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Abstract: Timely acquisition of forest structure is crucial for understanding the dynamics of ecosystem
functions. Despite the fact that the combination of different quantitative structure models (QSMs)
and point cloud sources (ALS and DAP) has shown great potential to characterize tree structure,
few studies have addressed their pros and cons in alpine temperate deciduous forests. In this study,
different point clouds from UAV-mounted LiDAR and DAP under leaf-off conditions were first
processed into individual tree point clouds, and then explicit 3D tree models of the forest were
reconstructed using the TreeQSM and AdQSM methods. Structural metrics obtained from the two
QSMs were evaluated based on terrestrial LiDAR (TLS)-based surveys. The results showed that
ALS-based predictions of forest structure outperformed DAP-based predictions at both plot and
tree levels. TreeQSM performed with comparable accuracy to AdQSM for estimating tree height,
regardless of ALS (plot level: 0.93 vs. 0.94; tree level: 0.92 vs. 0.92) and DAP (plot level: 0.86 vs. 0.86;
tree level: 0.89 vs. 0.90) point clouds. These results provide a robust and efficient workflow that takes
advantage of UAV monitoring for estimating forest structural metrics and suggest the effectiveness
of LiDAR in temperate deciduous forests.

Keywords: airborne laser scanning; terrestrial laser scanning; digital aerial photogrammetry; forest
structure; TreeQSM; AdQSM

1. Introduction

Traditional forest inventories have often relied on ground surveys of specific sam-
ple plots, which are costly, labor-intensive, and spatially limited [1,2]. In comparison,
recent point cloud technology, derived from advanced remote sensing approaches such
as photogrammetry and light detection and ranging (Li-DAR), has opened new avenues
for automating and improving the accuracy of forest inventory assessments in a rapid and
non-destructive manner [3–5], enabling more accurate and timely assessments of forest
resources for precise forest management.

Point cloud technology provides a three-dimensional representation of forest structure
and captures a wealth of detailed information associated with forest structure, such as tree
height, basal area, canopy density, and gap fraction [6,7]. The acquisition platforms that
enable the collection of point clouds and the inference methods derived from them are of
paramount importance in the extraction of forest structure.

The point clouds derived from different techniques and platforms, especially terrestrial
laser scanning (TLS), airborne laser scanning (ALS), and digital aerial photogrammetry
(DAP), have been widely used in the extraction of forest structure [3,8,9]. Among them, ALS
has been the primary data source for deriving forest structural characteristics [10–13]. How-
ever, ALS for individual tree segmentation could introduce errors [14,15], and ALS could
better estimate forest density with respect to taller trees, while leading to underestimation
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of smaller trees [16]. Alternatively, digital aerial photography (DAP) shows great potential
for deriving forest structural metrics [17–20]. It has been shown to provide predictive ability
comparable to that of ALS data [20,21], but with lower data acquisition costs [22,23]. On
the other hand, TLS acquires high-density point clouds from the ground up and has made
significant progress in accurately measuring forest structural attributes [4,24], such as stem
volume, crown structure, and leaf angle distribution [25–27]. In general, TLS can provide
high-resolution data with less noise [8], and is able to map structurally complex forests and
detect fine-scale internal features within the canopy, making it useful for validating ALS
data [28,29].

Meanwhile, point cloud derivation approaches are the next crucial step in forest struc-
ture extraction, which can be broadly categorized into the voxel-based approach [30–32]
and geometric modeling [33,34]. The voxel-based method considers the downsampling
of the original point clouds and generally relocates the points into regular cubics with
different approaches [8,35,36] to estimate structures [37,38], and the estimation accuracy is
influenced by the voxel size [30,39,40]. In comparison, geometric modeling allows explicit
reconstruction of individual tree structures modeled by quantitative structure modeling
(QSM) based on tree segmentation. In recent years, it has been increasingly recognized to
create explicit 3D models of trees for tree structure assessment [41,42], providing highly
detailed tree attributes for biomass estimation and other purposes [43–46].

