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Abstract: Monitoring vegetation health and its response to climate conditions is critical for assessing 

the impact of climate change on urban environments. While many studies simulate and map the 

health of vegetation, there seems to be a lack of high-resolution, low-scale data and easy-to-use tools 

for managers in the municipal administration that they can make use of for decision-making. Data 

related to climate and vegetation indicators, such as those provided by the C3S Copernicus Data 

Store (CDS), are mostly available with a coarse resolution but readily available as freely available 

and open data. This study aims to develop a systematic approach and workflow to provide a simple 

tool for monitoring vegetation changes and health. We built a toolbox to streamline the geopro-

cessing workflow. The data derived from CDS included bioclimate indicators such as the annual 

moisture index and the minimum temperature of the coldest month (BIO06). The biophysical pa-

rameters used are leaf area index (LAI) and fraction of absorbed photosynthetically active radiation 

(FAPAR). We used a linear regression model to derive equations for downscaled biophysical param-

eters, applying vegetation indices derived from Sentinel-2, to identify the vegetation health status. 

We also downscaled the bioclimatic indicators using the digital elevation model (DEM) and Landsat 

surface temperature derived from Landsat 8 through Bayesian kriging regression. The downscaled 

indicators serve as a critical input for forest-based classification regression to model climate enve-

lopes to address suitable climate conditions for vegetation growth. The results derived contribute 

to the overall development of a workflow and tool for and within the CoKLIMAx project to gain 

and deliver new insights that capture vegetation health by explicitly using data from the CDS with 

a focus on the City of Constance at Lake Constance in southern Germany. The results shall help 

gain new insights and improve urban resilient, climate-adaptive planning by providing an intuitive 

tool for monitoring vegetation health and its response to climate conditions. 

Keywords: climate change; Copernicus; Climate Data Store; city resilience; vegetation health;  
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1. Introduction 

Climate change presents one of the most significant challenges for the global envi-

ronment and society at large today [1]. It impacts ecosystems and their biodiversity by 

stressing and sometimes even threatening current habitats due to heat and water stress. It 

can also cause health-related effects and socio-economic impacts induced by increasing 

heat waves, droughts, and flooding events [2]. Although climate change effects have a 

global impact, these challenges must be addressed locally to build and foster resilience, 

be be�er prepared, and manage accompanying risks [3]. Hence, urban and municipal ad-

ministrations play a crucial role in implementing effective measures to protect their cities 

and their citizens, especially the more vulnerable population groups, against these threats. 
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For instance, those who are vulnerable include children, the elderly, socioeconomically 

disadvantaged, disabled, or underinsured individuals, or those with certain medical con-

ditions [4]. Nevertheless, constrained resources at the municipal level, such as minimal or 

a lack of financial means, ability, and expertise, often impede progress. This is especially 

true for smaller, less well-off municipalities to advance and improve adaptative planning 

and climate change mitigation measures [5]. 

The European Copernicus program, the earth observation branch of the European 

Union space program, celebrated its 25th anniversary in June 2023. Initially known as the 

Global Monitoring for Environment and Security Programme (GMES), Copernicus was 

introduced in 1998 with the goal of supplying environmental data to support a diverse 

range of fields, such as urban planning, agriculture, disaster relief, and climate change. 

Hence, the program aims to not only integrate and provide satellite data but also non-

space data to provide insights from earth observation. There are several thematic plat-

forms. One of them is the Copernicus Climate Change Service (C3S), which provides in-

formation and data specifically related to climate indicators. Others, for instance, focus on 

land, marine, air, or atmospheric monitoring [6]. The platform offers a wide range of earth 

observation data, such as environmental and ecological projections and climate monitor-

ing, stored in the Climate Data Store (CDS) with different spatial resolutions [7]. Although 

some climate indicators and gridded products may have coarser resolution and may not 

capture all urban-scale details, they are still valuable. For example, these can be biophys-

ical or climate indicators and parameters, which help to understand vegetation health re-

sponses to climate variations [8]. Extensive data processing is needed and essential to gain 

new insights from the results and help decision-makers formulate new or be�er climate 

change adaptation and mitigation strategies or measures. Finer resolution data and a more 

detailed scale analysis shall also be conducted to be�er understand and learn from the 

data what happens at a local scale [9]. 

Monitoring vegetation dynamics is useful for climate adaptation purposes, especially 

at the municipal level, considering vegetation provides a range of ecological benefits, such 

as reducing the urban heat island effect. Numerous studies have been conducted and em-

phasise the intrinsic relationship between climate and vegetation [7–9], for example, by 

monitoring vegetation response to weather conditions [10]. 

The climate envelope model is used by scientists to calculate scenarios and derive 

new insights and knowledge. The models describe the relationships between species oc-

currences and bioclimate variables. The derived results of the model may indicate where 

plant species can thrive under specific climate conditions. It may also help identify regions 

and plant species that are prone to being more vulnerable to climatic changes [11,12]. De-

spite their limitations, such as often being investigated under equilibrium conditions that 

do not account for competition, dispersal, or nutrient supply [9], climate envelopes are 

quite useful in understanding vegetation responses to climate change overall. 

