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Abstract: In the past decade, Saudi Arabia has witnessed a surge in flash floods, resulting in
significant losses of lives and property. This raises a need for accurate near-real-time precipitation
estimates. Satellite products offer precipitation data with high spatial and temporal resolutions.
Among these, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Dynamic Infrared Rain Rate near-real-time (PDIR-Now) stands out as a novel, global,
and long-term resource. In this study, a rigorous comparative analysis was conducted from 2017 to
2022, contrasting PDIR-Now with rain gauge data. This analysis employs six metrics to assess the
accuracy of PDIR-Now across various daily rainfall rates and four yearly extreme precipitation indices.
The findings reveal that PDIR-Now slightly underestimates light precipitation but significantly
underestimates heavy precipitation. Challenges arise in regions characterized by orographic rainfall
patterns in the southwestern area of Saudi Arabia, emphasizing the importance of spatial resolution
and topographical considerations. While PDIR-Now successfully captures annual maximum 1-day
and 5-day precipitation measurements across rain gauge locations, it exhibits limitations in the
length of wet and dry spells. This research highlights the potential of PDIR-Now as a valuable tool
for precipitation estimation, offering valuable insights for hydrological, climatological, and water
resource management studies.

Keywords: PDIR-Now; satellite precipitation products (SPPs); extreme precipitation; Saudi Arabia

1. Introduction

In the last decade, the Kingdom of Saudi Arabia has faced a high number of flash
floods, which resulted in many losses of lives and property. Specifically, more than
13,000 people were impacted by these floods between 1993 and 2013, which occurred
approximately nine times throughout that time period, causing an economic loss of over
20 million USD [1]. Due to the increasing frequency of these flood events, it is crucial to
characterize and forecast them for the purposes of flood control and warning [2–4]. Fur-
thermore, Saudi Arabia also suffers from severe drought, which can have severe impacts
on the water resources of the region [5]. Thus, it is of extreme importance to have access to
accurate precipitation estimates.

Even though there are many factors that impact flooding, precipitation is one of the key
influencing factors, and the accuracy of the precipitation estimates has a substantial impact
on flood predictions and mitigation strategies [4]. Rain gauges effectively and reliably
measure precipitation, but a sparse and uneven gauge network’s lack of representativeness
is a major concern [6–8]. Moreover, a low-density gauge network also makes it difficult to
provide accurate rainfall measurements over a large area [9,10].

Over the past three decades, numerous satellite precipitation products (SPPs) have
been developed as alternative sources of precipitation estimates [11–13]. These SPPs are
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able to provide information about the spatial variability of precipitation, unlike rainfall
gauges, and can be available at fine temporal and spatial resolutions. Hydrological and
climatological studies benefit substantially from SPPs as they are capable of providing
rainfall estimates over areas with few to none monitoring stations [13–15]. Numerous SPPs
with high spatial and temporal resolutions have been produced and are available for free
online [8,15]. Some SPPs include: the Tropical Rainfall Measuring Mission (TRMM) [16]
by the National Aeronautics and Space Administration (NASA), the National Ocenanic
and Atmospheric Administration’s (NOAA) Climate Prediction Center Morphing Tech-
nique (CMORPH) [17], the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) [18] by the Climate Hazards Center at the University of California (UC)
Santa Barbara, Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) [19], PERSIANN-Cloud Classification System (PERSIANN-
CCS) [20], and PERSIANN- Climate Data Record (PERSIANN-CDR) [21] all by the Center
for Hydrometeorology and Remote Sensing (CHRS) at UC Irvine.

Due to its precise spatial and temporal properties, SPPs have been extensively used
to analyze the life cycle of extreme precipitation events [22]. However, due to retrieval
procedures, indirect measurements, and numerical model parameters, SPPs have errors
and biases [23–25]. As a result, it is vital to analyze and compare the performance of various
SPPs before their implementation [26].

The accuracy of SPPs can also be influenced by the complex interplay between topogra-
phy and precipitation. Mountains and hills can significantly influence precipitation patterns
by directing prevailing winds over their slopes, leading to varied precipitation levels in
different regions. In the context of southwestern Saudi Arabia, the study by Al-Ahmadi
titled “Spatiotemporal variations in rainfall–topographic relationships in southwestern
Saudi Arabia” sheds light on the localized dynamics [27]. The research emphasizes the
importance of local topographic factors, including topography, altitude, slope, proximity to
ridge, and proximity to the Red Sea, in shaping annual and seasonal rainfall. Specifically,
the Asir Mountains emerge as key players, with higher altitudes, more mountainous ar-
eas, steeper slopes, and areas closer to ridges correlating with increased rainfall. Notably,
the concentration of gauge stations along a coastal strip emphasizes the need for more
examination of topography’s influence on precipitation variations. Despite advancements
in precipitation estimation algorithms, the complex terrain in southwestern Saudi Arabia
poses challenges in obtaining reliable quantitative precipitation estimation (QPE), given
the rapid changes in precipitation characteristics due to orographic enhancement. As
we navigate these complexities, continued research and methodological refinements are
crucial for a comprehensive understanding of the relationship between topography and
precipitation in such complex terrains.

