises in the sensor. While recent methods proposed by [49] involving the use of structure-
guided unidirectional variation for hyperspectral imagers to perform the differentiation
between stripe noises and edges/textures in the scene to detect the distribution of stripes
effectively without the use of a white reference, the additional computation could increase
image processing time significantly. The proposed de-striping method thus offers an
efficient method of locating the stripe noises since a white reference that covers the entire
field of view of the imager is already available and required for sensor calibration.
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walk in Nanyang Lake, and (c) road adjacent to Nanyang Lake (Note: False composite mosaic created
with blue = 550 nm, green = 620 nm, red = 760.6 nm).

3.2. Evaluation of Individual Pre-Processing and Their Impact on Reflectance Spectrum

Figures 13 and 14 show the image mosaic and extracted spectral reflectances for each
pre-processing step, with the sequence starting from the uncorrected reflectance images,
followed by the time delay correction for image alignment, de-striping, radiometric correc-
tion, and finally, sun glint correction. Visually, it can be observed that the image quality
improved significantly after the de-striping step, and the image brightness and reflectance
were corrected based on the prevailing downwelling irradiance after conducting radiomet-
ric correction. There are, however, some brighter patches where radiometric correction was
not sufficient, which could be attributed to the oversaturation of the spectroradiometer and,
therefore, irradiance readings, leading to an under-correction in those circumstances. It is
thus imperative that the calibration of the spectroradiometer should be conducted under
the brightest illumination condition prior to the flight survey.

The resulting effect of de-striping and radiometric correction was also observed in the
extracted spectral reflectances, which showed that the differences between the reflectances
for high and low turbidity became more prominent (Figure 14). However, significant
outliers can be visibly seen after the de-striping procedure, where the brightness may be
inaccurately enhanced, which inflates the reflectances for some low turbidity measurements.
Instability at the extreme wavelengths (e.g., lower end of visible spectrum < 500 nm and
higher end of the NIR spectrum > 900 nm) was also observed after radiometric correction,
where reflectances varied greatly. This is attributed to the poor signal-to-noise ratio of the
sensor at these wavelengths, where the dark and white reference calibration curves lie very
close to each other, and numerical instability may arise at these wavelengths (Figure 9).

It is also observed that the time delay correction to improve the image alignment
between adjacent image swaths does not have a significant impact on the turbidity retrieval.
The main reason may be due to the spatial distribution of the turbidity measurements while
the sampling vessel traversed within the flight area, as shown in Figure 13. There were
only two points where the sampling vessel traversed in and out of the turbidity plume, and
only two image swaths captured these points that mark the sharp transition of the turbidity
plume’s edge. Therefore, any changes made to the image alignment only affect the turbidity
measurements in these two image swaths. Nevertheless, the demarcation of the plume and
non-plume regions became visually smoother after the time delay correction.
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3.3. Evaluation of Individual Pre-Processing and Their Impact on Turbidity Retrieval

Analysis was further conducted to analyse the effect of commonly reported bands
for turbidity retrieval using Nechad et al.’s (2010) semi-analytical algorithm. Bands in
the red to NIR wavelengths, such as 645 nm, 660 nm, 681 nm, 710 nm, and 860 nm were
suggested by [4,39–41], and the corresponding closest wavelengths in the hyperspectral
sensor (i.e., 641 nm, 660 nm, 678 nm, 715 nm, and 860 nm) were used to determine and
assess the accuracy of turbidity retrieval. Table 2 reports the collated turbidity retrieval
results using these wavelengths. The results show that the turbidity prediction improved
steadily from 641 nm to 715 nm but dropped drastically at 860 nm.

Table 2. Turbidity retrieval results on various literature-reported red and NIR wavelengths.