This study aims to investigate the health status of the vegetation and its correlation 

with climate conditions in the respective study area, the City of Constance, at Lake Con-

stance, in southern Germany (Chapter 2). We developed a systematic approach and a sim-

ple tool for monitoring vegetation changes and health status on a smaller urban scale with 

a finer resolution compared to the coarse climate data from the Climate Data Store. We 

downscaled leaf area index (LAI), a fraction of absorbed photosynthetically active radia-

tion (FAPAR), and bioclimate indicators in coarse resolution data using finer resolution 

data obtained from satellite images and local authorities, including Sentinel-2, Landsat 8, 

and a digital elevation model (DEM), to generate vegetation health and climatic parame-

ters [10,13,14]. Using the climate envelope model, we used the result as the input for mod-

elling vegetation–climate relationships. The processing steps were carried out through the 

model builder in ArcGIS Pro 3.2, which can be transformed into toolboxes and a series of 

Python codes [15]. This approach can provide knowledge and tools to support municipal 

decision-makers in identifying vulnerable locations and vegetation types for effective cli-

mate adaptation strategies, thereby enhancing local climate resilience. 
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2. Study Area 

The City of Constance, located in Baden-Wür�emberg, Germany, covers an area of 

55.65 square kilometres and houses approximately 83,000 residents. Characterised by a 

moderately suboceanic climate, the city experiences a relatively mild average annual tem-

perature of approximately 9 °C and an average annual precipitation of 900 mm. [16]. The 

area is characterised by diverse vegetation, including deciduous woodland, meadows, 

and farmland [17]. Nevertheless, the municipality confronts substantial challenges at-

tributed to climate change, specifically focusing on the adjacent Lake of Constance. The 

escalating lake temperature threatens water quality and the broader environment, thereby im-

pacting the utilisation of the lake [18]. The map of the study area is presented in Figure 1. 

 

Figure 1. The location of the City of Constance. 

3. Data and Processing Methods 

Figure 2 summarises the steps to create the model and the subsequent data pro-

cessing and analysis. The methodology encompasses data preparation and preprocessing 

steps aimed at deriving vegetation health indicators, including the leaf area index (LAI), 

fraction of absorbed photosynthetically active radiation (FAPAR), and various vegetation 

indices. The process involves generating linear model equations to produce a fine resolu-

tion of LAI and FAPAR as proxies for vegetation health. Additionally, forest-based regres-

sion and classification models are constructed to generate the vegetation climate model to 

analyse the relationship between bioclimate indicators and vegetation health. 
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Figure 2. Flow chart of the methods applied to this study, outlining the steps taken to model, data 

processing, and the various analyses conducted. 

3.1. Data Collection 

This study developed vegetation–climate models by integrating spatial data from the 

C3S Climate Data Store (CDS) and remote sensing data. Given the limitations in data avail-

ability, models were parameterised based on the best available data and the local litera-

ture. The data obtained from CDS included ten-daily gridded datasets of LAI and FAPAR 

at a resolution of 300 m for July 2018 as the most current data available at the peak of 

vegetation’s growing seasons [19] and six variables of bioclimate indicators consists of 
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mean temperature of the warmest quarter (BIO10), mean temperature of the coldest quar-

ter (BIO11), annual temperature range (BIO07), minimum temperature of the coldest 

month (BIO06), precipitation of the driest month (BIO14), and annual moisture index (MI) 

in the time frame of 2009–2030. The time frame was chosen as close as possible to the year 

when this study commenced. 

We used Sentinel-2, acquired in July 2018 and July 2022, for multispectral bands at 

the resolutions of 10 m and 20 m (the bands used are described in Table 1. Sentinel-2 was 

used because it was freely available for the study area and because it provided many mul-

tispectral bands to derive vegetation indices as the indicators for downscaling LAI and 

FAPAR. A topographic correction (ATCOR) algorithm was used to obtain bo�om-of-at-

mosphere reflectance in a cartographic projection. The Landsat 8 thermal infrared bands 

from 2012 to 2022 were used to derive land surface temperature at a 30 m resolution. The 

time frame was chosen as close as possible to the bioclimate indicator time frame. We also 

used a 0.25 m digital elevation model (DEM) obtained from the State Office for Geoinfor-

mation and Land Development of Baden-Wür�emberg. 

The vegetation cover was obtained from the WorldCover Land Cover product at 10 

m resolution for 2020, as the most recent data available [20]. This dataset was derived from 

Sentinel-1 C-band Synthetic Aperture Radar (SAR) and Sentinel-2 multispectral bands us-

ing the Land Cover Classification System (LCCS) by the Food Agriculture Organization 

of the United Nations, achieving a global accuracy of 74.4%. We also used the most up-

dated Tree Street Layer 2018 data from Copernicus Land Monitoring Services to identify 

tree patches in urban areas [21]. 

3.2. Data Preparation and Preprocessing 

This section outlines the preparation and preprocessing steps undertaken on the 

downloaded data prior to its subsequent analysis. These measures were implemented to 

standardise the data, ensuring uniformity in both extent and format. 

3.2.1. Vegetation Cover 

This study focused on urban ecosystems with varying densities and morphological 

features, particularly urban forests. The vegetation cover was derived from the Coperni-

cus database, utilising land cover data with accuracies of ≥74.4% for ESA WorldCover and 

≥85% for Corine Land Cover, which was suitable for this study due to minimal land cover 

changes in the past two years. The classification involved trees, non-trees, and non-vege-

tation all over the City of Constance. Tree cover was reclassified based on land cover from 

the WorldCover Land Cover product, identified as areas dominated by at least 10% tree 

canopy as tree cover, including urban forests and other trees. Copernicus Tree Street Layer 

2018 data were also incorporated to fill the tree’s gaps in se�lement areas [21]. Other veg-

etation types were reclassified as other non-trees, and the rest as non-vegetation. Overall, 

the trees were distributed in the northern and middle west of the city, along with some 

parts of the southern and urban areas, comprising various coniferous and broadleaf trees. 