Among the various SPPs available, PDIR-Now [28] is one of the most recently used
satellite-based gridded datasets in hydrological models [11,29,30]. It is one of the latest
PERSIANN products developed by the Center for Hydrometeorology and Remote Sensing
(CHRS) at the University of California, Irvine (UCI). PDIR-Now is a quasi-global near-real-
time precipitation product that provides a long record of precipitation estimates, spanning
from the year 2000 to the present at a 0.04° × 0.04° spatial resolution. Precipitation is
better detected by PDIR-Now than by other near-real-time products by the CHRS because
it links brightness temperature and rain rate to remedy errors using climatological data.
PDIR-Now’s high-frequency infrared image sampling allows it to deliver accurate rainfall
estimates quickly after precipitation begins. This algorithm is based on the framework of the
PERSIANN-CCS algorithm but uses dynamical shifting of the cloud-top temperature and
rainfall rate curves using climatology data [28]. Furthermore, the precipitation threshold
was lowered from 273 K to 263 K to improve the detection of warm precipitation.

There has been a limited number of studies analyzing SPPs over Saudi Arabia. Kheimi
and Gutub [31] evaluated TRMM 3B42, CMORPH, Global Satellite Mapping of Precipitation
Microwave-IR Combined Product (GSMap-MVK), and PERSIANN against rain gauges.
The correlation coefficients (CC) of TRMM 3B42, CMORPH, GSMap-MVK, and PER-
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SIANN were 0.44, 0.44, 0.45, and 0.11, respectively. Furthermore, the mean errors (ME) of
TRMM 3B42, CMORPH, GSMap-MVK, and PERSIANN were 0.26 mm/day, 0.62 mm/day,
0.65 mm/day, and 0.30 mm/day. Their probability of detection (POD) was 0.39, 0.52, 0.53,
and 0.24 for TRMM 3B42, CMORPH, GSMap-MVK, and PERSIANN, respectively. This
study concluded that even though all products could detect precipitation accurately, they
overestimated the amount of rainfall over the study area. Mahmoud et al. [32] assessed
the capability of IMERG Early, IMERG Late, and IMERG Final to capture precipitation
over Saudi Arabia using gauge data as the ground truth. The main finding from this study
is that all products exhibit increased accuracy, with the exception of some regions in the
northern part of the study area. Furthermore, they found that the estimates improved
from the Early run to the Final run. Sultana and Nasrollahi [33] evaluated the perfor-
mance of PERSIANN, PERSIANN-CDR, TRMM-RT, TRMM-3B42, and CMORPH over
Saudi Arabia using gauge data as the ground truth. The main conclusion in the study was
that PERSIANN-CDR, TRMM-3B42, and CMORPH performed best over the study area.
Specifically, PERSIANN-CDR, TRMM-3B42, and CMORPH had PODs of 0.322, 0.424, and
0.654 and CCs of 0.171, 0.42, and 0.471. Helmi and Abdelhamed [34] evaluated CMORPH,
PERSIANN-CDR, CHIRPS V2.0, TRMM 3B42 V7, and IMERG V6 against rain gauge data
from 2000 to 2012. This study found that all these products performed best at an altitude of
500–700 m in the central and northern parts of the country and that CMORPH performed
best in their monthly assessment.

Due to the critical need for accurate near-real-time estimates in flood-prone regions and
the product’s capacity to accurately depict the spatial variation of precipitation, evaluating
this product is crucial. Furthermore, this product has never been evaluated over Saudi
Arabia. Thus, the first objective in this study is to evaluate the accuracy of PDIR-Now
using Saudi Arabian daily gauge precipitation data. The second objective is to assess the
capability of the SPP to identify extreme precipitation events. The results of this study can
provide an in-depth understanding of the capabilities of this near-real-time product and
can lead to more informed water management decisions.

