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Abstract: Wetlands within dryland regions are highly sensitive to climate change and human activi-
ties. Based on three types of land use data sources from satellite images and a spatial data analysis, the
spatiotemporal characteristics of wetland evolution in China’s drylands and their relationship with
human interference and climate change from 1990 to 2020 were analyzed. The results were as follows:
(1) The wetlands within China’s drylands expanded, including rivers, lakes, and artificial wetlands,
apart from marshes, which shrunk. Meanwhile, wetland fragmentation increased, with rivers being
particularly severely fragmented. (2) Temperature and precipitation showed an increasing trend from
1990 to 2020 in China’s drylands. Lakes and rivers expanded with regional differences due to the
uneven distribution of precipitation and rising temperature. (3) Human activities, more than climate
change, became the key driving factor for the changes in wetland patterns in China’s drylands. The
increased areas of farmland and grassland along with increased levels of drainage and irrigation
activities led to the shrinkage of marshes and the fragmentation of rivers. The increase in the number
of artificial reservoirs was the main reason for the expansion of artificial wetlands. This study clarifies
the specific driving factors of different types of wetlands within China’s drylands, which is of great
use for better protecting wetlands and the gradual restoration of degraded wetlands.

Keywords: wetland evolution; China’s drylands; key driving forces; human activity; climate change

1. Introduction

Wetlands are widely distributed all over the world and have an irreplaceable role in
maintaining the global ecosystem, functioning as one of the most essential human living
environments. Globally, wetlands cover an area of 12.10 × 106 km2, or about 8% of the total
land area [1]. However, with global climate change and rapid socio-economic development
in recent years, wetlands have been undergoing drastic changes, with more than half
of them having disappeared globally since the Industrial Revolution [2]. The pattern of
China’s wetlands is no exception, having changed dramatically. Specifically, the overall
area of wetlands has decreased from 4.11 × 105 km2 in the 1980s to 2.14 × 105 km2 in
2010 [3], with almost half of the wetland area having disappeared. Ecological problems in
wetlands, such as broken rivers, shrinking lakes, and degraded vegetation, are prominent,
and ecological patterns in wetlands have been significantly affected. Therefore, to protect
and restore wetlands more effectively and carry out comprehensive protection measures
for wetlands, it is critical to investigate the evolutionary aspects of wetland patterns as well
as their driving forces.

Many academics have investigated the landscape pattern of wetlands in recent years,
analyzing the spatiotemporal changes in their properties and distribution patterns. Indeed,
wetland pattern traits, shifting patterns, and driving forces have been widely studied [4–7].
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In the past, most of the research data on wetlands had to be obtained through field surveys,
which took a long time and made it difficult to obtain research data [8]. Since then, the
emergence of the ‘3s’ (RS, GPS, and GIS) technologies has facilitated the research of wetland
changes at large scales and over long time series [9]. Landsat series data and land use
data products have been widely used in the evolution of wetlands [10–12]. Furthermore,
model-based quantitative analyses, such as the dynamic attitude model [13], land use
transfer matrix [14], and landscape pattern index [15], have rapidly become the main
method for investigating the spatial and temporal dynamics of wetlands. Among them,
wet zones [16,17] and coastal areas [18–20] have received the most attention, while there is
a comparative lack of research globally on wetlands within dryland regions.

Drylands are areas where ecosystems are water-stressed, soils are generally infertile,
and vegetation cover is minimal. At present, they comprise around 40% of the earth’s
surface and are inhabited by over one-third of the global population [21,22]. Wetlands
within drylands are of great value in ecological conservation and utilization. They are
important water conservation areas for large rivers, with various functions such as reg-
ulating the climate, storing water resources, and providing habitats for rare plants and
animals [23]. Wetland ecosystems within drylands, due to their special geographic loca-
tions, have formed unique landforms, vegetation, and soil types, and belong to important
ecologically fragile regions that can be hard to recover once damaged [24]. As a result,
it is critical to comprehend the evolution dynamics of wetlands within drylands, design
conservation strategies for the wise use of limited wetland resources, and preserve the
ecological environment’s development. In the context of global warming and declining
precipitation, extreme drought events are occurring more frequently, increasing the chal-
lenges and uncertainties for dryland ecosystems [25–27]. Prior studies have found that
the depletion rate of wetlands in drylands has been around 10% greater than the global
average in recent decades [28]. Wetland degradation and loss, as well as biodiversity loss,
are increasing at an alarming rate in Ethiopia [29]. Also, from 1983 to 2019, the wetland
area of Maungani, South Africa, decreased by 7283 km2 [30].

Climate change, as well as increasing population pressure and excessive human
activities, have altered the water cycle in dryland watersheds, resulting in large spatial and
temporal variations in wetland patterns and changes in fragile ecosystems. Furthermore,
the size and other ecological characteristics of wetlands vary widely, as do their resilience
to climate change and anthropogenic perturbations [31]. Wetlands experienced a significant
decline within Southeastern Australian drylands during the so-called millennial drought
(2001–2009) as the region suffered its driest period since 1900, with negative consequences
for its wetlands [32]. North African Ramsar wetlands suffered a lot of losses from 1980 to
2018 because of severe warming and more intense droughts. Aside from climate change,
human activities such as agriculture, urbanization, and other built-up land uses influence
the decrease in wetlands in North Africa [33]. The wetlands in the Fetam River catchment,
Amhara National Regional State, Ethiopia, declined by 27.90% from 1985 to 2020, with
farmland expansion being the main driver of wetland decline; overgrazing and crop
production shifts prompted by market opportunities have aggravated this problem [34].