3.2.2. Vegetation Indices 

Atmospherically corrected and spectrally calibrated Sentinel-2 images were utilised 

to generate five vegetation indices at 300 m and 10 m resolutions. These indices include 

the Moisture Stress Index (MSI) for plant water stress, the Normalised Difference Vegeta-

tion Index (NDVI) for greenness, the Plant Senescence Reflectance Index (PSRI) for plant 

senescence, the Red Edge Normalised Difference Vegetation Index (RNDVI) for chloro-

phyll content, and the Soil-Adjusted Vegetation Index (SAVI) to account for soil brightness 

in low vegetation cover areas, as explained in Table 1. 
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Table 1. Description and equations for vegetation indices. 

Parameter Index Abbreviation Formula (Sentinel-2 Bands) 

Plant water stress MSI B11/B8 

Greenness NDVI B8 − B4/B8 + B4 

Plant senescence PSRI B4 − B2/B5 

Chlorophyll RNDVI B6 − B5/B6 + B5 

Greenness and soil brightness SAVI (B8 − B4/B8 + B4 + L) × (1 + L) 

The computation was performed at a finer resolution of 10 m to align with the red-

edge band acquired in July 2022 and at a coarse resolution of 300 m to match the LAI and 

FAPAR products of CDS acquired in July 2018. The SAVI index was introduced to reduce 

soil effects, which identified the variables affecting vegetation index performance, includ-

ing soil reflectance, vegetation amount, and canopy architecture [22]. The calculation for 

SAVI included the index’s multiplication factor (1 + L), which maintains the dynamic 

range. An adjustment factor (L) was decided based on the vegetation densities. An optimal 

factor L of 0.5 was chosen in the study area to reduce soil noise in the canopy cover because 

the study area is covered by various vegetation densities [23]. 

3.2.3. Land Surface Temperature 

Landsat 8 TIRs were used to retrieve the land surface temperature (LST) by inverting 

the radiative transfer according to the equation referred to by Onačillová et al. (2022) from 

2012 to 2022 [15]. LST was derived as one of the data points to downscale several coarse 

bioclimatic indicators from CDS with a 20-year temporal resolution. The time frame was 

chosen to align the selected bioclimatic indicators between 2009 and 2030. Three distinct 

LSTs were obtained, each corresponding to a specific bioclimatic indicator. The first LST 

represents the average LST to downscale BIO11 (the mean temperature of the coldest 

quarter). The dataset is available as a three-month period dataset, holding the months 

December to February for each consecutive year. The second LST dataset includes the 

months June to August to downscale BIO10 (the mean temperature of the warmest quar-

ter). Lastly, the third LST dataset obtained by subtracting the temperatures of the warmest 

and coldest quarter helped downscale BIO07 (the annual temperature range). 

3.3. Vegetation Health Proxies 

The proxies were constructed to derive vegetation health using biophysical parame-

ters, specifically LAI and FAPAR, employing an empirical approach coupled with a data-

driven method. 

3.3.1. Linear Model 

An empirical approach was used through linear regression to establish the relation-

ships between the vegetation indices and biophysical variables, specifically for LAI and 

FAPAR. Vegetation indices are a common indicator of vegetation status or growth model 

assimilation used to estimate LAI and FAPAR using remote sensing [24]. Five vegetation 

indices derived from Sentinel-2 in July 2018 were resampled to a coarser resolution of 300 

m. The resampled images served as explanatory variables in the linear regression model 

of LAI and FAPAR from CDS. The relationships between vegetation indices and 

LAI/FAPAR at 300 m resolution were then used as a reference to develop a generalised 

linear regression model for estimating LAI and FAPAR at a higher resolution of 10 m. 

The equation for LAI and FAPAR calculation at 300 m resolution is derived using the 

output coefficient (a0 − a4): 

LAI300m = a0 + a1 × VI300m (1) + a2 × VI300m (2) + … + an × VI300m (n) (1)
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LAI10m at the finer resolution is computed by applying the Equation (1) model, where 

vegetation indices at 10 m resolution replace the input vegetation indices at 300 m resolu-

tion. The following equation is used: 

LAI10m = a0 + a1 × VI10m (1) + a2 × VI10m (2) + … + an × VI10m (n) (2)

This study made use of the abovementioned Equation (1) and the most recent avail-

able 2018 CDS dataset [25], which were used to calculate the 2022 Equation (2), assuming 

that there are no significant changes in vegetation cover between the different years, es-

pecially for vegetation cover, since there were no major climate-induced events that could 

have a major impact on the vegetation in the study area. 

The model performance was measured using the Akaike Information Criterion (AIC), 

the corrected Akaike Information Criterion (AICc), multiple R-squared, and adjusted R-

squared. AIC considers the model’s complexity useful for comparing models with differ-

ent explanatory variables, while AICc applies bias correction to AIC for small sample 

sizes. AIC with a lower value is considered more accurate. Meanwhile, multiple R-squared 

measures the goodness of fits, with higher values preferable. Adjusted R-squared com-

pensates for the number of variables in the model, where the value is almost always less 

than multiple R-squared. 