2. Materials and Methods
2.1. Study Area

Saudi Arabia is located between 15°N and 35°N and 35°E and 57°E, as shown in
Figure 1. According to the Köppen climate classification system [35,36], the majority of
Saudi Arabia is a hot and arid desert; however, the southwest region of Saudi is considered
semi-arid [37,38]. Precipitation is scant and infrequent in most regions of Saudi Arabia,
with the wet season occurring from October to April [37,39]. During dry months, hardly
any precipitation occurs, with the exception of the southwest area of the country [39,40].

Figure 1. Geographical extent of Saudi Arabia, and distribution of rainfall gauges over the region
of study.
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2.2. Datasets
2.2.1. Rain Gauges

In this study, the daily rain gauge dataset obtained from the Ministry of Environment,
Water, and Agriculture (MEWA) for 130 meteorological observatories across Saudi Arabia
(Figure 1) from 2017 to 2022 is used. To ensure the robustness of our analysis, a data quality
control process was conducted. This involved an inspection of the dataset to identify and
address missing or Not a Number (NaN) values, ensuring consistency throughout the
entire study period.

2.2.2. PERSIANN Dynamic Infrared (PDIR-Now)

PDIR-Now is a near-real-time global high-resolution SPP developed by the University
of California, Irvine’s Center for Hydrometeorology and Remote Sensing (CHRS). The
PDIR-Now algorithm considers several factors beyond brightness temperature to estimate
precipitation intensity. It utilizes a catalog of cloud types that is created by training self-
organizing feature maps (SOFMs) with passive microwave (PMW) data. Then, the rain
rate estimation is based on the brightness temperature, size, and texture features of the
cloud patches at temperatures below 263 K, utilizing the IMERG PMW precipitation dataset
for model training. Furthermore, this algorithm involves the dynamical shifting of cloud-
top brightness temperatures–rain rate (Tb-R) curves using rainfall climatology data. The
spatiotemporal resolution of 0.04° on a monthly basis is employed to adjust the position
of the curves, aiming to correct biases and produce more accurate precipitation estimates.
The adjustment is intended to account for regional variations in wetness, generating more
precipitation in areas with a wetter climatology and vice versa. Compared to other SPPs,
the characteristics of the PDIR-Now algorithm include being a real-time, high-resolution
precipitation product with a short delay time (15 min–1 h) [28]. From 2000 forward, PDIR-
Now offers quasi-global coverage (60°S–60°N) and high spatiotemporal resolution (almost
0.04° and hourly data) precipitation data. The CHRS database of daily PDIR-Now readings
was acquired from the CHRS data portal (http://chrsdata.eng.uci.edu/ (accessed on 1
December 2023) ).

2.3. Methods

Daily satellite precipitation data for each rain gauge were extracted from the nearest
grid point in the satellite-based precipitation products, matching the locations of the rain
gauges used in this study. The evaluation in this study is divided into two categories:
rainfall intensity and extreme rainfall assessments. Statistical metrics were calculated for
PDIR-Now using the gauge data as the ground truth. This method is widely adopted for
assessing the accuracy of SPPs.

2.3.1. Evaluation Metrics

First, six widely used statistical metrics, shown in Table 1, were applied to assess
the accuracy of PDIR-Now across various rainfall rates when compared to the rain gauge
observations, with the goal of better understanding the PDIR-Now performance in terms of
precipitation amount and occurrence. The correlation coefficient (CC), mean bias (MB), and
the root-mean-squared error (RMSE) were used to evaluate the PDIR-Now performance
in estimating the amount of rainfall, whereas the probability of detection (POD), the false
alarm ratio (FAR), and the critical success index (CSI) were used to evaluate the performance
of PDIR-Now in rainfall detection.

http://chrsdata.eng.uci.edu/
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Table 1. Statistical metrics employed to gauge the performance of satellite-based precipita-
tion products.

Index Equation Optimal Value

CC CC =
∑n

i=1(Ei − Ē)(Oi − Ō)√
∑n

i=1(Ei − Ē)2
√

∑n
i=1(Oi − Ō)2

1

MB MB =
n

∑
i=1

(Ei − Oi)
0

RMSE RMSE =

√
1
n

n

∑
i=1

(Ei − Oi)2 0

POD POD =
TP

TP + FN
1

FAR FAR =
FP

TP + FP
0

CSI CSI =
TP

TP + FP + FN
1

Where Oi represents the reference rain gauge data; Ō represents the mean of the
reference; Ei represents the PDIR-Now estimation; Ē represents the mean of the estimation;
and n refers to the number of samples. In the case of the last three indices, TP represents
the number of precipitation events detected within the rain gauges and PDIR-Now syn-
chronously; FN represents the number of precipitation events observed by rain gauges but
not PDIR-Now; FP refers to the number of precipitation events detected by PDIR-Now that
were not observed by rain gauges. The threshold for defining precipitation occurrence was
0.5 mm/day, as specified by MEWA.