There are some established approaches for reconstructing QSMs, such as TreeQSM [42],
SimpleTree [47], and AdQSM [48], to name a few. TreeQSM has been successfully applied
to extract structural attributes such as branch diameter and length estimation [44] and stem
biomass assessment in forest scenarios [49]. Recently, a new QSM algorithm (AdQSM) has
been released and successfully applied to quantitative structure modeling of tropical trees
from TLS point clouds for above-ground biomass (AGB) estimation [48]. However, the
two QSMs have mostly taken the TLS-based point clouds as input and produced good
results [44,50–53], but fewer evaluations have been made on the point clouds from other
sources, despite the increasing number of studies using ALS-based point clouds. Among the
few, Brede et al. [41] evaluated tree volume using a QSM based on unmanned aerial vehicle
laser scanning data and found that concordance was influenced by denser stands and
smaller branches. Similarly, Ye et al. [54] evaluated the potential of UAV-based DAP point
clouds as an input to a QSM for estimating woody biomass, but claimed that QSMs cannot
show good performance with UAV data. To the best of our knowledge, DAP point clouds
as input to QSMs have not been explored yet. Therefore, the applications of the two QSM
methods on point clouds from different sources should be comprehensively investigated.

The overall objective of this study is to perform a comprehensive comparison of the
non-destructive estimation of structural metrics from TreeQSM and AdQSM tree models
using point cloud data from ALS, DAP, and TLS data sources in a complex alpine temperate
deciduous forest. Specifically, this study aims to (1) compare the accuracy of ALS and DAP
point clouds in estimating forest structural metrics with reference to TLS point clouds; and
(2) evaluate the performance of TreeQSM and AdQSM approaches for estimating forest
structural attributes based on the different data sources. The comprehensive investigation
conducted in this study is useful for biomass and other functional assessments, and also
provides a foundation for other forest types included in related studies.

2. Materials and Methods
2.1. Study Site and Ground Truth Data

Seven plots in the Shizuoka University Forest in Nakakawane, Japan were the study
sites in this study. These seven plots were selected based on a trade-off between the number
of trees and labor intensity. All the plots were adjacent to each other and each occupied
an area of 20 m × 20 m. The predominant forest type of the study area was temperate
deciduous forest, with an average annual precipitation and temperature of approximately
2153 mm and 17 ◦C, respectively [55,56].
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The TLS-based metrics served as the ground truth data in this study. A FARO Fo-
cus3D × 130 3D single-return scanner (FARO, Lake Mary, FL, USA) was used to obtain
raw TLS point clouds under leaf-off conditions. The scanner carries an optical transmitter
with a wavelength of 1550 nm, and the beam divergence and sampling angular step size
are typically 0.19 mrad (0.011◦) and 0.009◦, respectively. The field of view angles for ver-
tical and horizontal are 0◦–300◦ and 0◦–360◦, respectively. TLS measurements for seven
plots were performed on 4 December 2023. Because the scanner operates exclusively in
single-return mode, multiple scans were performed on each plot to collect comprehensive
real-world scenes. The complete seven plots were scanned from 18 locations, resulting in
18 individually scanned point clouds (Figure 1).
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Figure 1. Locations of the plots and TLS scans within the study site.

Raw TLS point clouds were filtered and exported in SCENE software (version 6.2.4.30,
FARO, Lake Mary, FL, USA). GlobalMatch [57] was employed to carry out point cloud
registration at the plot level by calculating a 4 by 4 transformation matrix. Point cloud
merging and cropping was conducted with CloudCompare software (version 2.13.beta).
The Computree platform (version 5.0, ONF, Paris, France) and the plug-in SimpleForest [58]
were employed for individual tree point cloud segmentation. TreeQSM (version 2.4.1,
Raumonen et al. [42]) was further applied for quantitative structure modeling and structural
metrics calculation. In total, 150 trees within 7 plots were processed and served as ground
truth data. Figure 2 shows the distributions and statistics of representative structural
metrics from TLS point clouds, including diameter at breast height (DBH), tree height (H),
and crown area (CA).