The linear model has been used for similar studies to generate the equation to predict 

the result in higher resolution; for example, utilising Sentinel-2 for land surface tempera-

ture production in higher resolution based on Landsat [26] and utilising vegetation indices 

and CDS bioclimate indicators to predict LAI. The limitation of this empirical relationship 

is that it can be influenced by external factors that cannot be easily implemented in the 

model, such as sun–surface–sensor geometry of satellite imagery, crop management prac-

tices, and environmental and climatic conditions. 

3.3.2. Vegetation Health Classification 

The healthy and stressed vegetation classification was conducted using a data-driven 

method. The threshold for healthy and stressed vegetation types was established, refer-

ring to previous studies that examined LAI and FAPAR values for different vegetation 

types and their statistical characteristics. Healthy vegetation was classified for all pixel 

values above the first quartile of LAI and FAPAR, while stressed vegetation has mean 

values equal to or below the minimum reference values (Tables 2 and 3) of each corre-

sponding vegetation type. The mean values of LAI and FAPAR for several vegetation 

types in Tables 2 and 3 show no significant difference between the Visible/Infrared Image 

Radiometer Suite (VIR) and MODIS (MOD) [27]. 

Table 2. The comparison of LAI and FAPAR on several vegetation types [27]. 

Vegetation Type 
LAI FAPAR 

VIR MOD VIR MOD 

Grassland/areal crops 0.94 0.94 0.36 0.35 

Savanna 1.53 1.47 0.49 0.48 

Deciduous broadleaf forest 4.23 4.15 0.80 0.79 

Evergreen needle leaf forest 2.44 2.39 0.67 0.67 

Table 3. The LAI value of several vegetation types [28]. 

Vegetation Type Min Max Mean 

Grass/shrub 0.90 2.10 1.20 

Cropland 1.00 2.20 1.50 

Deciduous broadleaf tree 2.20 4.40 3.70 

Evergreen needleleaf tree 2.20 4.50 3.10 

Deciduous needleleaf tree 1.90 4.00 2.40 
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We produced two vegetation health maps based on LAI and FAPAR data. In the final 

step, we classified healthy vegetation if either LAI or FAPAR indicated a healthy status. 

Stressed vegetation was classified when both LAI and FAPAR indicated a stressed condition. 

3.4. Vegetation Climate Model 

This section encompasses the procedures for downscaling the coarse resolution of 

climate data to align with municipal levels (Section 3.4.1), constructing the vegetation cli-

mate model (Section 3.4.2), and validating the model’s accuracy (Section 3.4.3). 

3.4.1. Empirical Bayesian Kriging Regression Prediction 

An Empirical Bayesian Kriging (EBK) regression prediction was employed to 

downscale the bioclimate indicators. It is a geostatistical interpolation method that com-

bines kriging and regression analysis, using an explanatory variable raster to improve in-

terpolation accuracy. This combination of methods yielded more precise predictions than 

kriging or regression alone. In this process, a digital elevation model (DEM) with a reso-

lution of 0.25 m and Landsat-derived land surface temperature (LST) data with a resolu-

tion of 30 m were used as parameters for certain bioclimatic indicators [29]. The summary 

of parameters for downscaling bioclimate indicators is presented in Table 4. 

Table 4. Parameters used for downscaling bioclimate indicators. 

Bioclimate Indicators Parameter Unit 

BIO10 DEM, LST warmest (June–August) °C 

BIO11 DEM, LST coldest (December–February) °C 

BIO07 DEM, LST annual range °C 

BIO06 DEM °C 

BIO14 DEM mm 

MI DEM 0–1 

Bioclimate indicators have been studied for years to predict plant-type distribution 

pa�erns [12]. The bioclimate indicators used in this study consisted of four variables 

(BIO11, BIO06, MI, and BIO14) representing winter temperature, moisture balance, dry 

season precipitation, and summer temperature (BIO10) influencing vegetation distribu-

tion. BIO11 represents the mean temperature of the coldest quarter, providing insights 

into the effects of environmental factors on seasonal distributions. BIO06 indicates the 

minimum temperature of the coldest month, examining the impact of cold temperature 

anomalies throughout the year on species distribution. MI (annual moisture index) is cal-

culated by dividing average annual precipitation (RCP) by average annual potential evap-

otranspiration (PET) and informs about moisture availability for species distribution. 

BIO14 represents the precipitation of the driest month, analysing the influence of extreme 

precipitation conditions on the potential species range. BIO10 corresponds to the mean 

temperature of the warmest quarter, providing information about the effects of environ-

mental factors on seasonal distributions. Lastly, BIO07 (annual temperature range) indi-

cates the difference between the maximum temperature of the warmest month and the 

minimum temperature of the coldest month, assessing how extreme temperature condi-

tions may affect species distribution. 

3.4.2. Forest-Based Classification and Regression 

This study utilised a forest-based regression and classification tool adopted by Leo 

Breiman’s random forest algorithm. This tool was used to create a bioclimate envelope 

model using finer-generated bioclimate indicators. This algorithm creates an ensemble of 

decision trees using a known training dataset to predict values in unknown datasets with 

several explanatory variables. The decision for the final prediction is obtained through a 

voting scheme to avoid overfi�ing the model [30]. By examining the characteristics of 
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bioclimate indicators in the train samples of vegetation, this model was employed to gen-

erate the bioclimate envelope. 