641 nm 660 nm 678 nm 715 nm 860 nm

(a) Original
RMSE = 9.894, RMSE = 9.628, RMSE = 8.594, RMSE = 8.562, RMSE = 30.145,
MAPE = 0.492, MAPE = 0.471, MAPE = 0.368, MAPE = 0.254, MAPE = 0.943,
R2 = 0.458 R2 = 0.487 R2 = 0.591 R2 = 0.594 R2 = −4.534

(b) Time delay
correction

RMSE = 9.898, RMSE = 9.612, RMSE = 8.586, RMSE = 8.568, RMSE = 30.951,
MAPE = 0.491, MAPE = 0.469, MAPE = 0.370, MAPE = 0.251, MAPE = 0.960,
R2 = 0.458 R2 = 0.489 R2 = 0.592 R2 = 0.594 R2 = −4.921

(c) De-striping
RMSE = 8.641, RMSE = 8.358, RMSE = 7.279, RMSE = 6.570, RMSE = 30.230,
MAPE = 0.427, MAPE = 0.410, MAPE = 0.340, MAPE = 0.239, MAPE = 0.972,
R2 = 0.587 R2 = 0.614 R2 = 0.707 R2 = 0.761 R2 = −4.330

(d) Radiometric
correction

RMSE = 5.943, RMSE = 5.629, RMSE = 5.175, RMSE = 4.537, RMSE = 21.338,
MAPE = 0.275, MAPE = 0.251, MAPE = 0.229, MAPE = 0.188, MAPE = 0.701,
R2 = 0.805 R2 = 0.825 R2 = 0.852 R2 = 0.886 R2 = −1.519

(e) Sun glint
correction

RMSE = 5.856, RMSE = 5.636, RMSE = 4.885, RMSE = 4.579, RMSE = 21.861,
MAPE = 0.274, MAPE = 0.254, MAPE = 0.211, MAPE = 0.192, MAPE = 0.750,
R2 = 0.810 R2 = 0.824 R2 = 0.868 R2 = 0.884 R2 = −1.644

Observed-predicted scatter plots for each pre-processing step are located in Appendix H.

From the table, band 715 nm achieved the best turbidity prediction results with the
lowest RMSE and MAPE at 4.537 and 0.188, respectively, and the highest R2 at 0.886. This
is consistent with the finding of [39], which reported lower relative and absolute errors
for wavelengths in the spectral range of 670–750 nm and hence recommended 681 nm for
turbidity values in the range of 0.6–83 FNU (encompassing the range of turbidity values
in this study from 8.41 to 41.56 FNU). Although the Nechad et al. (2010) algorithm was
calibrated for MERIS bands and SPM measurements from the Southern North Sea, the
applicability of the suggested band performed well for the in-situ turbidity measurements
in this study after calibration of the coefficients Aτ and C.

Across all wavelengths, the greatest marginal improvement in turbidity prediction was
attributed to radiometric correction, where RMSE decreased by at least 28% for wavelengths
641 nm to 715 nm (Table 2). This could indicate the importance of the radiometric correction
for tropical regions where cloud cover is extensive and transient. Furthermore, it also
indicates that the relative radiometric correction to convert DN directly into reflectance
is adequate, provided that their calibration curve is well-established, as is the case in
this study.

The drastic decrease in turbidity prediction at 860 nm seems to suggest higher in-
stability at higher NIR wavelengths, which is similarly reflected in Figure 14, where the
reflectance varied significantly beyond 750 nm, implying an intrinsic problem with the
sensor calibration at higher NIR wavelengths rather than the calibration of the turbidity
retrieval algorithm. As such, turbidity retrieval using wavelengths beyond 715 nm should
not be recommended for Bayspec’s hyperspectral sensor.

It is also observed that sun glint correction improved for bands 641 nm and 678 nm
but showed no significant improvement for bands 660 nm and 715 nm. This is because
the proposed sun glint correction corrects sun glint at each individual wavelength inde-
pendently while existing sun glint correction algorithms such as [42–44] use the NIR band
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as a surrogate for sun glint intensity, as well as the empirical relationship between NIR
and other bands to correct for other bands. However, such a method has the unintended
consequence of overcorrecting turbid regions in all bands where water-leaving NIR is
non-negligible. On the other hand, the proposed sun glint correction in this study showed
improvements in general, albeit not across all bands, while it did not significantly impact
turbidity predictions.