CC quantifies the linear relationship strength between PDIR-Now and the rain gauge
variables. MB and RMSE highlight discrepancies between PDIR-Now and the rain gauge
measurements, with lower values indicating smaller differences. Additionally, POD as-
sesses PDIR-Now’s reliability in detecting precipitation events, FAR measures its tendency
to identify unobserved precipitation, and CSI evaluates its proficiency in recognizing pre-
cipitation events relative to the rain gauge data. To assess PDIR-Now’s capability to detect
precipitation, especially intense precipitation, various rain thresholds were used. Table 2
presents the defined rainfall intensity classes within the scope of the study, along with their
corresponding daily rainfall thresholds.

Given that the study area encompasses arid and semi-arid regions where rainfall is
often minimal or absent, we first calculate the metrics for all precipitation throughout the
study period and then categorize rainfall data into four classes, including “No Rain”, “Light
Rain”, “Moderate Rain”, and “Heavy Rain”. The subjective selection of thresholds is care-
fully considered after analyzing the distribution of the daily data and reviewing different
thresholds and classification standards in similar regions. The “No Rain” category covers
instances of no rain and instances where the rainfall rate is equal to or less than 0.5 mm/day,
implying negligible rainfall. The “Light Rain” category covers instances where the rainfall
rate is between 0.5 and 2 mm/day, implying relatively minimal rainfall. The third category,
“Moderate Rain”, covers a range of rainfall rates between 2 and 10 mm/day, showing a
moderate level of precipitation, and the last category, “Heavy Rain”, is determined by
rainfall rates exceeding 10 mm/day, representing extreme and impactful rainfall events.

Table 2. Rainfall intensity classes defined in the study with their respective daily rainfall thresholds
in mm/day.

Index Equation

No Rain Rainfall Rate ≤ 0.5
Light Rain 0.5 < Rainfall Rate ≤ 2
Moderate Rain 2 < Rainfall Rate ≤10
Heavy Rain Rainfall Rate > 10
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2.3.2. Extreme Precipitation Analysis

The second part of the study consisted of calculating four common standard extreme
precipitation indices to assess PDIR-Now’s performance in capturing extreme precipitation
events using gauge data as the baseline. These indices, shown in Table 3, were defined
by the World Climate Research Programme (WRCP) and have been used all around the
globe [41–43]. The four indices were initially calculated for each year within the 6-year
period at each rain gauge, then at each station, the mean of the annual extreme index values
was computed. Furthermore, the 130 rain gauge stations were classified into three altitude
ranges, specifically: <500 m, 500 m–1000 m, and >1000 m. This was implemented to assess
the performance of PDIR-Now in capturing extremes at different elevations.

Table 3. The four extreme indices selected for this study with their respective definitions and units.