Therefore, just like in other countries, analyzing the evolution of wetlands within
drylands and their drivers in China is crucial for wetland management. Accordingly, the ob-
jectives of this research were (1) to characterize in detail the temporal and spatial alterations
of wetland patterns in China’s drylands from 1990 to 2020; and (2) to comparatively analyze
the key drivers of the changes in wetland patterns. Achieving these objectives would be
of great significance for elucidating the specific driving mechanisms of the evolution of
wetland patterns and thereby gradually restoring degraded wetlands.

2. Data Sources and Methods
2.1. Study Area

China’s drylands are located in Northern China, including Xinjiang (XJ) and the Hexi
Corridor Region (HCR). The total area is about 2.31 × 106 km2, which is about 22.08% of
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the total area of China (Figure 1). The average annual precipitation in China’s drylands
is 304 mm, which is usually much lower than the annual potential evapotranspiration
(814.90 mm), with high interannual precipitation variability [35]. The special geomor-
phology of China’s drylands allows rivers originating in high mountainous areas to form
centripetal water systems, distributed in a dendritic pattern, resulting in the formation of
many isolated inland wetlands. With reference to the classification system from a conven-
tion on wetlands [36], wetlands in China’s drylands were divided into four types in this
study: lakes, rivers, marshes, and artificial wetlands.
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2.2. Data Sources

The data sources used in China’s drylands included the Multi-period Land Use Remote
Sensing Monitoring Data Set (CN_LUCC) [37], Global Surface Cover Remote Sensing Data
(GlobeLand30_LUCC) [38], and the Annual China Land Cover Dataset (CLCD_LUCC) [39]
from 1990 to 2020. All three types of land use datasets were decoded using Landsat series
data. Among them, CN_LUCC is a combination of human–computer interactions and
visual interpretation methods to obtain data sets, which have a long time span, good level
of data accuracy, and relatively high levels of precision after zooming in [40]. Thus, it is
appropriate for important long-term time series investigations, and it has been widely
utilized throughout China [41,42]. GlobeLand30_LUCC was retrieved using pixel-object
knowledge (POK-based) classification. Its accuracy in global dryland [43], the European
Union [44], and other regions is estimated to be above 85% and it has a high degree of
consistency with related datasets. Many researchers have used it to analyze the distribution
of and changes in various land cover types [45,46]. CLCD_LUCC decodes land use using
GEE-based random forest classifier. Its total accuracy is 79.31% [39], and it has been
demonstrated to be effective in studying many regions of China [47–49].

Based on the three types of data sources, this study uses ArcGIS 10.6 to extract wetlands
in China’s drylands, because CN_LUCC is more appropriate for long-term time-series
surveys in China. Its wetland classification is refined to the second level, which covers
lakes, rivers, marshes, and reservoirs/pits, in line with the classification utilized in this
study. Thus, CN_LUCC was utilized as our primary data to research the wetlands in
China’s drylands, while GlobeLand30_LUCC and CLCD_LUCC were used as validation
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data to confirm the trend of the total area of wetlands in China’s drylands derived from
CN_LUCC. The 1 km resolution monthly average precipitation [50] and temperature [51]
datasets of China from 1990 to 2020 were used to analyze climate changes (Table 1).

Table 1. Description of data sources.

Dataset Resolution Source Time Scale

GlobeLand30_LUCC 30 m National Catalogue Service For Geographic Information [38] 2000–2020
CLCD_LUCC 30 m Land use data from Jie Yang et al., Wuhan University [39] 1990–2020

CN_LUCC 1 km Resource and Environment Science and Data Center [37] 1990–2020
Precipitation 1 km National Tibetan Plateau Data Center [50] 1990–2020
Temperature 1 km National Tibetan Plateau Data Center [51] 1990–2020

2.3. Wetland Area Evolution

Regarding wetland area changes, the changes in wetland area in China’s drylands
were first analyzed utilizing three types of data sources. Later, the change in wetland area
in four types of wetlands was analyzed using CN_LUCC. In this study, the rate of change
in wetland area was used to reveal the change in wetlands. The formula is as follows [52]:

RAC =
EA − IA

IA
× 100%, (1)

where EA is the wetland area at the end of the study period, and I is the initial wetland
area in the study period.

Regarding spatial dynamic change in wetlands, based on CN_LUCC, the spatial
dynamic changes in wetlands in China’s drylands from 1990 to 2020 were analyzed and
plotted. The methods for mapping the spatial dynamics of wetlands are shown in the
Supplementary Materials, Method S1.