From the generated turbidity map at bands 641 nm, 660 nm, 678 nm, and 715 nm
(Figure 15), there was generally close correspondence between the in-situ turbidity mea-
surements and the predicted turbidity, and the demarcation between low and high turbidity
regions in the turbidity map similarly corresponded generally to the changes in the in-situ
turbidity measurements. However, the predicted turbidity at 660 nm appeared to underes-
timate turbidity at regions with higher in-situ turbidity, while there was an overestimation
of turbidity at these regions at 641 nm. The predicted turbidity at 678 nm and 715 nm
lay in between and achieved slightly better prediction performance in Table 2. On the
other hand, the predicted turbidity at 860 nm could not discern the turbidity plume, with
poor results, as shown in Table 2. However, there is an image swath in particular which
did not match the in-situ measurements and displayed an abrupt increase in turbidity,
which also corresponds to the bright patch in Figure 13. This mismatch could be attributed
to the under-correction in radiometric correction when the illumination conditions likely
saturated the on-board spectroradiometer.
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Figure 15. Predicted turbidity maps at bands (a) 641 nm, (b) 660 nm, (c) 678 nm, (d) 715 nm, and
(e) 860 nm after time delay correction, de-striping, radiometric correction, and sun glint correction
have been applied on the reflectance imagery.

4. Discussion
4.1. Retrieval of Turbidity

Turbidity retrieval from UAV imagery with machine learning (ML) models appears to
show promise. In another UAV study by [50], where various ML models were evaluated
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for the retrieval of suspended solids (SS), SS prediction in ranges from R2 = 0.91 to 0.99,
which performed significantly better than some studies using semi-analytical algorithms,
e.g., [4,21]. With the development of CoastalWQL, its application, together with ML
models, was used to extensively monitor turbidity plumes associated with land reclamation
activities with an R2 = 0.75 (see [5]). However, training of ML models typically requires
a large dataset, and the choice of different ML models requires fine-tuning of various
hyperparameters.

On the other hand, turbidity retrieval with semi-analytical algorithms such as [39]
can be largely generalized for various coastal and estuarine waters at the red to NIR
wavelengths as it is underpinned by the inherent optical property (IOP) of turbidity. For
instance, the results obtained in this study using Nechad et al.’s (2010) [39] semi-analytical
algorithm at 715 nm showed close correspondence with the results obtained in a similar
study that estimated dredge-induced turbidity plume using the same semi-analytical
algorithm at 660 nm, where the study achieved a RMSE of 3.39 with a UAV-borne MSI
(Parrot Sequoia) for turbidity values ranging from 3.3 to 72.4 FNU [4]. Another study using
the same semi-analytical algorithm for turbidity retrieval at 668 nm obtained an RMSE of
10.13 FNU with the MicaSense Dual Camera System [21].

However, such semi-analytical algorithms for turbidity retrieval can also be sensitive
to particle size, particle density, and refractive index since they influence the nature of
the backscattering [40]. As such, recalibration of the coefficients may be necessary as the
particle size distribution of the study site may not necessarily be representative of other
turbid coastal sites. The coefficients derived for this study thus vary slightly from the
recommended coefficients in [39]. The re-calibrated coefficients for the in-situ turbidity at
715 nm were 137.85 and 0.2516 for Aτ and C, respectively, while the suggested coefficients
by [39] were 708.16 and 1.17 for Aτ and C, respectively. The recalibration of the coefficients
is required since Aτ and C relate to IOPs such as absorption by particle and non-algal
particles and particulate backscatter, which depends on the morphology and characteristics
of the particles, as well as turbidity concentration. Recalibration of Aτ and C coefficients
were similarly conducted by [21] where the derived coefficients are 366.14 and 0.1956 for
Aτ and C at 668 nm.

4.2. Existing Limitations and Challenges in Image Mosaicking and Alignment

Some UAV-borne sensor manufacturers, such as Bayspec, adopt a more modular
system where other problems may arise, such as the time delay between the GNSS and the
imager, where the misalignment due to time delay between the two modules can result
in significant misalignment. Further research is thus required to automatically estimate
this time delay. Also, it should be acknowledged that some features are still required
to ascertain the optimal time delay, where a feature is captured in at least two adjacent
overlapping swaths, and the same time delay correction can be applied across all the swaths.
In extreme cases where the water surface is perfectly homogenous, the time delay correction
is limited, and users will have to rely purely on the GNSS’s accuracy. As such, wherever
possible, using an RTK/PPK system on the UAV is highly recommended to increase the
georeferencing accuracy.