Index Descriptive Name Definition Units

RX1day Maximum 1-day precipitation Annual maximum 1-day rainfall mm

RX5day Maximum 5-day precipitation Annual maximum consecutive 5-day
rainfall mm

CWD Consecutive wet days Annual maximum consecutive rainy
days days

CDD Consecutive dry days Annual maximum consecutive dry
days days

3. Results
3.1. Analysis of Rainfall Estimation Errors

The evaluation of PDIR-Now against the gauge data was performed at a daily scale,
involving the calculation of several metrics, including the CC, MB, RMSE, POD, FAR, and
CSI. To assess the results, the mean of each of the metrics over the study area was calculated
for each rainfall category, and the spatial distribution of the metrics was visually assessed.
The results reveal a CC of 0.33, a MB of 0.07 mm/day, and a RMSE of 3.04 mm/day
(Figure 2). Figure 3 shows the CC, MB, and RMSE results for the three rainfall categories,
“Light Rain”, “Moderate Rain”, and “Heavy Rain”. PDIR-Now exhibits the largest mean
absolute CC in the “Heavy Rain” category, 0.29, whereas the “Moderate Rain” and “Light
Rain” categories had lower mean absolute CCs, 0.17 and 0.16, respectively. This is as
expected given that smaller precipitation rates are more susceptible to errors. The lower
CC values during moderate rainfall events could be linked to the orographic effects of
the prominent mountainous region in Saudi Arabia [27,44]. In arid regions like Saudi
Arabia, the interaction between topography and precipitation is a crucial factor influencing
the spatial distribution of rainfall [39]. Mountains can act as barriers to moist air masses,
leading to orographic lifting on the windward side and subsequently enhancing rainfall
in those areas. Conversely, on the leeward side of the mountains, a rain shadow effect
may occur, resulting in reduced rainfall. PDIR-Now exhibits the lowest MB in the “Light
Rain” category across all areas evaluated, with a mean of 1.14 mm/day. As expected, the
MB increases as the rainfall threshold increases, thus, the “Moderate Rain” and “Heavy
Rain” categories show larger, but negative, MB values with a mean of −1.76 mm/day and
−14.55 mm/day, respectively. The negative sign of the MB results represents that PDIR-
Now underestimates precipitation in the two heavier precipitation categories. Similarly,
the RMSE values in the “Light Rain” category are the lowest compared to the heavier
precipitation categories, with a mean value of 4.45 mm/day. Just as in the case of the MB, the
RMSE increases as the precipitation threshold increases, leading the “Moderate Rain” and
“Heavy Rain” categories to have increasingly higher values, with means of 6.65 mm/day
and 21.88 mm/day, respectively. In the case of the “Light Rain” and “Moderate Rain”
categories, the southwest region of the study area along the coast shows higher RMSE
values, once again, due to the orographic effect over this mountainous area. Finally, the
“Heavy Rain” category does not show one specific area with higher or lower RMSE values
than the rest, and instead, these values vary greatly from one gauge to another.
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Figure 2. Scatter plot of daily PDIR-Now results compared to the rain gauge observation with
statistical indices results. The red line represents the best fit.

Figure 3. Spatial distribution of CC (upper row), MB (middle row), and RMSE (lower row) of daily
PDIR-Now against rain gauge observations for different rain categories with respective mean values.

3.2. Performance Indicator Based on Events

After assessing the results of the rainfall estimation errors, it is necessary to assess the
detection capability of PDIR-Now at different rainfall rate thresholds. The result of the
rainfall detection in Figure 4 shows that PDIR-Now has a POD of 0.73, a FAR of 0.80, and a
CSI of 0.18. While rain gauges along the coast do not achieve high detection performance
compared to inland ones, it is evident that the southwestern coast exhibits lower false
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alarms (first and second columns). This pattern is reflected in the detection accuracy, as
seen in the CSI plot. It is important to note that a threshold of 0.5 mm/day is applied
to differentiate between rain and no rain instances for this calculation. More detailed
results for rainfall categories such as “Light Rain”, “Moderate Rain”, and “Heavy Rain” are
discussed below.

Figure 4. Spatial distribution of POD, FAR, and CSI of daily PDIR-Now against rain gauge observa-
tions in rainfall detection.

Figure 5 offers a nuanced insight into the capacity of the PDIR-Now dataset to ac-
curately capture rain events across different rainfall rate categories. The left column of
this figure exhibits the great capability of PDIR-Now to capture precipitation in the “Light
Rain” category, with mean POD, FAR, and CSI values of 0.47, 0.94, and 0.05, respectively.
PDIR-Now performs similarly in all regions of the study area for this category. The POD of
PDIR-Now is lower, but FAR decreases with higher rainfall rates, as shown by the middle
and right columns of Figure 5. In the case of the “Moderate Rain” category, the POD is
substantially lower than in the “Light Rain” category, with a mean value of 0.20. The mean
FAR and CSI values obtained were 0.85 and 0.09, respectively. These values indicate that
PDIR-Now’s accuracy in detecting moderate precipitation events is higher than in the case
of light precipitation detection. Finally, PDIR-Now’s performance slightly increases when
detecting heavy precipitation events, as shown in the right column of Figure 5. Despite
showing a lower mean POD than in the “Moderate Rain” category, 0.18 specifically, the
FAR decreased, and the CSI increased, with values of 0.75 and 0.11, respectively. This
indicates that PDIR-Now’s detection of events is slightly lower but more accurate for heavy
precipitation events than in the “Moderate Rain” and "Light Rain" categories. The middle
and right columns of Figure 5 also reveal that PDIR-Now is more accurate in the middle
region of Saudi Arabia than along the coast, as was also depicted by the RMSE previously.

An observation made from the detection results of the rain/ no rain analysis is that
the detection is more accurate along the southwestern coast, whereas this is not the case
for the different rainfall categories. The discrepancy can be attributed to the more rigorous
thresholds set for the categories (Table 2). In this analysis, PDIR-Now is required to meet
the criteria for “Light Rain”, “Moderate Rain”, and “Heavy Rain” based on gauge readings,
as opposed to a simpler rain/no rain detection.