The bioclimatic envelope concept aims to predict the optimal climate conditions for 

vegetation growth and reproduction. The forest-based regression and classification 

method investigated the relationship between vegetation and climate conditions. Samples 

of 300,000 points representing vegetation health status were obtained through stratified 

random sampling; the model was trained on 90% of the data and tested on the remaining 

10% to assess its performance. The explanatory variables in the model were downscaled 

bioclimatic indicators. The potential distribution range of vegetation types was deter-

mined by se�ing maximum and minimum thresholds for six bioclimatic variables. 

Upper and lower limit values for each bioclimatic indicator were identified to assess 

the potential suitability of climatic conditions for vegetation growth. These values indi-

cated whether the climate conditions were suitable for vegetation to grow. However, the 

model did not provide the probability of vegetation growing healthy or stressed. The cli-

mate envelope was overlaid with the vegetation health status obtained from the linear 

model of LAI and FAPAR using a raster calculator to derive the probability of vegetation 

health. This process generated vegetation health probability maps, indicating locations 

where vegetation will grow in healthy and stressed states. 

3.4.3. Model Validation 

In this study, model validation aimed to assess the reliability and effectiveness of the 

derived models by comparing them to reference data. Two validation procedures were 

conducted. First, the linear model’s performance in estimating LAI and FAPAR was eval-

uated by comparing the results with those obtained using the SNAP 9.0.0 software com-

monly used in vegetation-related research. Sca�er plots were created to examine the cor-

relation between the two data sets, with SNAP-derived LAI and FAPAR considered suit-

able for this study due to their focus on urban areas with limited or very dense vegetation. 

Second, the accuracy of the climate envelope generated through forest-based classification 

and regression. The result was summarised using a confusion matrix. This matrix com-

pared the predicted vegetation types with actual land cover classifications from Coperni-

cus ESA’s WorldCover dataset. For validation purposes, 5456 samples were randomly 

generated using a stratified random sampling approach. 

4. Results 

4.1. Vegetation Health Proxies 

Vegetation compositions in the City of Constance exhibit considerable diversity. In 

this study, we assessed vegetation health by examining satellite-derived biophysical pa-

rameters, specifically leaf area index (LAI) and fraction of absorbed photosynthetically 

active radiation (FAPAR). 

4.1.1. Vegetation Indices, LAI, and FAPAR 

The LAI and FAPAR products from CDS with 300 m resolution were insufficient for 

application in urban vegetation studies. Therefore, we used several downscaling methods 

to generate finer-resolution data, and an empirical approach was used to estimate LAI and 

FAPAR at a higher resolution. It adapted relationships from general linear regression 

equations derived from field data collection [24]. 

Vegetation indices generated from Sentinel-2 at a resolution of 10 m were computed, 

representing various aspects of vegetation, including the MSI, NDVI, SAVI, PSRI, and 

RNDVI. These indices were derived from specific bands commonly associated with cap-

turing vegetation characteristics based on their reflectance properties [31]. NDVI and 

SAVI showed strong correlations with leaf area index (LAI) and fraction of absorbed pho-

tosynthetically active radiation (FAPAR), reaching 0.71 and 0.74, respectively. RNDVI ex-

hibited slightly lower correlations with LAI and FAPAR, at 0.69 and 0.70, respectively. In 
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contrast, MSI and PSRI showed negative correlations, with MSI having a correlation of 

0.66 for LAI and 0.67 for FAPAR, while PSRI had the lowest correlation values, with 0.52 

for LAI and 0.50 for FAPAR. 

4.1.2. Linear Model 

Linear regression equations were developed to predict LAI and FAPAR using com-

binations of these vegetation indices (Tables 5 and 6). The most optimal regression equa-

tions have high R-squared values and low AIC values. In this study, explanatory regres-

sion was used to investigate the consistency of vegetation indices in predicting LAI and 

FAPAR. NDVI, SAVI, and PSRI showed significant and stable influences on LAI and 

FAPAR, with NDVI and SAVI demonstrating 100% positive relationships, while PSRI 

showed 91.67% positive and 8.33% negative relationships. The NDVI, PSRI, SAVI, and 

PSRI combinations produced the most optimal regression equations with high R-squared 

and low AIC values. 

Table 5. The LAI equations were derived from general linear regression. 

Equation Multiple R2 Adjusted R2 AIC AICc 

−4096.52 × NDVI + 2733.57 × SAVI − 0.31 0.74 0.73 844.80 844.79 

1.39 × PSRI + 2.5 × SAVI − 0.82 0.74 0.74 826.89 826.89 

3.79 × NDVI + 1.39 × PSRI − 0.82 0.74 0.74 826.90 826.90 

3.28 × NDVI − 0.33 0.73 0.73 867.78 867.78 

2.19 × SAVI − 0.33 0.73 0.73 867.74 867.74 

−4.76 × PSRI + 2.38 0.35 0.35 1700.35 1700.35 

Table 6. The FAPAR equations were derived from general linear regression. 