2.2. UAV-Based Measurements and Pre-Processing

The UAV-based measurements were performed on the same day as the TLS mea-
surements. Both ALS and DAP data were collected using the sensors carried by the DJI
Matrice 300 RTK (DJI, Shenzhen, China). Specifically, ALS data were collected using a
DJI Zenmuse L1 LiDAR scanning system (DJI, Shenzhen, China), which has a horizontal
accuracy of 0.1 m per 50 m and a vertical accuracy of 0.05 m (standard deviation). The
measurement beam divergence of the scanner was set to 0.28◦ in the vertical plane and 0.03◦

in the horizontal plane, allowing up to 3 reflections per laser beam in multiple-return mode.
The DAP data were captured using a DJI Zenmuse P1 digital photography camera (DJI,
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Shenzhen, China), which has a superior resolution of 45 megapixels, producing images of
8192 × 5490 pixels.
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Automatically programmed with DJI Pilot, the flight patterns of forward and lateral
overlap ratio were set to 70% and 80%, respectively, with an altitude of 60 m above the
relative launch point and IMU calibration enabled when performing ALS measurements.
The return mode was set to triple, the sampling rate was set to 160 KHz, and the scan mode
was set to non-repetitive with RGB coloring enabled. The expected point cloud density and
ground sampling distance (GSD) were 1789 point/m2 and 1.64 cm/pixel, respectively. To
ensure the precision of the UAV flight and data acquisition, the DJI D-RTK 2 high-precision
GNSS mobile station (DJI, Shenzhen, China) was used to acquire the precise position
information of the drones in three-dimensional space.

Raw scanning data were subsequently input to DJI TERRA 3.5.5 (DJI, Shenzhen, China)
for post-processing, and process parameters were set to high quality. The exported ALS
and DAP point clouds were clipped into rectangular cuboids with dimensions of 20 m in
length and width using CloudCompare software (version 2.13.beta) for further analysis.

2.3. Tree Segmentation

A bottom-up method for tree segmentation was implemented in the Computree
platform with the SimpleForest plug-in. Specifically, the plot point clouds were separated
into ground and vegetation points; ground points were used to construct a digital terrain
model (DTM); seed points for segmentation were specified by cutting the vegetation
points over the DTM with multiple specific heights; a Dijkstra segmentation method
was implemented for individual tree point segmentation by combining the seed points
and vegetation points. The parameters used during the segmentation process were not
consistent and changed frequently, depending on the variations in data sources and real-
world scenarios. In total, 108 and 23 trees were successfully segmented from seven ALS
and DAP point clouds, respectively. The tree segmentation workflow used in this study is
shown in Figure 3.

2.4. Quantitative Structure Modeling

TreeQSM (Raumonen et al. [42], https://github.com/InverseTampere/TreeQSM, latest
accessed on 1 January 2024) and AdQSM (Fan et al. [48], https://github.com/GuangpengFan/
AdQSM, latest accessed on 2 January 2024) were selected for modeling the segmented ALS and
DAP tree point cloud data in this study. The structural metrics were automatically calculated
upon the completion of modeling, and common structural metrics output from TreeQSM and
AdQSM are shown in Table 1.

https://github.com/InverseTampere/TreeQSM
https://github.com/GuangpengFan/AdQSM
https://github.com/GuangpengFan/AdQSM
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Figure 3. Segmentation process of individual trees from ALS/DAP point clouds. (a) Raw point
cloud data; (b) classified ground (brown), vegetation (white), and seed points (red); (c) segmented
individual tree points by Dijkstra segmentation algorithm with different colors represented.

Table 1. Common structural metrics in TreeQSM and AdQSM.

