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Abstract: Monitoring vegetation health and its response to climate conditions is critical for assessing
the impact of climate change on urban environments. While many studies simulate and map the
health of vegetation, there seems to be a lack of high-resolution, low-scale data and easy-to-use tools
for managers in the municipal administration that they can make use of for decision-making. Data
related to climate and vegetation indicators, such as those provided by the C3S Copernicus Data
Store (CDS), are mostly available with a coarse resolution but readily available as freely available and
open data. This study aims to develop a systematic approach and workflow to provide a simple tool
for monitoring vegetation changes and health. We built a toolbox to streamline the geoprocessing
workflow. The data derived from CDS included bioclimate indicators such as the annual moisture
index and the minimum temperature of the coldest month (BIO06). The biophysical parameters
used are leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR).
We used a linear regression model to derive equations for downscaled biophysical parameters,
applying vegetation indices derived from Sentinel-2, to identify the vegetation health status. We
also downscaled the bioclimatic indicators using the digital elevation model (DEM) and Landsat
surface temperature derived from Landsat 8 through Bayesian kriging regression. The downscaled
indicators serve as a critical input for forest-based classification regression to model climate envelopes
to address suitable climate conditions for vegetation growth. The results derived contribute to the
overall development of a workflow and tool for and within the CoKLIMAx project to gain and deliver
new insights that capture vegetation health by explicitly using data from the CDS with a focus on the
City of Constance at Lake Constance in southern Germany. The results shall help gain new insights
and improve urban resilient, climate-adaptive planning by providing an intuitive tool for monitoring
vegetation health and its response to climate conditions.

Keywords: climate change; Copernicus; Climate Data Store; city resilience; vegetation health;
vulnerability; bioclimate indicators; municipal; urban planning; remote sensing

1. Introduction

Climate change presents one of the most significant challenges for the global envi-
ronment and society at large today [1]. It impacts ecosystems and their biodiversity by
stressing and sometimes even threatening current habitats due to heat and water stress. It
can also cause health-related effects and socio-economic impacts induced by increasing
heat waves, droughts, and flooding events [2]. Although climate change effects have a
global impact, these challenges must be addressed locally to build and foster resilience,
be better prepared, and manage accompanying risks [3]. Hence, urban and municipal
administrations play a crucial role in implementing effective measures to protect their cities
and their citizens, especially the more vulnerable population groups, against these threats.

Remote Sens. 2024, 16, 691. https://doi.org/10.3390/rs16040691 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040691
https://doi.org/10.3390/rs16040691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6597-7857
https://orcid.org/0000-0001-9055-9809
https://doi.org/10.3390/rs16040691
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040691?type=check_update&version=2


Remote Sens. 2024, 16, 691 2 of 20

For instance, those who are vulnerable include children, the elderly, socioeconomically
disadvantaged, disabled, or underinsured individuals, or those with certain medical condi-
tions [4]. Nevertheless, constrained resources at the municipal level, such as minimal or a
lack of financial means, ability, and expertise, often impede progress. This is especially true
for smaller, less well-off municipalities to advance and improve adaptative planning and
climate change mitigation measures [5].

The European Copernicus program, the earth observation branch of the European
Union space program, celebrated its 25th anniversary in June 2023. Initially known as the
Global Monitoring for Environment and Security Programme (GMES), Copernicus was
introduced in 1998 with the goal of supplying environmental data to support a diverse
range of fields, such as urban planning, agriculture, disaster relief, and climate change.
Hence, the program aims to not only integrate and provide satellite data but also non-space
data to provide insights from earth observation. There are several thematic platforms. One
of them is the Copernicus Climate Change Service (C3S), which provides information and
data specifically related to climate indicators. Others, for instance, focus on land, marine,
air, or atmospheric monitoring [6]. The platform offers a wide range of earth observation
data, such as environmental and ecological projections and climate monitoring, stored
in the Climate Data Store (CDS) with different spatial resolutions [7]. Although some
climate indicators and gridded products may have coarser resolution and may not capture
all urban-scale details, they are still valuable. For example, these can be biophysical or
climate indicators and parameters, which help to understand vegetation health responses
to climate variations [8]. Extensive data processing is needed and essential to gain new
insights from the results and help decision-makers formulate new or better climate change
adaptation and mitigation strategies or measures. Finer resolution data and a more detailed
scale analysis shall also be conducted to better understand and learn from the data what
happens at a local scale [9].

Monitoring vegetation dynamics is useful for climate adaptation purposes, especially
at the municipal level, considering vegetation provides a range of ecological benefits, such
as reducing the urban heat island effect. Numerous studies have been conducted and
emphasise the intrinsic relationship between climate and vegetation [7–9], for example, by
monitoring vegetation response to weather conditions [10].

The climate envelope model is used by scientists to calculate scenarios and derive
new insights and knowledge. The models describe the relationships between species
occurrences and bioclimate variables. The derived results of the model may indicate where
plant species can thrive under specific climate conditions. It may also help identify regions
and plant species that are prone to being more vulnerable to climatic changes [11,12].
Despite their limitations, such as often being investigated under equilibrium conditions
that do not account for competition, dispersal, or nutrient supply [9], climate envelopes are
quite useful in understanding vegetation responses to climate change overall.