Equation Multiple R2 Adjusted R2 AIC AICc 

−767.77 × NDVI + 512.40 × SAVI + 0.19 0.76 0.76 −2125.85 −2145.85 

0.41 × PSRI + 0.59 × SAVI + 0.04 0.78 0.77 −2212.72 −2212.72 

0.88 × NDVI + 0.41 × PSRI + 0.04 0.78 0.77 −2212.73 −2212.73 

0.73 × NDVI + 0.19 0.75 0.75 −2127.75 −2127.75 

0.49 × SAVI + 0.19 0.75 0.75 −2127.79 −2127.79 

−1.02 × PSRI + 0.79 0.33 0.34 −1178.90 −1178.90 

Considering the study area’s characteristics with varied vegetation cover and tree 

cover, the NDVI and PSRI equations were chosen. However, if the study area is primarily 

covered by low vegetation, SAVI is recommended for use. The vegetation index of SAVI 

a�empts to minimise the influence of soil brightness in areas of low vegetation cover using 

a soil brightness correction factor. 

The mathematical equations derived from 2018 data were used to estimate LAI and 

FAPAR in 2022, assuming no significant landscape changes in the City of Constance 

within the four years. The coefficient determination (R-squared) for the NDVI and PSRI 

equations was approximately 0.78, indicating the model’s accuracy based on CDS data as 

a reference. 

The equations used for generating LAI and FAPAR were 

LAI10m = 3.79 × NDVI + 1.39 × PSRI − 0.82 (3)

FAPAR10m = 0.88 × NDVI + 0.41 × PSRI + 0.04 (4)

The comparison of the originally downloaded LAI and FAPAR from CDS and the 

generated linear model LAI and FAPAR is shown in Figure 3. 
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(a) (b) 

  
(c) (d) 

Figure 3. The comparison of LAI/FAPAR: (a) original downloaded LAI from CDS; (b) linear model 

LAI; (c) original downloaded FAPAR from CDS; (d) linear model FAPAR. 

The performance of the linear model in estimating LAI and FAPAR was compared to 

the SNAP software results for the same year. The R-squared values for the linear model 

and SNAP-derived LAI were 0.65 and 0.92 for FAPAR. SNAP-derived LAI tended to pro-

duce higher values than the linear model, which is consistent with previous studies 

[32,33]. However, for the study area’s vegetation, which primarily consists of tree-covered 

forest and urban areas, both linear models and SNAP-derived LAI and FAPAR are feasi-

ble. 

4.1.3. Vegetation Health Classification 

The classification value for vegetation health status is presented in Table 7, and the 

map of vegetation health classification is shown in Figure 4. Similar studies using different 

datasets to estimate LAI have demonstrated comparable values for corresponding types 

of vegetation cover. The classification outcomes indicate the presence of negative LAI and 

FAPAR values across all vegetation types. Therefore, to understand the causes, we 
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overlayed the results with land cover data. The overlay analysis showed that these areas 

were frequently found at mixed and misclassified pixels. 

Table 7. The range of LAI and FAPAR values of the vegetation cover in the study area. 

Landcover Status 
LAI FAPAR 

Min Max Mean Min Max Mean 

Tree 
Healthy 1.54 2.76 2.45 0.65 1.05 0.82 

Stressed −2.62 2.23 1.65 −0.38 0.76 0.63 

Other vegetations 
Healthy 0.50 2.77 2.09 0.28 1.06 0.74 

Stressed −2.36 1.71 1.05 −0.25 0.64 0.42 

Non-vegetation  −8.48 2.60 0.52 −1.36 0.96 0.37 

 

Figure 4. The map of vegetation health status. 

Healthy trees were predominantly found in forested areas with a dense concentration 

of trees, especially in urban forests. Stressed trees were commonly found in street areas 

and close to built-up regions, with dead branches as indicators of stress symptoms. 

Warmer temperatures can enhance the carbon assimilation rate, leading to enlarged can-

opy cover in trees. However, water deficits can cause defoliation, especially in urban areas 

where rising temperatures may result in early summer defoliation. 

While stressed trees in urban areas may face challenges, their presence is crucial in 

mitigating urban heat and creating a cooling effect. Understanding the correlation be-

tween vegetation and climate is essential, especially in urban areas, as urban vegetation 

can mitigate the negative impacts of climate change while being vulnerable to increasing 

temperatures and drought events. 

In other vegetations, the difference between healthy and stressed vegetation is based 

on the amount of vegetation cover. Stressed vegetation was predominantly found in grass-

lands with high soil reflectance and unplanted cropland areas, even during peak summer 

when satellite images were acquired (July). 

4.2. Vegetation and Climate Relations 
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Various bioclimate parameters were utilised across different vegetation types to iden-

tify optimal climate conditions conducive to the healthy growth of each vegetation type. 

This investigation aimed to establish the correlation between local-scale climate condi-

tions and vegetation. 

4.2.1. Vegetation Climate Model 

The vegetation climate model identifies optimal climatic conditions for vegetation 

growth and adaptation to extreme climate changes, as shown in Figure 5a. It defines cli-

matic boundaries for trees and other vegetation in the City of Constance, assuming they 

will not grow if local climate variables exceed those defining its envelope. The range value 

of the bioclimate envelope is shown in Table 8. 

Table 8. The range of  bioclimate indicators of the vegetation cover in the study area. 