Category Attribute Description

Length

DBH The diameter of the cylinder in the QSM at the right height
TreeHeight Height (m) of the tree

TrunkLength Length (m) of the stem
CrownLength Crown’s vertical length (m)

TrunkArea Total surface area (m2) of the stem
CrownBaseHeight The crown’s base height (m) from the ground

Area

BranchArea Total surface area (m2) of the branches
TrunkArea Total surface area (m2) of the trunk
TotalArea Total surface area (m2) of the tree

CrownAreaAlpha Area (m2) of the crown’s planar projection’s alpha shape
CrownAreaConv Area (m2) of the crown’s planar projection’s convex hull

Volume

TrunkVolume The total volume (L) of the stem part
BranchVolume The total volume (L) of the branch part
TotalVolume The total volume (L) of the tree

CrownVolumeAlpha Total volume (L) of the crown’s alpha shape
CrownVolumeConv Total volume (L) of the crown’s convex hull

Other Number of branches Number of branches

TreeQSM has been successfully used for the estimation of biophysical parameters
since it considers the tree’s inherent structure [41,52]. The detailed 3D reconstructions of
the branch and stem architecture for each tree followed the workflow outlined in the study
of Calders et al. [52]. In TreeQSM, three critical parameters affect model reconstruction:
PatchDiam1, PatchDiam2Min, and PatchDiam2Max. Following the TreeQSM version 2.4.1
instructions, we configured these parameters with 2, 3, and 2 values, respectively, resulting
in a total of 12 different parameter combinations for model reconstruction. Each of these
combinations was reconstructed five times, leading to the generation of 60 models for a
single tree point cloud. To select the best model from the aforementioned 60 models, we
utilized the cylinder distance metrics, specifically “trunk+branch_mean_dis,” for optimized
model selection.

AdQSM is a new tree quantitative structure model (QSM) developed based on the
AdTree algorithm [59]. This QSM is capable of reconstructing individual tree structure
models by applying not only TLS point cloud data but also ALS point cloud data. Height
segmentation (HS) and cloud parameter (CP) serve as two critical parameters to control the
quantitative structure modeling process. In this study, following the author’s recommenda-
tions in the manual, the CP was kept at its default value of 0.003 and was not changed for
each reconstruction. By setting different values of HS for multiple reconstructions (0.4, 0.6,



Remote Sens. 2024, 16, 697 6 of 15

0.8, 1.0), the average value of each structure parameter was calculated as the final result of
the tree reconstruction.

2.5. Analysis Flowchart

The overall workflow of data processing steps in this study is shown in Figure 4.
Highly detailed TLS data were treated as ground truth to evaluate the performance of UAV-
based ALS and DAP point cloud data in forest structural metrics estimation, including field
measurements, tree segmentation, quantitative structure modeling, and structure metrics
evaluation. Specifically, ground-based and UAV-based measurements were performed to
obtain raw TLS, ALS, and DAP data, and corresponding point cloud data were exported
after several pre-processing steps. These point clouds were then segmented into individual
tree point clouds using the bottom-up method under the SimpleForest plug-in mounted
on Computree. Then, the two QSM methods were performed to generate the quantitative
structure model of each tree; the structural metrics are automatically calculated when the
QSM modeling is completed. Finally, the structural metrics of DBH, H, and CA were
selected as evaluation indicators, and the accuracy and model performance of structural
metrics estimated from ALS and DAP data were evaluated by TLS data. The statistical
measures of the coefficient of determination (R2) and root mean square error (RMSE) were
used to evaluate their predictive accuracy.
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3. Results
3.1. ALS Point Cloud-Based QSM Estimations: TreeQSM vs. AdQSM

Plot-level statistical descriptions of forest structural metrics, derived from ALS data
using TreeQSM and AdQSM, are presented in Figure 5. For TreeQSM results across the
seven plots, the mean values of DBH, H, and CA varied from 27.97 to 39.84 cm, 14.04 to
16.56 m, and 24.78 to 44.40 m2, respectively. Concurrently, the standard errors (SEs) for
DBH, H, and CA ranged from 2.80 to 6.41, 0.43 to 1.63, and 2.87 to 10.24, respectively. In
comparison, the results obtained from AdQSM had the mean values of DBH, H, and CA
ranging from 35.65 to 51.43 cm, 14.03 to 16.62 m, and 20.82 to 37.88 m2, respectively. The
corresponding SEs for DBH, H, and CA varied from 1.79 to 8.91, 0.44 to 1.64, and 2.89 to
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10.4, respectively. Furthermore, large differences were observed in DBH in the specific plots
(plot 5 and plot 7) and CA (all plots) while they were nearly identical in H (all plots).
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Figure 5. Description of the extracted DBH, H, and CA based on TreeQSM and AdQSM constructed
using the ALS point clouds at the plot level.