Geometric distortion is a prevalent problem in the mosaicking of push-broom hy-
perspectral imagery, as several factors such as GPS coordinates, timestamps, IMU offsets,
lens characteristics, and altitude offset parameters can influence the mosaicking proce-
dure [51]. Such geometric distortion is even more challenging to correct in the absence
of distinctive features in the scene. As such, stitching images along the swath is the most
efficient method [31]. Additionally, in the OCI-F push-broom sensor, each image band’s
dimension is only 1024 × 20, and thus, the resolution of the overlap ratio is 100%

20 pixels = 5%
per pixel, which does not provide a lot of degree of freedom for fine-tuning the over-
lap ratio in adjacent images, which could easily introduce geometric distortions in the
mosaicked image.
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The above geometric distortion could be more pronounced if the images are taken
when the FPS is too low or too high, which could lead to some scenes being cut off entirely in
the mosaicked image or the elongation of the image, respectively. Additionally, the presence
of sudden strong winds can cause the UAV system to drift slightly off from its course as
the IMU in the UAV systems may not respond fast enough for course correction. As such,
image mosaicking with minimal geometrical distortions is best achieved when conducting
image stitching along a straight line [14]. As such, during flight planning, the “lawn-
mowing” pattern is recommended to reduce geometrical distortions. Furthermore, wind
drag and turbulence can vary the UAV’s flight height and course and, therefore, introduce
geometrical distortions in the mosaicked image [28]. Based on past field experiences in
conducting UAV flight surveys in the coastal environment, both scenarios could occur—
where the FPS of the push-broom HSI decreased significantly in the midst of a flight survey
due to rapidly approaching dark clouds that reduced the prevailing illumination condition,
as well as strong wind speeds (>8 m/s), which at times could render the flight imagery
completely unusable. Under such challenging scenarios in the coastal region, some scenes
were completely cut off in the mosaicked image, and radiometric correction would be
severely limited due to the poor signal-to-noise ratio in the HSI and spectroradiometer.

4.3. Comparisons with Existing Methods/Software

CoastalWQL workflow framework was evaluated against recent techniques and ex-
isting software and summarised in Table 3. Orthomosaicking and direct-georeferencing
techniques recently introduced by VITO’s MapEO water [21] and MosaicSeadron [22]
utilised direct-georeferencing on each snapshot RGB/multispectral image. An orthomosaic
of the scene is generated by merging the rasters thereafter. However, this technique differs
from the procedure for orthomosaicking of push-broom imagery in several ways, and they
should be clearly differentiated as follows.

Firstly, MosaicSeadron’s [22] method is underpinned by the availability of the georef-
erencing parameters for each image. In MicaSense’s multispectral imagery, each image is
tagged with the geographical coordinates and altitude in the metadata, where an image and
its geographical coordinates are captured simultaneously every 3–5 s [21]. In push-broom
imagery; however, the average frames per second (FPS) during a flight is 50 FPS (i.e., one
capture per 20 ms), while the geographical coordinates are captured at one-second intervals,
and thus the temporal resolution of the captured images and geographical coordinates
differs greatly compared to that of the MicaSense’s multispectral imager. As such, only
some push-broom images that are captured simultaneously with the GPS measurements
have geographical information. This implies that the mosaicking in between the measured
geographical coordinates has to be conducted along the flight swath prior to direct georefer-
encing, where the mosaicking parameters are determined by the UAV flight parameters, as
similarly suggested by [31]. Despite differences in the techniques, the direct georeferencing
error rates achieved by both MosaicSeadron [22] and CoastalWQL are comparable, at
standard deviations of 2.51 m and 2.69 m, respectively (Table 3).

Secondly, the nature of the image obtained from different sensors plays a significant
role in the processing of the images. Each band image dimension from a push-broom
sensor is significantly smaller than that of a snapshot imagery (Table 3 and Appendix A),
as light from the observed strip of terrain is only allowed to enter through a small slit in
the entrance port [24,52]. The number of images to cover a given survey area is, therefore,
significantly higher due to the narrow dimension of the image and a required higher FPS
(the average number of images taken by the Bayspec push-broom sensor to cover a ground
coverage of around 10,000 m2 is 30,000–40,000, compared to around 600 images with the
MicaSense multispectral sensor in [21]). As such, direct-georeferencing of mosaicked push-
broom images is more computationally efficient for a large number of images compared
to individual push-broom images. The very narrow image dimension of an individual
push-broom image also means that fewer overlapped features can be captured, which is
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required for SfM techniques unless a secondary snapshot imager is used and co-registered
simultaneously with the push-broom imager.