2.4. Land Use Transfer Matrix

The quantity and structural features of various land use types in a specific time interval
can be fully and conclusively reflected in the land use transfer matrix [53]. In this study, we
analyzed the wetland transfer in China’s drylands between 1990 and 2020 using CN_LUCC.
The calculation formula is as follows:

Sij =


S11S12 . . . S1n
S21S22 . . . S2n
. . . . . . . . . . . .
Sn1Sn2 . . . Snn

, (2)

where S is the area; i and j denote the land use types at the start and end of the study period,
respectively; Sij is the converted area of land class i to land class j; and n is the total number
of land use types.

2.5. Landscape Indices

The landscape indices are simple quantitative indicators used to characterize the wet-
lands’ structural composition and spatial arrangement. Furthermore, to better understand
the evolutionary aspects of wetland patterns in China’s drylands, this study selected four
indices that can best reflect the characteristics of wetland pattern change: number of patches
(NP), patch density (PD), landscape shape index (LSI), and aggregation index (AI) [54,55].
Fragstats 4.2 was used to calculate the wetlands as well as each type of wetland pattern
index in China’s drylands from 1990 to 2020, using CN_LUCC.

According to relevant studies, the size of the moving window affects the stability of
landscape indices and the integrity of spatial information. The moving window method in
Fragstats 4.2 was used to obtain the distribution characteristics for each landscape index,
utilizing a 2000 m moving window [56,57].
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2.6. Linear Trend Analysis

To characterize the temporal changes in and intensities of meteorological elements
in China’s drylands from 1990 to 2020, pixel by pixel, we employed the unitary linear
regression method based on the least squares approach. This method comprehensively
integrates the meteorological data from each year from 1990 to 2020 [58]. Matlab-based
unitary linear regression and significance test codes for raster data were collected. Each
grid point’s trend and significance raster images were obtained by iterating over the climate
raster data pixel by pixel. According to a report in Nature Human Behavior [59], even if the
p-value is more than 0.05, we should avoid using absolute descriptions and instead use
“rarely” to describe the circumstance. As a result, “slight increase” and “slight decrease” are
used to describe the trend of climate change. The results were classified into five categories:

Basically stable (θSlope = 0, p < 0.05);
Significantly increasing (θSlope > 0, p < 0.05);
Slightly increasing (θSlope > 0, p > 0.05);
Significantly decreasing (θSlope < 0, p < 0.05);
Slightly decreasing (θSlope < 0, p > 0.05).

The unitary linear regression method calculation formula is as follows:

θSlope =
n × ∑n

i=1 (i × Qi)− (∑n
i=1 i)× (∑n

i=1 Qi)

n × ∑n
i=1 i2 − (∑n

i=1 i)2 , (3)

where θSlope is the trend of the climatic factor; n denotes the number of years studied; and
Qi denotes the meteorological element value of year i.

2.7. Human Disturbance Index

The main concept of the human disturbance index (HDI) was derived from the com-
prehensive index model of land use extent, which used land use remote sensing monitoring
data to determine the quantitative relationship between human activities and the ecological
environment [60]. Based on the wetlands in China’s drylands in 2020 taken from the
CN_LUCC, this study established a 10 km buffer zone, and land use data for 1990–2020
were extracted based on this range. The HDI model was used to analyze the impacts of
human activities on wetland dynamics in China’s drylands from 1990 to 2020.

The degree of anthropogenic disturbance in China’s drylands was defined and deter-
mined primarily by the degree of disturbance by human activities to land use types. Based
on previous research [61–63] and the current situation in the study area, land use types
(e.g., construction land, farmland, and paddy fields) with greater interference by human
activities have a higher defined interference index, and vice versa; the results are shown
in Table 2. Then, in ArcGIS 10.6, we utilized the ‘build fishnet’ feature to generate a grid
of 2 km by 2 km as the assessment unit. Following that, based on Table 2, the disturbance
coefficients of different land use/land cover (LULC) types were assigned, and the HDI
of each grid unit could be calculated as follows. ArcGIS was used to conduct statistical
analysis and determine an average value for each year, and the spatial variations in HDI
between 1990 and 2020 were obtained using ArcGIS10.6 “Raster calculator”. The calculation
formula of HDI is as follows [64]:

HDI = ∑n
i=0

(
Ai/Aj

)
× Pi, (4)

where HDI is the intensity of human disturbance in a single grid unit; Pi denotes the
coefficient of interference for type i land use; Ai denotes the area of type i land use in the
grid; Aj is the area of the grid; and n denotes that there are n land use types in the grid.
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Table 2. Classification of HDI (human disturbance index).

Subcategory Meaning Interference Index

Construction land Residential land, industrial land, energy
development land 0.99

Farmland Land for dry crops 0.70
Paddy field Rice fields 0.65
Garden land Arbor garden, shrub garden 0.57

Forest Natural forest, plantation, sparse forest 0.55

Lake A naturally bounded body of water
dominated by oxbow lakes 0.30

Reservoir pits/ponds Reservoirs and aquaculture 0.30
River Permanent rivers 0.23
Beach Floodplain, river bank, sandbank 0.17