The comparison of TreeQSM and AdQSM built from ALS for the estimation of DBH,
H, and CA at plot level is shown in Figure 6. The TreeQSM and AdQSM exhibited poor
performance for estimating DBH, irrespective of TreeQSM (R2 = 0.35, RMSE = 2.83) and
AdQSM (R2 = 0.12, RMSE = 5.49). However, the association between TreeQSM and AdQSM
was strongly linear for the estimation of H with close R2 values of 0.93 and 0.94, while
RMSE values were 0.19 and 0.18. In comparison, the two methods show good performance
in the estimation of CA, but AdQSM shows relatively better performance compared with
TreeQSM, as AdQSM yielded results with an R2 of 0.82 and RMSE of 2.57, followed by
TreeQSM (R2 = 0.68, RMSE = 4.09).
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Figure 6. Plot-level comparison of structural metrics (DBH, H, and CA) estimated by TreeQSM
and AdQSM methods constructed from TLS and ALS point clouds. (a) Estimated DBH comparison
between TLS and ALS using two QSMs; (b) estimated H comparison between TLS and ALS using
two QSMs; (c) estimated CA comparison between TLS and ALS using two QSMs.

Further tree-level assessments of DBH, H, and CA estimated from ALS using the
TreeQSM and AdQSM methods are shown in Figure 7. Specifically, the distributions of
the structural metrics estimated by TreeQSM and AdQSM were skewed. For the TreeQSM
results, the estimated DBH, H, and CA ranged from 9.15 to 78.85 cm, 5.72 to 20.27 m, and
4.54 to 144.42 m2, respectively. The median and mean values for DBH, H, and CA were
29.99 and 32.00 cm (SE: 1.36), 15.00 and 14.42 m (SE: 0.29), and 24.68 and 29.86 m2 (SE: 2.03),
respectively. The estimated CA varied more (CV: 70%) compared with DBH (CV: 44%) and
H (CV: 21%). For the AdQSM results, the estimated DBH, H, and CA ranged from 17.88 to
117.96 cm, 5.81 to 20.15 m, and 1.00 to 141.50 m2, respectively, while the median and mean
for DBH, H, and CA were 37.87 and 42.62 cm (SE: 1.75), 15.00 and 14.44 m (SE: 0.29), and
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20.00 and 25.09 m2 (SE: 1.91), respectively. Similar to the TreeQSM results, the estimated
CA varied more (CV: 79%) compared with DBH (CV: 42%) and H (CV: 21%). Among the
three parameters, the estimated results for H from both methods are very close in terms of
distribution and statistical metrics.
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The comparison of TreeQSM and AdQSM results derived from ALS for the estimation
of DBH, H, and CA at tree level is shown in Figure 8. Similar to the results at the plot
level, both methods demonstrated excellent performance in the estimation of H, with the
same R2 of 0.92 and close RMSEs (TreeQSM: 0.82, AdQSM: 0.81). However, both methods
still exhibit poor performance in the estimation of DBH, with AdQSM showing the lowest
performance (R2: 0.09; RMSE: 18.22). Although TreeQSM performs relatively better than
AdQSM, challenges remain in terms of accuracy (R2 of 0.40 and RMSE of 11.66). In contrast,
both methods yielded acceptable results for the estimation of CA, where the R2 and RMSE
of TreeQSM and AdQSM were 0.71 and 0.76 and 11.79 and 10.37, respectively.