In summary, the techniques for mosaicking and conducting direct-georeferencing
of featureless water body images from the snapshot and push-broom sensors are vastly
different due to the inherent differences in their sensors and data output. The differences
are detailed in the software solutions, as shown in (Table 3). Commercial software for
mosaicking snapshot UAV imagery, such as PIX4D Mapper and Agisoft Metashape, accepts
common image formats such as JPEG, TIFF, BMP, etc. On the other hand, the processing of
push-broom hyperspectral imagery typically requires specialised software (that is usually
provided upon purchase with the sensor) to process images that are binary files and are
organised in various schemas, depending on the manufacturer of the sensor (e.g., Band
Interleaved by Line (BIL), Band Interleaved by Pixel (BIP), and Band Sequential (BSQ)). As
such, mosaicking of push-broom imagery is often incompatible with the aforementioned
commercial software. In the case of the push-broom imagery in this study, the processing
of the imagery is compatible with Bayspec’s CubeCreator and CubeStitcher, although a
failure in the mosaicking of the images frequently occurs over water bodies due to the
lack of distinctive features, which prevents further processing with other software such as
Agisoft Metashape (see Appendix I).

Table 3. Comparison of CoastalWQL with existing UAV software/processing workflow for water
quality mapping.

Bayspec’s Cube
Creator

VITO’s MapEO
Water [21]

Agisoft Metashape,
PIX4D Mapper MosaicSeadron [22] CoastalWQL

(a) Software implementation

Software
environment Windows Cloud platform Windows, Mac Python notebook

Windows (GUI)
via python script,
python notebook

Sensor Bayspec’s OCI-F

Micasense
RedEdge-MX,
DJI P4
multispectral

Micasense
RedEdge-MX,
Micasense Dual
Camera System, etc.

DJI H20T sensor,
DJI Mavic 2
Enterprise
Advanced (M2EA)
thermal sensor,
Micasense Dual
Camera System

Bayspec’s OCI-F

Data input
Push broom
hyperspectral
(binary file)

Snapshot
multispectral (.tiff)

Snapshot
multispectral/RGB
(.tiff, PNG, JPEG,
BMP, etc.)

Snapshot
multispectral (.tiff)

Push broom
hyperspectral
(binary file)

Image
dimensions 1024 × 20

1280 × 960
(MicaSense),
5472 × 3648
(DJI P4)

Various
e.g.,1280 × 960
(MicaSense), etc.

1280 × 960
(MicaSense),
640 × 512 (M2EA
and H20T)

1024 × 20

Open-source No No No Yes Yes

(b) Pre-processing workflow

Image
mosaicking

Feature-based
image mosaicking,
e.g., SfM

Merging of rasters

Feature-based image
mosaicking, e.g.,
SfM, image
alignment

Merging of rasters

Image mosaicking
along flight swath
([31]) (independent
of scene’s features)

Georeferencing
Georeferencing via
GPS coordinates,
flight parameters

Direct-
georeferencing

Georeferencing via
image registration
(e.g., GCPs)

Direct-
georeferencing

Direct-
georeferencing
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Table 3. Cont.

Bayspec’s Cube
Creator

VITO’s MapEO
Water [21]

Agisoft Metashape,
PIX4D Mapper MosaicSeadron [22] CoastalWQL

Error rate in
direct-
georeferencing

NA (stitching
failure over some
scenes)
(Appendix I)

Not published NA σ = 2.51 m at GSD
~ 0.5 m/px

σ = 2.69 m at GSD
~ 0.2 m/px

Conversion to
reflectance
product

Empirical relative
radiometric
correction

Radiometric
conversion to
convert DN into
radiance, and into
reflectance using
[53]

Radiometric
conversion to
convert DN into
radiance, and into
reflectance (by
providing reflectance
panel)

NA
Empirical relative
radiometric
correction

Masking/
classification

User-defined
classification
threshold for
classification

Masking of
non-water pixels

Additional
user-defined
processing

NA

Classification and
masking of
land/caisson and
vessels

Image alignment NA NA Image alignment via
GCPs NA

(optional) Time
delay image
alignment with
real-time
visualisation

Correction of
intrinsic noises NA

Correction of lens
vignetting effects
via MicaSense’s
image processing
library

Correction of lens
vignetting effects
(MicaSense imagery)