Marsh Forest marsh, shrub marsh, coastal
wetland 0.15

Unused land Unused land including hard-to-utilize
land 0.10

2.8. Pearson Correlation Analysis

There was statistical significance in the correlation coefficients between the HDI, cli-
mate factors, and wetland pattern indices. In this study, we used Matlab 2023 to determine
whether there was a correlation and if so, the magnitude of the correlation, between pairs of
variables in each grid unit. We found Matlab codes for correlation analysis and conducted
significance testing of time series raster data. Correlation analyses of precipitation, temper-
ature, HDI, and wetland pattern indices from 1990 to 2020 were carried out individually,
with the 2020 wetland in China’s drylands serving as the boundary. The Supplementary
Materials (Method S2) shows the statistical approaches used to analyze the results. The
formula is as follows [58,65]:

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(5)

where R is the Pearson correlation coefficient between variables x and y, having a value
ranging from −1 to 1; n is the sample size; xi denotes the value of the landscape pattern
index in year i; yi denotes the climate factors or HDI in year i; and x and y are the means of
the two variables, respectively.

The research methodology flowchart of this study is illustrated in Figure 2.
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3. Results
3.1. Analysis of Wetland Pattern Changes
3.1.1. Evolutionary Characteristics

The spatial distribution of wetlands within China’s drylands (Figure 3) shows obvious
discontinuities and a relatively small area, and the distribution of wetlands has a close con-
nection with the watershed water system. Marshes were the main type of wetlands within
China’s drylands, accounting for 34.38%, followed by lakes, which account for 32.14% of
the total wetland area. Artificial wetlands, including paddy fields and reservoirs/pits,
accounted for 24.39% of the total wetland area. Rivers accounted for only 9.10% of the total
wetland area (Figure 3b).

The three datasets all showed that the wetland area within China’s drylands had an
increasing trend from 1990 to 2020, and based on the CN_LUCC analysis, the total wetland
area increased by 24.26% (Figure 4a). In XJ and the HCR, the wetland area had a trend
of continuous expansion; based on the CN_LUCC analysis, wetlands in XJ increased by
39.63% and wetlands in the HCR increased by 7.56%. There was a wide range of spatial
variation in the wetlands within China’s drylands (Figure 4b,c), with wetland expansion
mainly taking place in the vicinity of lakes in XJ and in the central Yellow River Basin
(Figure 4b), and wetland shrinkage occurring mainly in river basins (Figure 4c).
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The area of rivers, lakes, and artificial wetlands within China’s drylands all increased
(Figure 5a–d), among which the area of artificial wetlands increased the most, with an
increase of 50.89% in 2020 compared to 1990, followed by rivers with an increase of 33.61%
and lakes with an increase of 22.14%. There was no significant change in marshes from 1990
and 2020; however, there was a 7.08% decrease from 2000 to 2020. The changes in the four
types of wetlands in XJ (Figure 5e–h) were consistent with those in the wetlands within
China’s dryland; the areas of rivers, lakes, and artificial wetlands increased from 1990 to
2020, whereas marshes decreased by 10.78% from 2000 to 2020. In the HCR (Figure 5i–l),



Remote Sens. 2024, 16, 702 9 of 22

the area of rivers and artificial wetlands increased; however, marshes and lakes decreased
by 5.77% and 2.41%, respectively.
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3.1.2. Conversion Characteristics

In the wetlands within China’s drylands from 1990 to 2020, the highest rate of con-
version was between grassland and wetland, followed by that between saline land and
wetland, and then between farmland and wetland (Figure 6, Tables S1 and S2). Shrinking
marshes were converted mainly to grassland, farmland, and saline land. Expanding rivers,
lakes, and artificial wetlands were derived mainly from the conversion of grassland, saline
land, and farmland (Figure 6a). In XJ and the HCR, expanding wetlands likewise stemmed
primarily from the conversion of grasslands, saline land, and farmland, and shrinking
marshes mainly were converted to grasslands, farmlands, and saline land (Figure 6b,c). The
shrinking lakes of the HCR were converted mainly to grasslands and saline soils (Figure 6c).

3.1.3. Variation in Wetland Patterns

In regards to landscape, the wetland pattern within China’s drylands changed sig-
nificantly during the study period (Figure 7a–d). From 1990 to 2020, the NP, PD, and LSI
increased, which means that the fragmentation and complexity of wetland patterns within
China’s drylands increased. The AI showed a downward trend, with a steady decline from
1995 to 2020, indicating more fragmentation and the greater dispersion of wetland patches.

By further analyzing the changes in the wetland patterns in XJ (Figure 7e–h) and
the HCR (Figure 7i–l), the NP and PD show an overall upward trend from 1990 to 2020,
indicating that the fragmentation of the wetland patterns intensified in the two regions.
The LSI displayed a general upward trend, indicating that the complexity of patches within
the wetland increased in XJ and the HCR. The value of AI did not change significantly.

The NP and PD showed the same trend in terms of landscape class type
(Figure 8a,b,e,f,i,j,m,n). The NP and PD of the wetland types increased in general from 1990
to 2020, showing that the fragmentation of the wetland types was severe. The NP and PD
of rivers and artificial wetlands were greater in 2020, indicating that the fragmentation of
these wetland types was serious.
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The wetland types that had greater LSIs were artificial wetlands and rivers
(Figure 8c,o), indicating that their patch shapes were the most complex. In addition,
the LSIs of rivers, lakes, and marshes increased from 1990 to 2020 (Figure 8c,g,k), which
indicated that the patch shapes of these three wetland types became more complicated.
In contrast, the LSI of artificial wetlands increased from 1990 to 2015 and decreased from
2015 to 2020 (Figure 8o), indicating that the shape of artificial wetlands first became more
complicated and then became more simplified.