3.2. DAP Point Cloud-Based QSM Estimations: TreeQSM vs. AdQSM

The mean values of DBH ranged from 22.55 to 49.28 cm (SE: 1.80~9.60, Figure 9) for
different plots based on TreeQSM, with the highest value occurring in plot 3 (49.28 ± 9.60).
Mean DBH values varied from 31.69 to 40.39 cm (SE: 2.60~11.42) from plot 1 to plot 7 based
on AdQSM. Significant differences were found between TreeQSM and AdQSM for DBH
estimation, except that of plot 6. However, the mean and SE of H in different plots almost
overlapped with the ranges of 13.04~16.92 (0.57~1.97) and 13.10~17.06 (0.48~1.94) based on
TreeQSM and AdQSM, respectively. The mean CA based on AdQSM (18.13~29.25) was
lower than that based on TreeQSM (23.52~33.00) in each plot.
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Figure 9. Description of extracted DBH, H, and CA based on the TreeQSM and AdQSM constructed
from DAP plot-level point clouds.

The relationships between DAP and TLS based on TreeQSM and AdQSM for DBH,
H, and CA are shown in Figure 10. The correlations of DAP and TLS based on TreeQSM
and AdQSM showed very low accuracy for DBH, where AdQSM was slightly better
than TreeQSM, with higher R2 and lower RMSE values (R2: 0.20 vs. 0.00, RMSE: 3.03 vs.
9.62). Moderate performance was found for the CA based on TreeQSM and AdQSM, and
AdQSM (R2: 0.71, RMSE: 1.94) also performed better than TreeQSM (R2: 0.41, RMSE: 2.31).
Nevertheless, it was found that TreeQSM and AdQSM estimated H well, with identical R2

values of 0.86 and almost identical RMSEs (0.46 vs. 0.47).
The distribution of extracted DBH, H, and CA from TreeQSM and AdQSM constructed

using DAP point clouds at the tree level is shown in Figure 11. The DBH ranges were
8.85~91.55 with a mean of 34.16 cm based on TreeQSM and were 10.33~60.76 with a mean
of 35.70 cm based on AdQSM. The CV values for DBH from TreeQSM and AdQSM were
47% and 38%, respectively. Similar ranges of H values were observed for TreeQSM (range:
8.64~18.69, mean: 14.63, CV: 20%) and AdQSM (range: 8.71~18.60, mean: 14.73, CV: 19%).
A large amplitude of ranges occurred in the CA, with values of 4.58~71.33 (mean: 29.14,
CV: 54%) for TreeQSM and of 2.50~67.50 (mean: 24.28, CV: 64%) for AdQSM.
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TreeQSM (a–c) and AdQSM (d–f) methods.

At the individual tree level, poor relationships were also found for DBH, regardless of
the use of TreeQSM and AdQSM, as indicated by an R2 lower than 0.03 and RMSE higher
than 13.49 (Figure 12a). DAP is closely related to TLS for H, with an R2 of 0.89 (RMSE: 0.94)
for TreeQSM and 0.90 (RMSE: 0.88) for AdQSM (Figure 12b). In addition, DAP displayed a
moderate relationship with TLS (Figure 12c), and the TreeQSM had a slightly higher R2

(0.50 vs. 0.43) and lower RMSE (11.20 vs. 11.80) for the CA when compared with AdQSM.
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4. Discussion
4.1. Accuracy of Estimating Forest Structural Attributes Using Different Point Clouds

Plot-level statistics revealed that ALS-based point clouds provided higher accuracy
than DAP-based point clouds for DBH (R2: 0.12~0.35 vs. 0.00~0.20, RMSE: 2.83~5.49 vs.
3.03~9.62), H (R2: 0.93~0.94 vs. 0.86~0.86, RMSE: 0.18~0.19 vs. 0.46~0.47), and CA (R2:
0.68~0.82 vs. 0.41~0.71, RMSE: 2.57~4.09 vs. 1.94~2.31) estimates. Meanwhile, the ALS-
based point clouds also behaved better than the DAP-based point clouds did at tree level
for DBH (R2: 0.09~0.40 vs. 0.00~0.03, RMSE: 11.66~18.22 vs. 13.49~15.95), H (R2: 0.92~0.92
vs. 0.89~0.90, RMSE: 0.81~0.82 vs. 0.88~0.94), and CA (R2: 0.71~0.75 vs. 0.43~0.50, RMSE:
10.37~11.79 vs. 11.20~11.80) estimations. As a result, the ALS- and DAP-based predictions
of forest structural metrics (DBH, H, and CA) with respect to TLS-based point clouds in
this study demonstrated that ALS was found to be more accurate than DAP point clouds in
a temperate deciduous forest, regardless of plot or tree level.