NA De-striping

Atmospheric
correction NA iCOR4Drones NA NA NA

Sun glint
correction NA NA NA NA Modified SUGAR

algorithm

Water quality
product NA

Turbidity,
suspended
sediments,
chlorophyll

NA NA Turbidity

Notes: Comparison between the image mosaic from Bayspec’s Cube Creator and CoastalWQL is found in
Appendix I (Note: NA represents that the method is not available and/or has to be implemented outside the
software/processing workflow).

4.4. Limitations of CoastalWQL and Future Directions

CoastalWQL so far has only been validated with in-situ measurements for turbidity,
and validation with other water quality parameters such as CDOM and chlorophyll-a was
not carried out in our study due to its key objective to determine turbidity attributed to
dredging and sediment-dumping operations. Further validation is thus required in the
future for investigating different various water body objectives. While CoastalWQL is
developed for use for Bayspec’s OCI-F hyperspectral push-broom sensor, it is envisioned
that the open-source nature of CoastalWQL can encourage the adoption and adaptation
of the pre-processing workflow for users who similarly experience the problems of image
mosaicking over featureless water body and image misalignment due to the time delay
between the GNSS and the imager.

Due to the plethora of commercial UAV-borne sensors, challenges still remain in
streamlining processing workflow, and many of this workflow are inevitably sensor and
platform-specific. There is thus a need for greater open access to UAV data and workflows
such that the development of software and water retrieval algorithms for UAV imagery
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could be more streamlined for higher applicability to various sources of UAV imagery. As
such, there is a need for commercial UAV-borne sensor manufacturers and users to follow
the Findability, Accessibility, Interoperability and Reusability (FAIR) principles to improve
reproducibility [54,55]. For example, the Multiscale Observation Networks for Optical
Monitoring of Coastal Waters, Lakes and Estuaries (MONOCLE) ecosystem follows the
FAIR principles for water quality monitoring through various in situ sensors and provides
data access for streamlined monitoring by agencies and research organisations.

Other challenges in sharing UAV data include potential infringement of personal data
and privacy issues [54], the massive data storage required on a cloud platform, maintenance
of assets and standardization of metadata. Such practices are standardized for satellite
products, but are largely lacking for UAV products. However, platforms such as the Open
Aerial Map are one of the first few open services to make headway in this promising
direction by providing access to openly licensed imagery. Other organisations such as
MicaSense have open-sourced their code, which demonstrates how various metadata is
stored and accessed in the images and, therefore, provides greater customizability for
the consumers. However, such open-source frameworks for push-broom hyperspectral
data are still relatively rare so far, as hyperspectral systems produced by various OEMs
typically produce their own proprietary software to manage and process various output
data. With further transparency and sharing of frameworks, the adoption of UAV imagery
for monitoring/mapping applications can be further enhanced in the future.

5. Conclusions

In this study, CoastalWQL is developed as an automated workflow for UAV-hyperspectral
water quality monitoring to address the problem of image mosaicking over largely homoge-
nous surfaces, especially under restrictive conditions in the coastal environment where
image alignment via GCPs is not possible on the water surface and land features are not
always available. In these circumstances, various previous studies typically employed their
own pre-processing routine, which can be an arduous process requiring significant time
and resources. To promote the common adoption of UAV-hyperspectral monitoring in
the coastal environment, CoastalWQL has been made open-source to provide a complete
pipeline for the reflectance products, with essential pre-processing procedures such as
radiometric correction, masking of non-water objects and sun glint correction for water
quality monitoring applications.

To validate the applicability of the developed workflow, coastal turbidity monitoring
was conducted in Singapore using a UAV-borne push-broom hyperspectral sensor, and
CoastalWQL was applied for the aforementioned pre-processing procedures. Turbidity
retrieval using a semi-empirical model was conducted at each step of the pre-processing
workflow to evaluate the effectiveness of each pre-processing procedure, and the retrieved
turbidity was validated against in-situ turbidity measurements. Turbidity retrieval was
found to be the most optimal at 715 nm, and turbidity prediction improved by 46.5%, with
RMSE reduced significantly from 8.562 FNU to 4.579 FNU and R2 improving from 0.594 to
0.884 after applying the essential pre-processing workflow. It was observed that de-striping
of the hyperspectral imagery and radiometric correction provided the largest marginal
improvement to turbidity retrieval and are essential pre-processing steps.