Changes in the AI are shown in Figure 8d,h,l,p. From 1990 to 2020, the AI of rivers
was the smallest among the wetland types, indicating that the distribution of rivers was
relatively more fragmented. From 1995 to 2020, the AI of rivers, lakes, and artificial
wetlands decreased, while that of marshes increased.

3.2. Climate and Human Activity Changes in Wetlands within China’s Drylands
3.2.1. Trends of Temperature and Precipitation

The climate from 1990 to 2020 showed a “warming and humidifying” trend (Figure 9),
in which the temperature and precipitation increased (Figure 9a,c). Concurrently, there
was a trend toward increased temperature and precipitation levels in both the HCR and
XJ. Based on the spatial and temporal variability, 68.32% of China’s drylands showed a
significant increasing trend in temperature, 15.50% of China’s drylands showed a slight
increasing trend, and only 0.04% showed a slight decreasing trend. Precipitation had an
uneven temporal and spatial distribution: 3.62% showed a significant increasing trend,
59.80% showed a slight increasing trend, 36.48% showed a slight decreasing trend, and
only 0.1% showed a significant decreasing trend. The areas of increasing precipitation were
concentrated in the western part of XJ and the southeastern part of the HCR, while the areas
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of decreasing precipitation were primarily in the eastern part of XJ and the northwestern
part of the HCR (Figure 9b,d).

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 9. Spatial and temporal trends of (a–c) precipitation and (d–f) temperature from 1990 to 2020 
in China’s dryland. 

3.2.2. Trends of Human Disturbance Index (HDI) 
The HDI changes in the wetland buffer zone are shown in Figure 10. Regarding tem-

poral changes (Figure 10a), the wetland buffer zone’s HDI increased from 1990 to 2020. 
The HDI in XJ and the HCR also increased, with the HDI in XJ increasing significantly 
during the study period, while that of the HCR declined from 1995 to 2000 but increased 
slowly from 2000 to 2020. In terms of the spatial variation in HDI (Figure 10b,c), 56.38% of 
the study area increased from 1990 to 2020, while 43.62% decreased. The increase in HDI 
was the most pronounced in the region of the river basin, as a consequence of the growth 
of urbanization and the spread of anthropogenic agglomerations. 

Figure 9. Spatial and temporal trends of (a–c) precipitation and (d–f) temperature from 1990 to 2020
in China’s dryland.

3.2.2. Trends of Human Disturbance Index (HDI)

The HDI changes in the wetland buffer zone are shown in Figure 10. Regarding
temporal changes (Figure 10a), the wetland buffer zone’s HDI increased from 1990 to 2020.
The HDI in XJ and the HCR also increased, with the HDI in XJ increasing significantly
during the study period, while that of the HCR declined from 1995 to 2000 but increased
slowly from 2000 to 2020. In terms of the spatial variation in HDI (Figure 10b,c), 56.38% of
the study area increased from 1990 to 2020, while 43.62% decreased. The increase in HDI
was the most pronounced in the region of the river basin, as a consequence of the growth
of urbanization and the spread of anthropogenic agglomerations.

3.3. Key Drivers of Wetland Evolution
3.3.1. Relationship between Wetland Evolution and Climatic Factors

Temperature and precipitation were selected to be combined with the wetland pattern
indices to enable a pixel-by-pixel correlation and significance analysis. The results are
shown in Figures 11a and 12a, while the spatial distribution is shown in the Supporting
Information (Figures S2 and S3). The results indicate that the precipitation over most
wetland areas within China’s drylands was significantly and positively correlated with the
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pattern indices. XJ and the HCR were also significantly and positively correlated with the
pattern indices (Figure 11a). Meanwhile, the temperature over most wetland areas within
China’s drylands was significantly and positively correlated with the NP, PD, and LSI, but
significantly and negatively correlated with AI. The temperature over most areas of XJ was
significantly and negatively correlated with the pattern indices, while over most areas of
the HCR, it was significantly and positively correlated with them (Figure 12a). Our analysis
of the correlation between temperature, precipitation, and the four types of wetland pattern
indices revealed, as shown in Figures 11b and 12b, significant positive correlations between
precipitation and the pattern indices for most of the four wetland types. The temperature
over most river areas was significantly and positively correlated with the NP, PD, and
LSI, but not significantly correlated with AI. The temperature over most lake areas was
significantly and negatively correlated with the pattern indices. Temperature was strongly
and positively correlated with the NP, PD, and LSI in most marsh locations, but significantly
and negatively correlated with AI. The temperature over most artificial wetland areas was
significantly and positively correlated with the pattern indices (Figure 11b).
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By comparing the sizes of the correlations between precipitation, temperature, and the
wetland pattern indices, the most important climatic factors affecting the wetlands within
China’s drylands were derived. The results are shown in Table 3. Except for the PD of the
HCR, where temperature was the dominant climatic factor, for all the others, precipitation
was the dominant factor. Thus, precipitation was the main factor influencing changes in
wetland patterns within China’s drylands, and temperature also had an important effect.