Our results are consistent with previous studies comparing the accuracy of ALS and
DAP point clouds for estimating the most common forest structural metrics [17,21,60,61].
For example, Rahlf et al. [62] obtained the most accurate prediction results for timber
volume at both plot and stand levels. Mielcarek et al. [23] observed a lower bias with ALS
compared with DAP for estimating tree height in mesic and moist hardwood forests. ALS
laser pulses are known to penetrate the forest canopy and characterize the internal structure
of the crown, while DAP is limited to describing the outer canopy envelope [19,63]. The
current research was conducted in a temperate deciduous forest characterized by complex
forest structures, suggesting that ALS is more suitable than DAP for estimating forest
structural metrics in complex forests.

4.2. Accuracy of Estimating Forest Structural Metrics between Different QSMs

TreeQSM and AdQSM are state-of-the-art representative tree models and have recently
been increasingly used to reconstruct detailed tree models for extracting tree attributes.
TreeQSM fits cylinders of each segment segmented from tree point clouds rather than
depending on the tree skeleton, while AdQSM fits cylinders based on the extracted com-
plete skeleton [42,48,64]. In several previously reported studies, comparable estimation
accuracies between TreeQSM and AdQSM are observed for volume estimation in tropical
forests [48] and for stem volume estimation using terrestrial close-range photogrammetry
point clouds in a deciduous plantation [65].

This study is the first to evaluate the comparison between TreeQSM and AdQSM
constructed from different point clouds in an alpine temperate deciduous forest. The
results show that there are no apparent differences in tree height estimates using TreeQSM
and AdQSM, regardless of ALS or DAP point clouds, at both plot and tree levels. The
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TreeQSM- and AdQSM-derived tree height estimates have been widely reported, and
very good performance was achieved in deciduous species [48,65]. However, TreeQSM
performed better than AdQSM based on ALS point clouds for estimating DBH, while the
opposite was found for estimating crown area. These results indicate that the predictive
performance of TreeQSM and AdQSM depends on the determined tree attributes.

4.3. Future Perspectives

In the previously reported studies, the forest structural parameters of tree height and
canopy area extracted based on LiDAR data achieved satisfactory results, especially for
coniferous forests. However, the estimation accuracy is generally affected by a number
of factors, such as site conditions, adjacent vegetation, and understory vegetation. Our
results showed promising results for the estimation of forest structural attributes using
LiDAR in alpine temperate deciduous forests, while the prediction accuracy still needs to
be improved from various perspectives, such as tree segmentation. More tree detection
and segmentation approaches for tree information extraction should be further explored in
future studies. UAV optical data combined with tree modeling have the potential to provide
forest canopy information, while it is challenging to extract forest structural information,
so other related methods can be further investigated.

In addition to tree-level information, topographic information such as slope and
terrain can also be obtained from remote sensing data. These ALS-derived topological
variables could be used for forest phenotyping. The fusion of different remote sensing
data sources has been demonstrated to accurately extract forest structural attributes in
previous studies [66–68], and a potential future direction would be to assess forest structure
in temperate deciduous forests.

5. Conclusions

The ALS-derived forest structural attributes obtained in this study were more closely
correlated with those obtained from TLS point clouds, indicating that ALS-based point
clouds provide more accurate estimates of forest structural metrics in an alpine temperate
deciduous forest. In addition, different QSMs showed little difference for tree height
estimates, but behaved differently for DBH and canopy area. LiDAR combined with
QSMs appears to be the most efficient and accurate technique for forestry applications, and
real-time forest monitoring systems are critical for forest management in the context of
climate change.
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