CoastalWQL aims to facilitate and address similar issues experienced by the commu-
nity involved in UAV-based hyperspectral water quality monitoring. It is also envisioned
that other open-source frameworks for processing push-broom hyperspectral imagery in
monitoring water quality via UAVs and push-broom HSIs can subsequently be created in a
similar manner to improve accessibility for the public, industry and researchers.
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Table A1. Inputs and outputs of CoastalWQL.

(i) Inputs Data

Image folder

Path to the folder directory containing the folder of the raw
hyperspectral images and the folder of GPS file, where the
raw hyperspectral images are in .raw format, and GPS file is
in .csv format.

Flight region in GUI A GUI window where user can specify the range of flight
regions to conduct mosaicking

Height

User-specified height (in metres) at which the drone operates
and when imaging is conducted. GPS information entails the
altitude information but not the height information, where
altitude = height + altitude of surface topography

Spectrometer folder
A series of text files (.txt), each containing the absolute
irradiance information (µW/cm2/nm) at wavelengths
covering the entire spectral range of the hyperspectral camera

Water quality data

A csv file containing information of the in-situ water quality
measurements. It should contain columns with the
measurements of the water quality concentration, and two
other columns with its corresponding latitude and
longitude information

Trained model An exported trained model in .JSON or .model (for XGBoost
models) format that contains trained model parameters

(ii) Outputs

False composite image The user is given the flexibility to choose three wavelengths to
represent the RGB channels. Output image has a .tif format

Masked image An image that has been masked to conceal vessels at the study
site for confidentiality

Geo-registered/georeferenced
image

An image that has been transformed from the image
coordinate space to the georeferenced coordinate space (.tif)

Extracted spectral information If the water quality data is provided, spectral information is
extracted based on the supplied coordinates
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Figure A7. Observed versus predicted turbidity for each pre-processing step at band 641 nm (a) 
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Figure A7. Observed versus predicted turbidity for each pre-processing step at band 641 nm (a) origi-
nal, (b) time delay correction for image alignment, (c) de-striping, (d) radiometric correction, and
(e) sun glint correction (Note: left panel of sub-figure is a plot of turbidity concentration against
reflectance, right panel of sub-figure is a plot of observed versus predicted turbidity concentration).



Remote Sens. 2024, 16, 708 33 of 37

Remote Sens. 2024, 16, x FOR PEER REVIEW 35 of 40 
 

 

against reflectance, right panel of sub-figure is a plot of observed versus predicted turbidity con-
centration). 

 
Figure A8. Observed versus predicted turbidity for each pre-processing step at band 660 nm (a) 
original, (b) time delay correction for image alignment, (c) de-striping, (d) radiometric correction, 
and (e) sun glint correction (Note: left panel of sub-figure is a plot of turbidity concentration 
against reflectance, right panel of sub-figure is a plot of observed versus predicted turbidity con-
centration). 

Figure A8. Observed versus predicted turbidity for each pre-processing step at band 660 nm (a) origi-
nal, (b) time delay correction for image alignment, (c) de-striping, (d) radiometric correction, and
(e) sun glint correction (Note: left panel of sub-figure is a plot of turbidity concentration against
reflectance, right panel of sub-figure is a plot of observed versus predicted turbidity concentration).
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Figure A11. Observed versus predicted turbidity for each pre-processing step at band 860 nm
(a) original, (b) time delay correction for image alignment, (c) de-striping, (d) radiometric correction,
and (e) sun glint correction (Note: left panel of sub-figure is a plot of turbidity concentration against
reflectance, right panel of sub-figure is a plot of observed versus predicted turbidity concentration).
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Figure A12. Mosaicked image output from Bayspec’s CubeCreator and CubeStitcher, in comparison 
with the output from CoastalWQL (Notes: the mosaicked image outputs from CubeCreator were 
not successfully stitched in CubeStitcher and Agisoft Metashape to form an image line due to lack 
of tie points and distortions at the image edges). 
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