Table 3. Main climatic factors affecting wetlands within China’s drylands.

Region Dominant
Factors

Index

PD NP LSI AI

China
Precipitation 59.48% 65.15% 65.43% 65.89%
Temperatures 40.52% 34.86% 34.57% 34.11%

XJ
Precipitation 67.02% 70.66% 70.54% 70.68%
Temperatures 32.97% 29.33% 29.46% 29.32%

HCR
Precipitation 49.26% 58.11% 58.85% 59.86%
Temperatures 50.74% 41.89% 41.45% 40.14%

3.3.2. Relationship between Wetland Evolution and HDI

The relationship between the HDI and wetland patterns is displayed in Figure 13a,
while the spatial distribution is in the Supporting Information (Figure S4). The HDI was
significantly and positively correlated with the pattern indices in most parts of the wetlands
within China’s drylands. Most parts of XJ and the HCR also showed a significant positive
correlation. The correlation results between the HDI and the patterns for different wetland
types within China’s drylands also showed a significant positive correlation (Figure 13b).
An elevated HDI exacerbated the degree of fragmentation of wetlands within China’s
drylands, which led to an increase in the degree of wetland patch segregation.
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3.3.3. Key Drivers of Wetland Pattern Evolution

The correlation results of climate factors, the HDI, and the wetland pattern indices
were compared, and the variables corresponding to higher correlation coefficients were
recognized as the dominant factors. The statistics of the shared area of each factor are
shown in Table 4. On average, human activities dominated, accounting for over 55% of the
regional wetland pattern changes, and the main factor affecting wetland changes within
China’s drylands was human activities. Human activities also dominated the changes in
wetland patterns in XJ and the HCR.

Table 4. Main factors affecting wetlands within China’s drylands.

Region Factors
Index

PD NP LSI AI

China
Climatic factors 41.74% 43.72% 41.73% 44.00%

HDI 58.26% 56.28% 58.27% 56.00%

XJ
Climatic factors 37.36% 37.51% 36.89% 39.50%

HDI 62.64% 62.49% 63.11% 60.50%

HCR
Climatic factors 47.56% 50.39% 47.80% 49.43%

HDI 52.44% 49.61% 52.20% 50.57%
Note: Climatic factors derived from the sum of the percentage of area in which precipitation and temperature are
the dominant factors.

The shared area statistics of the main influencing factors for the wetland types are
shown in Table S3, revealing that the primary factor influencing the change in the pattern
of each wetland type was also human activities. The main factor influencing the shift in
wetlands inside China’s drylands and the fragmentation of wetland patterns is increased
human activity, but climate change also plays a significant role.

4. Discussion
4.1. Analysis of the Driving Forces for the Evolution of Diverse Types of Wetlands
4.1.1. Lake Expansion with Regional Differences and the Uneven Distribution of
Precipitation

From 1990 to 2020, lakes showed regional differences in their expansion—namely,
westward expansion and eastward contraction, in which the lakes in XJ showed an expand-
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ing trend. This aligns with the findings of Wang et al. [66], in which the area of lakes in XJ
showed an expanding trend from 1986 to 2019. Most of the major lakes (bodies of water
covering more than 10 km2) in XJ showed an expanding trend in recent decades (Table S4).
Among climatic factors, temperature adversely affects rain-fed lakes but has a positive
impact on snow- and ice-melt-fed lakes [67]. The climate in China’s drylands is warming
and becoming wetter, with increases in both precipitation and temperature (Figure 9a,d).
Lakes in the plateau and alpine regions of XJ rely on ice and snowmelt water recharge
and are less affected by human activities. The wetter climate and greater levels of glacial
melt resulted in increased runoff and an increased water supply, which facilitated lake
expansion [68,69]. Moreover, the glacial area in the North Tianshan Mountains of Sayram
Lake decreased by 316.03 km2 from 1960 to 2018 because of the rising temperatures, and the
ice and snow meltwater in the watershed increased surface runoff, resulting in an increase
in wetland area [70]. The Kaidu River experienced climate warming from 1980 to 2018, and
the rising temperatures promoted the formation of ice and snow meltwater, which led to a
gradual increase in the amount of river runoff and an increase in the area of Lake Bosten,
whose waters flow from the Kaidu River [71].

The lakes in the HCR shrank. The lakes of Inner Mongolia had a rapid decreasing
trend from 1989 to 2018, with the number of lakes decreasing by 83 lakes/a and the total
area decreasing by 14.60% [72]. The area of major lakes in the HCR has also shrunk in
recent decades (Table S4). Due to the large fluctuations in precipitation in China’s drylands
from 1990 to 2020, and the uneven spatial and temporal distribution of precipitation, the
northwest of the HCR experienced a decrease in precipitation (Figure 9b). In addition,
the increased temperatures in the study area caused a significant increase in evapotran-
spiration, resulting in a reduction in wetland water recharge and an increase in water
consumption. This then led to lakes in the HCR being transformed into grasslands and
saline soil (Figure 6c). This aligns with the findings of Guo et al. [72] and Feng et al. [73],
who found the primary cause of lake changes in Inner Mongolia to be warming and drying
climate trends. Furthermore, a study by Feng et al. [73] on the lake areas in Southeastern
Latin America, Southern Latin America, and Central Asia (near the Caspian Sea), which
are all in the drylands, found that the drying of the climate led to a decline in the lake areas
in these places.