Vegetation/Indicators BIO10 BIO11 BIO07 BIO06 BIO14 MI 

Tree 
Min 18.46 1.02 17.48 6.71 439.16 0.66 

Max 19.39 1.87 17.81 7.83 483.36 0.76 

Other vegetations 
Min 18.50 1.05 17.48 6.75 439.12 0.66 

Max 19.38 1.87 17.80 7.82 483.38 0.76 

This model predicts the natural location range of vegetation to grow in healthy and 

stressed conditions. It assumes vegetation can grow well within its predicted natural con-

ditions. However, specific adjustments may be needed outside of these locations. The 

model was combined with LAI- and FAPAR-derived vegetation health status to determine 

the probability of healthy and stressed vegetation, as shown in Figure 5b. The model 

achieved high r-squared values for training (0.97) and validation (0.84) data, utilising six 

downscaled bioclimatic indicators as explanatory variables. 

  

(a) (b) 

Figure 5. The probability of location for vegetation generated from random forest regression and 

classification: (a) vegetation can grow both healthy and stressed; (b) vegetation can grow healthy 

and stressed. 

The bioclimate envelope model outlines the potential occurrence range for each veg-

etation type based on six variables’ maximum and minimum values. Minimum precipita-

tion during the driest month (BIO14) represents the maximum drought vegetation can 

withstand, with trees and other vegetation requiring 0.02 mm. The upper limit of precip-

itation indicates the drought level inducing dormancy. Trees show be�er acclimatisation 

ability under changing climates (higher BIO14) than other vegetation types. The mean 
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temperature during the warmest quarter (BIO10) is relatively similar among trees and 

other vegetation, with trees having a slightly wider range. Warmer temperatures within 

an optimal range stimulate photosynthetic activities. The lower limit represents the mini-

mum temperature requirement for growth. The annual moisture index is useful for pre-

dicting vegetation types and forest areas. The minimum temperature of the coldest month 

(BIO06) can help identify anomalies in cold temperatures that may impact vegetation, 

while the annual temperature range (BIO07) indicates the potential effects of extreme tem-

peratures on vegetation. BIO10 and BIO14 indicate the ability of that vegetation to with-

stand the average warmest period and the driest month. 

4.2.2. Model Validation 

The climate envelope model was validated by comparing it with existing vegetation 

from ESA WorldCover 2020, resulting in an overall accuracy of 86.7%. The result was 

summarised in the confusion matrix, as shown in Table 9. 

Table 9. Confusion matrix of the climate envelope and ESA WorldCover 2020. 

 Tree Other Vegs. Non-Vegs. Total User Accuracy 

Tree 1279 90 0 1369 93.4% 

Other vegetations 491 3091 137 3719 83.1% 

Non-vegetation 0 5 363 368 98.6% 

Total 1770 3186 500 5456  

Producer Accuracy 72.3% 97.0% 72.6%   

Overall Accuracy 86.7%

Kappa 0.74

The kappa value, representing the level of agreement beyond chance, was 0.74, which 

is slightly lower than the overall accuracy. The model utilised a bioclimatic envelope con-

cept, associating various climate aspects with species occurrences to estimate suitable con-

ditions for vegetation. Producer accuracy for vegetation types shown in the climate enve-

lope and ESA WorldCover ranged from 70.1% to 75.7%, indicating the percentage of ref-

erence pixels classified correctly. User accuracy varied for trees and other vegetation: 

83.1% for other vegetation, 93.4% for trees, and 98.6% for non-vegetation. 

4.3. Integrate Workflows into a Toolbox 

This study utilised a range of global climatic data from CDS and other resources for 

climate monitoring, integrating different data sources to improve the results at the munic-

ipal level. Multiple processes of data acquisition and processing were employed in this 

study. The main process involved sequences of geoprocessing performed using model 

builders from ArcGIS Pro combined with a Python notebook. The model builder is an 

automated tool that connects data and available tools in ArcGIS Pro to execute workflows 

efficiently. 

We created a toolbox called vegetation health, containing four toolsets representing 

different geoprocessing steps: vegetation indices (Figure 6), biophysical processors (Fig-

ure 7), vegetation health (Figure 8), downscale climate indicators (Figure 9a), and climate 

envelopes (Figure 9b). 
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(a) (b) 

Geoprocessing Operation for PSRI and MSI 

(a) PSRI parameters: expression (syntax) describes (RED − BLUE)/RED EDGE 1. 

(b) MSI parameters are set for SWIR/NIR. 

Figure 6. Vegetation indices toolset consists of (a) PSRI and (b) MSI.  

The biophysical processor toolset generated LAI and FAPAR using a model builder 

with a raster calculator and equations derived from general linear regression. The chosen 

vegetation indices (NDVI and PSRI) be�er predicted LAI and FAPAR than others. 

  

Figure 7. Biophysical processor toolset to produce respective linear models of LAI and FAPAR in 

finer resolution. 
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(a) 

  

(b) 

  

(c) (d) 

Figure 8. Vegetation health toolset consists of (a) mask tool for masking each type of vegetation, (b) 

TypeVegetationHealth tool for classifying healthy and stressed vegetation based on LAI and 

FAPAR, (c) VegetationHealth for combining vegetation health based on LAI and FAPAR, and (d) 

MosaicHealth for combining all types of vegetation health. 
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(a) (b) 

Figure 9. Downscaled bioclimate indicators and climate envelope toolset consists of (a) EBKRegression 

tool for downscaling bioclimate indicators and (b) RandomForest for generating climate envelope. 

The vegetation health toolset consisted of four model builders to classify vegetation 

health status based on LAI and FAPAR values. The process involved separating each veg-

etation type, identifying their health status, combining all types into a single map, and 

classifying vegetation health using LAI and FAPAR. 