3.3. Analysis of Rainfall Extremes and Climatic Patterns

The last part of the study was to assess the capability of PDIR-Now at capturing
extreme precipitation events. Figure 6 provides a comprehensive overview of several critical
climatic and hydrological parameters across all the meteorological stations employed in
this study. The top panel shows the results for the mean of the annual maximum daily
precipitation amount (RX1day) in mm. The results depict that the RX1day index is similarly
captured by PDIR-Now for most of the rainfall gauges, with some minor underestimation.
This similitude accompanied by underestimation can be confirmed by the leftmost panel of
Figure 7, which shows a high mean CC of 0.50 but a mean bias of −2.83 mm. The mean of
the annual maximum five consecutive day precipitation amount, or RX5day index, exhibits
similar results, indicating a slight underestimation by PDIR-Now. In regards to the RX5day,
the CC and RMSE were 0.53 and −3.10 mm, respectively. The results displayed on the
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top panels of Figure 6 and the leftmost panels of Figure 7 indicate that the precipitation
distribution of PDIR-Now across gauge locations is in agreement with the precipitation
amount captured by the rainfall gauge network.

Figure 5. Spatial distribution of POD (upper row), FAR (middle row), and CSI (lower row) of daily
PDIR-Now against rain gauge observations for different rain categories with respective mean values.

Figure 6. Extreme precipitation indices (RX1day, RX5day, CDD, and CWD) of PDIR-Now and rain
gauge data at observed gauge stations.
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In regards to the final two indices, PDIR-Now exhibits an underestimation of the CDD
and an overestimation of CWD. This indicates that PDIR-Now captures longer wet spells
and shorter dry spells than the rainfall gauges do. Figure 7 supports this by showing a large
negative bias in the CDD, −74.25 days, and a positive mean bias in the CWD of 4.22 days.
The difference in the values of the bias in the CDD and CWD corresponds to the fact that
wet spells are usually a lot shorter than dry spells, especially in arid and semi-arid regions
such as Saudi Arabia.

Figure 7. Scatter plots of PDIR-Now and rain gauge data for RX1day, RX5day, CDD, and CWD
indices at different elevation thresholds with statistics of mean CC, MB, and RMSE.

Figure 8 illustrates the spatial pattern of extreme indices derived from both gauge
data and PDIR-Now. The figure reveals that PDIR-Now demonstrates a similar spatial
distribution in the RX1day and RX5day indices compared to the gauge data. However,
the accurate representation of the spatial distribution of dry and wet spell durations is
not achieved by PDIR-Now, as evident in the four rightmost panels of Figure 8. This
observation aligns with expectations, given the superior performance demonstrated by
PDIR-Now in the RX1day and RX5day indices, as depicted in Figure 6.

Figure 8. Spatial distribution of extreme precipitation indices (RX1day, RX5day, CDD, and CWD) of
PDIR-Now and rain gauge data at observed gauge stations.

In addition, 130 rain gauge stations were classified into different altitude ranges:
<500 m, 500–1000 m, and >1000 m. This categorization is employed to assess the perfor-
mance of PDIR-Now across RX1day, RX5day, CWD, and CDD indices, considering various
topographies. Stations below 500 m are represented by the color red, those between 500 m
and 1000 m by blue, and those above 1000 m by green in Figure 7. A comprehensive statis-
tical evaluation of PDIR-Now in comparison to the rain gauge data for RX1day, RX5day,
CDD, and CWD indices across various topographies is presented in Table 4. The higher CC
and lower RMSE and MB observed for stations with elevations <500 m and between 500 m
to 1000 m confirm that PDIR-Now exhibits greater accuracy at elevations below 1000 m. As
the altitude increases and the orographic effect of the southwestern mountain range comes
into play, PDIR-Now exhibits poor performance above 1000 m, with a low CC of 0.18 for
RX1day and 0.17 for RX5day, along with higher RMSE and MB compared to the stations
below 1000 m.
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Table 4. Performance of PDIR-Now compared to the rain gauge for RX1day, RX5day, CDD, and CWD
indices across different elevation thresholds.

RX1day (mm) RX5day (mm) CDD (Days) CWD (Days)

Elevation < 500 m

CC 0.60 0.60 0.58 0.57
RMSE 20.05 28.76 85.91 5.08
MB −2.89 −3.98 −75.53 4.30

500–1000 m

CC 0.64 0.66 0.76 0.42
RMSE 21.56 25.51 98.97 4.86
MB −2.23 −1.62 −84.72 4.05

>1000 m

CC 0.18 0.17 0.53 0.42
RMSE 24.31 32.23 70.24 5.28
MB −3.58 −4.24 −60.73 4.38

4. Discussion

In this study, an evaluation of PDIR-Now’s performance was conducted, specifically
focusing on its comparison against ground-based rain gauges. This analysis is implemented
in the context of various geographical regions across Saudi Arabia, allowing for insights
into the national effectiveness of PDIR-Now.