4.1.2. River Expansion but Severe Fragmentation Due to Increased Precipitation,
Temperatures, and Human Activity

The rivers in China’s drylands expanded but were severely fragmented from 1990 to
2020. Human activity was the main factor influencing the river dynamics. China’s drylands
have implemented numerous water conservation projects, such as water diversion projects,
water conservancy construction, the excavation of canals, and the construction of more
reservoirs and canals to support the river system. The Tarim River Basin saw a rapid rise
in the wetland areas in 2011 after more than 10 years of artificial water transfer, and the
wetland areas downstream of the Tarim River increased by 216.80% in 2018 compared to
their area in 1900 [74]. The “Ecological Water Transfer Plan” implemented in 2000 increased
the Heihe river area [75]. However, the implementation of hydraulic projects increased the
level of wetland fragmentation, especially the implementation of water transfer projects,
which further exacerbated the fragmentation of the river. Furthermore, human factors,
represented by population, farmland, and construction land increases, were the main
factors driving the process of the fragmentation of river landscapes.

Furthermore, precipitation and temperature in China’s drylands had an overall in-
creasing trend (Figure 9a,d). On the one hand, increased precipitation resulted in the
expansion of rivers. For instance, the Yarkant River Basin’s enhanced streamflow was 87%
due to increased precipitation [76]. On the other hand, most rivers in China’s drylands
develop in the high mountains, such as the Hotan and Yarkand rivers, which originate in
the Tianshan Mountains, the Irtysh River, which originates in the Altai Mountains, and the
Hei River, which originates in the Qilian Mountains. Ice meltwater becomes an important
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recharge source for rivers. The warming of the climate in China’s drylands has caused
glaciers to shrink, and runoff from glacial meltwater flows directly into their downstream
reaches, increasing the area of rivers. For instance, the Hotan and Aksu river basins saw
increases in streamflow primarily due to higher temperatures, which accounted for 94%
and 66% of the increases, respectively [76]. Furthermore, rising temperatures in the Heihe
River Basin have led to the accelerated melting of Qilian Mountain glaciers, which are the
most important sources of water in the HCR. Increased glacial meltwater has led to more
runoff into the Heihe River [67].

4.1.3. Marsh Shrinkage all over China’s Drylands and Conversion to Farmland and
Grassland

Marshes shrank in size from 1990 to 2020. Mao et al. [77] also showed that the marshes
in China’s drylands have decreased by about 69,100 km2 over the past 40 years. Human
activities are the most significant cause of marsh shrinkage. The population of China’s
drylands increased from 3.66 × 107 people in 1990 to 4.99 × 107 people in 2020 [78]. As
the population grew, large-scale land reclamation occurred, crowding out wetlands and
causing the marsh area to shrink. Rapid urbanization resulted in a population explosion and
urban building land expansion, which occupied a portion of the marsh region. Farmland
and construction land continued to increase from 1990 to 2020 by 38.08% and 85.21%,
respectively, resulting in marshes in China’s drylands being converted into farmland and
construction land (Figure 6a). Luo et al. [69] similarly showed that 122.33 km2 of wetlands
were converted to farmland in northern XJ from 1980 to 2015. In addition to cultivating
directly on wetlands, overusing water resources for agriculture causes marshes to disappear
indirectly. From 2000 to 2010, channels and ditches in XJ increased by 4.07% [23]. In Tarim
Populus National Nature Reserve from 1999 to 2016, irrigation channels and paddy fields
increased by 111.21% and 100.30%, respectively [79]. Yun et al. [80] similarly showed
that the Yellow River Basin in China’s drylands has experienced a serious shrinkage of
natural wetland area due to agricultural and pastoral encroachment and irrigation from
1990 to 2020. The increase in drainage and irrigation activities has led to marshes gradually
degrading into meadows. The shrinkage of marshes in China’s drylands was mainly
due to their conversion into grassland (Figure 6a). The evolution of marshes in China’s
drylands is consistent with that of marshes which shrank from 2000 and 2015, and the
primary factors contributing to wetland loss are farmland land use and urban sprawl [81].
Furthermore, in recent decades, the marsh areas of Borg El-Arab [82] and dryland of Lake
Tana in Ethiopia [83] decreased, mostly as a result of the expansion of farmland.

Climate changes also play a role in marsh shrinkage. In western XJ and the Northwest-
ern HCR (Figure 9b), precipitation decreased, and the increased warmth in the study area
resulted in a significant rise in evapotranspiration, resulting in the transformation of many
marshes into grasslands and saline soil (Figure 6a). From 1990 to 2020, as a result of reduced
precipitation, higher temperatures, and increased evapotranspiration, the marshes of Inner
Mongolia’s Yellow River Basin were greatly reduced [80]. From 1986 to 2020, Dalinor
Nature Reserve showed increased evapotranspiration caused by rising temperatures and
precipitation fluctuations, which led to the amount of water in the lake decreasing [84].