The downscale climate indicators toolset downscaled bioclimate indicators using 

EBK regression prediction with coarse and fine resolution rasters as explanatory variables, 

producing bioclimate indicators in finer resolution. The climate envelope toolset executed 

forest-based classification and regression, building a vegetation climate model called the 

climate envelope. It used vegetation-type point samples and bioclimate indicators in finer 

resolution as explanatory variables, providing a vegetation map showing the probability 

of healthy and stressed vegetation growth. 

5. Discussion 

5.1. Consideration of Approach and Interpretation of Vegetation Climate Model 

Climate factors play a crucial role in influencing vegetation greenness, which is one 

of the key indicators of vegetation health. We used greenness and senescence indexes for 

assessing vegetation health in this study. The vegetation response to climate variation and 

adaptability is complex yet challenging to accurately simulate. Most studies assumed that 

vegetation has a fixed response pa�ern to climate change. Despite its limitations, the veg-

etation–climate relations model is important to understand how it impacts the environ-

ment. 

Understanding how vegetation responds to local weather changes is crucial in mi-

croclimate. Microclimate refers to localised variations in heat and water moisture levels 

near the earth’s surface, leading to temperature and humidity differences compared to the 

surrounding areas. This local atmospheric condition can be influenced by a range of fac-

tors, such as energy absorption, shading, and wind speeds, which either trap or remove 

heat and moisture. The variations surrounding vegetation could potentially influence veg-

etation health, with healthier vegetation located near denser vegetation and stressed veg-

etation in isolated areas. Vegetation growing close to dense vegetation benefits from shad-

ing and moisture. In contrast, isolated vegetation surrounded by non-vegetation areas 

tends to experience more stress. It was shown in the vegetation health classification from 

the linear models of LAI and FAPAR that stressed vegetation is often found farther away 

from other vegetated areas. 
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This study combined the big data platform and local data to provide an adequate 

municipal-level model on a finer resolution scale. We performed multiple processes to 

downscale existing coarse data using remote sensing and local data. Statistical downscal-

ing methods were employed, representing a flexible and straightforward approach to en-

hance the data of coarse resolution. Notably, though our models can be used for monitor-

ing vegetation health, they cannot thoroughly describe the relationship between the cli-

mate and vegetation, especially for non-trees, which consist of various types of vegetation, 

such as wetland-sensitive biomes to temperature and with the highest interannual varia-

bility. 

The climate envelope model was valuable for assessing suitable tree and other vege-

tation locations based on current climate conditions. For example, areas close to parks can 

be cooler during daylight hours compared to rooftops due to the cooling effect of transpi-

ration. Sparse foliage areas exhibit higher temperatures due to less evaporation than areas 

covered by dense foliage. Besides the climate factors, elevated atmospheric CO2 concen-

tration, varying nitrogen deposition rates, land use, and other anthropic factors could also 

influence vegetation health, which may bring a greater potential for vegetation change 

due to the more complex factors. We have not considered these additional factors in the 

model in this study. Further, we can explore the more complex social-ecological systems 

by inpu�ing more natural and anthropogenic variables and coupling them with specific 

physical processes based on advanced modelling to be�er understand the complex rela-

tionship between vegetation and environments. 

5.2. Additional Management Considerations 

We produced linear model equations and a vegetation–climate model that exhibits po-

tential applicability to municipalities sharing similarities with the City of Constance. This 

contribution extends beyond the specific study area, offering a transferable framework for 

regions exhibiting comparable characteristics. Additionally, the incorporation of a toolbox 

into our methodology serves as an effective means to introduce these models to municipal 

stakeholders lacking expertise in spatial data analysis. This approach enhances accessibility, 

facilitating wider utilisation and implementation in diverse municipal contexts. 

Vegetation climate models at the municipal level offer valuable contributions to the 

conservation and management of urban ecosystems. The bioclimate envelope models de-

rived from this study have numerous sources of uncertainty, including method choices, 

data used, and climate dynamics. Despite its limitations, the analysis provides useful tools 

for assessing climate impacts on urban vegetation, especially the information on the po-

tential location for vegetation growth. This information empowers decision-makers to ex-

plore existing ecosystems within these environments, understand their function, and 

gather essential information for adaptation measures and planning. Integrating non-cli-

matic factors and adaptive capacity information enhances the potential for conducting 

comprehensive ecological climate change vulnerability assessment in urban environ-

ments, presenting a crucial step towards effective urban ecosystem conservation. 

6. Conclusions 

This study proposes utilising Copernicus data, which provide various climatic and 

environmental data and information in various resolutions for municipal-level studies. 

The entire process was executed using the model builder functionality within ArcGIS, en-

abling conversion into toolboxes along with a sequence of Python scripts. We used 

downscaled methodologies to improve the resolution of data LAI, FAPAR, and bioclimate 

indicators by investigating the best and most reliable method for each dataset based on its 

characteristics and combining data from satellite images and local data. This method was 

used, including general linear regression and EBK regression and prediction, which are 

simple and fast statistical techniques to derive local-scale data. The final results were cli-

matic envelopes to predict the probability location for vegetation to grow healthy and 

stressed based on the bioclimate indicators. This overall approach is especially useful for 
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characterising the optimum location for vegetation types in an urban environment in re-

sponse to climate conditions. 
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