There are noticeable patterns of overestimation and underestimation within PDIR-
Now’s rainfall estimations, particularly in connection to various rainfall rate categories.
These patterns highlight the challenges faced by satellite-based precipitation products
when estimating precipitation across a wide range of rainfall rates. It is crucial to carefully
examine the topographical and geological variations within the research area. Factors
such as topography, altitude, orographic effects, localized wind patterns, and microclimatic
differences significantly affect the accuracy of remote sensing-based precipitation estimation
products [45–47]. The algorithms employed in satellite-based precipitation products not
only add an extra layer of complexity but also demonstrate their sensitivity to climatic
conditions and precipitation event features [46,48].

There are several factors that can affect the accuracy of satellite precipitation products
when evaluated against gauge data, such as orographic precipitation, spatial and temporal
matching, and algorithm characteristics. Orographic precipitation usually falls into the
category of warm precipitation, given that orographic lift is not conducive to producing
frozen hydrometeors [49]. Moreover, warm precipitation is described as rainfall that occurs
when there are no frozen hydrometeors present and the cloud-top temperature is above
273 K. IR-based algorithms, such as PDIR-Now, use a cloud-top temperature threshold that
is then related to precipitation rate. Thus, if the cloud-top temperature is higher than the
threshold, the precipitation will be underestimated by the product. The results of this paper
confirm the limitation of IR algorithms in areas where orographic precipitation is present,
as the accuracy of PDIR-Now diminished in areas prone to this type of precipitation. In
terms of geospatial and temporal matching, each PDIR-Now pixel of 0.04° × 0.04° is aligned
with the corresponding rain gauge data point based on their coordinates. This can cause
differences between the products, because a point measurement is compared to an estimate
of an area of approximately 16 km2. Additionally, the daily PDIR-Now, aggregated from
half-hourly estimates, is synchronized with the daily readings from the rain gauge [28].
Systematic and aggregation errors during these processes could also contribute to the
divergence between PDIR-Now and the rain gauges.

Furthermore, the length and quality of the accessible data are important in determining
efficiency indicators in this study. The study’s 6-year duration enables an evaluation of
PDIR-Now’s ability to accurately represent rainfall intensities compared to rain gauge data.
Nevertheless, it is important to acknowledge the limitations of the existing ground truth
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dataset with an uneven distribution of rain gauges across the region. Given the limited
availability of observation data, this research is fundamentally comparative over a 6-year
study period and should not be considered a conclusive basis for assessing the overall
performance of PDIR-Now. A more thorough evaluation using over two decades of rainfall
data is recommended.

As mentioned in the introduction, the past studies have assessed other SPPs over
the country. However, the results between those studies and this one are not comparable.
In each of these studies, the assessed periods are different. In the case of this study, the
period between 2017 through 2022 is being assessed, whereas in other studies, such as
Helmi and Abdelhamed [34], the period from 2000 to 2012 was used. Furthermore, in
Kheimi and Gutub [31], January 2003 through November 2010 was utilized. Furthermore,
in the past literature, there has not been a study that only assesses near-real-time products,
which is the only type of product that PDIR-Now could be objectively compared to, due to
the difference in purpose of near-real-time products and climate data records. Mahmoud
et al. [32] assessed IMERG Early, NASA’s near-real-time product, but the length of the
study period, October 2015 to April 2016, does not match this study’s. Additionally, the
rain gauge network is different. Thus, the results from this study cannot be objectively
compared to past studies.

This application of PDIR-Now is a good starting point for the assessment of this SPP
over the study area. However, there is still plenty of space for improvement, particularly in
arid and semiarid regions. An appropriate technique for future developments is minimiz-
ing the existing biases in PDIR-Now. This may be accomplished by using topographical
data, considering other climatic features, and applying machine learning techniques [46,50].
It is essential to assess the accuracy of satellite products, such as PDIR-Now, and detect
any hidden biases through comprehensive evaluations across different spatial and tempo-
ral scales. More validation findings for remote sensing precipitation products will hold
significance and offer benefits across a wide range of applications, including hydrology,
agriculture, and water management.