4.1.4. Artificial Wetland Expansion and the Increase in Artificial Reservoirs

The growth of artificial wetlands within China’s drylands was significant from 1990
to 2020. Recently, the increase in the number of artificial reservoirs has been the main
reason for the increase in artificial wetlands. The area of reservoirs and pits in XJ increased
by 2.28% and 0.05% of its non-wetlands were transformed into artificial wetlands from
2000 to 2010 [23]. A period of a significant increase in the area of reservoirs was from
2010 to 2020, with a total of 136 reservoirs built in XJ, accounting for 23.50% of the total
number of reservoirs in the whole territory [69]. In addition, the area of artificial wetlands
in Tarim Poplar National Nature Reserve increased by 100.59% from 1999 to 2016 [79].
In Inner Mongolia’s Yellow River Basin, the area of reservoirs increased by 78.20% from
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1990 to 2020, and artificial wetlands increased significantly, at a rate of 16.41 km2/a [80].
The growth of artificial wetlands has spread substantially throughout China’s drylands.
This aligns with China’s overall development trend. With China’s rapid urbanization,
population growth, and increased awareness of environmental protection, the expansion of
artificial wetlands, such as reservoirs and wetland parks, has accelerated and will continue
to expand in China’s drylands and throughout the country [85].

4.2. Strategies for Wetland Conservation

(1) Lakes and rivers have expanded over the last 30 years, but the majority of this growth
has been caused by increasing snowmelt from glaciers. However, glaciers in China
have been decreasing in recent years [86]. Lakes and rivers are in danger, so we need
to increase their protection by establishing wetland nature reserves and parks. To
increase water resource usage, rational water allocation for living and production
should be implemented.

(2) Compared to climate change, human activities could have more intense and irre-
versible damage to wetland ecosystems [81]. The degradation of marshes and river
fragmentation in China’s drylands is primarily driven by the occupation of wetlands
by agriculture and urban construction sites, as well as increased drainage and irri-
gation activities. Thus, controlling human activity is the most crucial measure for
protecting wetlands. As a result, public education about wetland protection should be
prioritized, particularly among farmers. Second, we must strengthen the protection
of wetlands. For example, we can prohibit the conversion of wetlands into farmland,
prohibit grazing operations in marshes, and limit “mowing activities” on reed and
other marsh vegetation from May to August to safeguard marshes.

(3) China has undertaken extensive conservation and restoration efforts to safeguard wet-
land resources, including the National Wetland Conservation Action Plan (NWCPAP)
in 2000, the National Wetland Conservation Plan (NWCP) (2002–2030) in 2003, and
the NWCP’s short-term implementation plan every five years. To boost the conserva-
tion and restoration of wetland resources in China’s drylands, the National Wetland
Conservation Plan must be actively promoted and implemented, increasing wetland
protection and restoration.

4.3. Limitations of Remote Sensing Interpretation of Wetlands

Due to its advantages in terms of its efficiency, speed, and observation range, re-
searchers both domestically and internationally favor remote sensing technology. Whether
for macro-monitoring, such as for wetland dynamic changes, or micro-monitoring, such
as for wetland resource type classifications, remote sensing technology is widely used in
wetland research. This effectively avoids the issues of traditional investigation methods,
which are slow to update and are difficult to use to conduct investigations in depth. Still,
there are still some issues with the way wetland data is currently extracted.

(1) The range of wetland regions is hard to define accurately, and the accuracy of extrac-
tions is unsatisfactory for some wetland types (vegetation and marshes, for example);

(2) There are several limits to the display of wetland types in remote sensing images. For
example, natural wetland boundaries can be artificially repaired or preserved and
have visible bounds in remote sensing images, making them easily identifiable as
artificial wetlands (reservoirs/pits);

(3) In some areas of China’s drylands, the quality of remote sensing images is poor,
and coverage is inadequate, necessitating additional images from nearby water-rich
months or years, making it difficult to extract seasonal wetland data.

5. Conclusions

Based on three types of land use data sources from satellite images, the spatiotem-
poral characteristics of the evolution of the wetlands and their relationship with human
interference and climate change from 1990 to 2020 were analyzed within China’s drylands.
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Over the last three decades, the area of wetlands in China’s drylands has increased, and the
overall fragmentation of the wetlands has worsened. The increase in human activities was
found to be the main driving factor for the changes in wetland patterns, but climatic factors,
i.e., warming and humidification, also had an important impact. Among them, due to the
uneven spatial and temporal distribution of precipitation and rising temperatures, the area
of lakes in XJ expanded, while that in the HCR shrunk. Affected by the warmer and wetter
climate and the implementation of numerous water transfer projects, the rivers in China’s
drylands showed an expanding tendency. However, the fragmentation of rivers increased
because there were increasing levels of human activity. The occupation of wetlands by
farmland and urban construction land, as well as the increase in drainage and irrigation
activities were the main factors causing the marshes to shrink. The growing number of
artificial reservoirs was the primary cause of the development of artificial wetlands.
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