5. Conclusions

This study was the first one of its kind to test the capabilities of the latest near-real-
time satellite product by the CHRS, PDIR-Now, over Saudi Arabia. This analysis involved
a thorough approach of matching gauge-station coordinates with satellite precipitation
coordinates, which enabled the evaluation of the SPP. By evaluating PDIR-Now against
the rain gauge data, the study aimed to discern the product’s strengths and limitations.
The evaluation can be separated into two sections. First, six well-established statistical
metrics were employed to assess the accuracy of PDIR-Now to detect rainfall events and
their precipitation amounts at a daily scale. The metrics utilized to assess the accuracy
of PDIR-Now in capturing precipitation amounts were the CC, the MB, and the RMSE,
whereas the metrics for assessing the correctness of the rainfall detection were the POD,
FAR, and CSI. Moreover, four annual extreme precipitation indices were used to analyze
the capability of PDIR-Now when capturing extreme precipitation events. The extreme
precipitation indices included in the study were RX1day, RX5day, CDD, and CWD.

Accurate estimates of precipitation are extremely valuable in arid and semi-arid
areas. All of the tools used to measure or estimate precipitation have advantages and
disadvantages. Even though the fine spatial and temporal resolutions of satellite products
are a great advantage, these products also have limitations. SPP evaluations are essential
and have great implications in assessing the validity of SPPs over Saudi Arabia. This is
because given that these products can provide information about the spatial distribution
of precipitation, they are very often used in studies related to hydrology and climatology.
Thus, assessing their reliability is crucial. Additionally, having accurate near-real-time
estimates of precipitation over the study area, including spatial distribution information,
is key for water budget studies, thus, directly affecting water resources management.
Furthermore, having a product that accurately depicts extreme events is useful for post-
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disaster assessment, enabling prompt response in mitigating the impacts of these heavy
precipitation events.

This analysis provided a depiction of PDIR-Now’s performance over Saudi Arabia.
PDIR-Now showed the ability to capture precipitation with a low MB of 0.07 mm/day
and a CC of 0.33. In the case of the detection of precipitation, PDIR-Now showed a better
capability in the southwestern part of the study area. In the categories analysis, PDIR-Now
performed best in the detection of “Heavy Rain”. Even though PDIR-Now shows higher
POD in the “Light Rain” category, the accuracy of the detection is the best in the “Heavy
Rain” category, shown by a higher CSI and lower FAR. Furthermore, PDIR-Now slightly
overestimates “Light Rain” but underestimates “Moderate Rain” and “Heavy Rain”. The
error in the different categories is more prone to occur in areas affected by orographic
precipitation, specifically the southwest of the country. In this region, the ability of PDIR-
Now to capture small-scale, orographically induced rainfall events diminished, highlighting
the importance of spatial resolution and topographical considerations. Additionally, PDIR-
Now similarly captured the RX1day and RX5day precipitation amounts throughout the
gauge locations with only a slight underestimation. On the other hand, the CDD was
underestimated compared to the rainfall gauges, and the CWD was overestimated. This
reveals that PDIR-Now captures shorter dry spells and longer wet spells than the rain
gauge network. Concerning different topographies, PDIR-Now shows greater accuracy
at elevations below 1000m, indicated by higher CC and lower RMSE and MB. However,
its performance declines above 1000m due to the orographic effect of the southwestern
mountain range, leading to much lower CC values (0.18 for RX1day and 0.17 for RX5day)
and increased RMSE and MB compared to stations at lower altitudes.

In conclusion, this manuscript provides insight on the ability of PDIR-Now to pro-
vide accurate near-real-time precipitation estimates. It underscores the complexities and
challenges inherent to remote sensing-based precipitation products while highlighting
their potential in diverse applications. The study’s insights pave the way for ongoing
research, seeking to harness the full potential of satellite-based precipitation estimation
for improved hydrological and climatological studies, water resource management, and
disaster preparedness over Saudi Arabia.
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CMORPH Climate Prediction Center Morphing Technique



Remote Sens. 2024, 16, 703 14 of 16

CSI Critical success index
CWD Consecutive wet days
FAR False alarm ratio
GSMap-MVK Global Satellite Mapping of Precipitation Microwave-IR Combined Product
IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
MB Mean bias
MEWA Ministry of Environment, Water, and Agriculture

PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks

PDIR-Now PERSIANN–Dynamic Infrared near-real-time
PERSIANN-CCS PERSIANN–Cloud Classification System
PERSIANN-CDR PERSIANN–Climate Data Record
POD Probability of detection
RMSE Root-mean-squared error
SPP Satellite precipitation product
Tb-R Cloud-top brightness temperatures–rain rate
TRMM Tropical Rainfall Measuring Mission
WRCP World Climate Research Programme
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