This study aims to investigate the health status of the vegetation and its correla-
tion with climate conditions in the respective study area, the City of Constance, at Lake
Constance, in southern Germany (Chapter 2). We developed a systematic approach and
a simple tool for monitoring vegetation changes and health status on a smaller urban
scale with a finer resolution compared to the coarse climate data from the Climate Data
Store. We downscaled leaf area index (LAI), a fraction of absorbed photosynthetically
active radiation (FAPAR), and bioclimate indicators in coarse resolution data using finer
resolution data obtained from satellite images and local authorities, including Sentinel-2,
Landsat 8, and a digital elevation model (DEM), to generate vegetation health and climatic
parameters [10,13,14]. Using the climate envelope model, we used the result as the input
for modelling vegetation–climate relationships. The processing steps were carried out
through the model builder in ArcGIS Pro 3.2, which can be transformed into toolboxes and
a series of Python codes [15]. This approach can provide knowledge and tools to support
municipal decision-makers in identifying vulnerable locations and vegetation types for
effective climate adaptation strategies, thereby enhancing local climate resilience.
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2. Study Area

The City of Constance, located in Baden-Württemberg, Germany, covers an area of
55.65 square kilometres and houses approximately 83,000 residents. Characterised by a
moderately suboceanic climate, the city experiences a relatively mild average annual tem-
perature of approximately 9 ◦C and an average annual precipitation of 900 mm. [16]. The
area is characterised by diverse vegetation, including deciduous woodland, meadows, and
farmland [17]. Nevertheless, the municipality confronts substantial challenges attributed
to climate change, specifically focusing on the adjacent Lake of Constance. The escalating
lake temperature threatens water quality and the broader environment, thereby impacting
the utilisation of the lake [18]. The map of the study area is presented in Figure 1.
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Figure 1. The location of the City of Constance.

3. Data and Processing Methods

Figure 2 summarises the steps to create the model and the subsequent data processing
and analysis. The methodology encompasses data preparation and preprocessing steps
aimed at deriving vegetation health indicators, including the leaf area index (LAI), fraction
of absorbed photosynthetically active radiation (FAPAR), and various vegetation indices.
The process involves generating linear model equations to produce a fine resolution of
LAI and FAPAR as proxies for vegetation health. Additionally, forest-based regression and
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classification models are constructed to generate the vegetation climate model to analyse
the relationship between bioclimate indicators and vegetation health.
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3.1. Data Collection

This study developed vegetation–climate models by integrating spatial data from
the C3S Climate Data Store (CDS) and remote sensing data. Given the limitations in data
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availability, models were parameterised based on the best available data and the local
literature. The data obtained from CDS included ten-daily gridded datasets of LAI and
FAPAR at a resolution of 300 m for July 2018 as the most current data available at the peak
of vegetation’s growing seasons [19] and six variables of bioclimate indicators consists of
mean temperature of the warmest quarter (BIO10), mean temperature of the coldest quarter
(BIO11), annual temperature range (BIO07), minimum temperature of the coldest month
(BIO06), precipitation of the driest month (BIO14), and annual moisture index (MI) in the
time frame of 2009–2030. The time frame was chosen as close as possible to the year when
this study commenced.

We used Sentinel-2, acquired in July 2018 and July 2022, for multispectral bands at
the resolutions of 10 m and 20 m (the bands used are described in Table 1. Sentinel-2
was used because it was freely available for the study area and because it provided many
multispectral bands to derive vegetation indices as the indicators for downscaling LAI
and FAPAR. A topographic correction (ATCOR) algorithm was used to obtain bottom-
of-atmosphere reflectance in a cartographic projection. The Landsat 8 thermal infrared
bands from 2012 to 2022 were used to derive land surface temperature at a 30 m resolution.
The time frame was chosen as close as possible to the bioclimate indicator time frame.
We also used a 0.25 m digital elevation model (DEM) obtained from the State Office for
Geoinformation and Land Development of Baden-Württemberg.

Table 1. Description and equations for vegetation indices.

Parameter Index Abbreviation Formula (Sentinel-2 Bands)

Plant water stress MSI B11/B8
Greenness NDVI B8 − B4/B8 + B4

Plant senescence PSRI B4 − B2/B5
Chlorophyll RNDVI B6 − B5/B6 + B5

Greenness and soil brightness SAVI (B8 − B4/B8 + B4 + L) × (1 + L)

The vegetation cover was obtained from the WorldCover Land Cover product at 10 m
resolution for 2020, as the most recent data available [20]. This dataset was derived from
Sentinel-1 C-band Synthetic Aperture Radar (SAR) and Sentinel-2 multispectral bands
using the Land Cover Classification System (LCCS) by the Food Agriculture Organization
of the United Nations, achieving a global accuracy of 74.4%. We also used the most updated
Tree Street Layer 2018 data from Copernicus Land Monitoring Services to identify tree
patches in urban areas [21].

3.2. Data Preparation and Preprocessing

This section outlines the preparation and preprocessing steps undertaken on the
downloaded data prior to its subsequent analysis. These measures were implemented to
standardise the data, ensuring uniformity in both extent and format.

3.2.1. Vegetation Cover

This study focused on urban ecosystems with varying densities and morphological
features, particularly urban forests. The vegetation cover was derived from the Copernicus
database, utilising land cover data with accuracies of ≥74.4% for ESA WorldCover and
≥85% for Corine Land Cover, which was suitable for this study due to minimal land
cover changes in the past two years. The classification involved trees, non-trees, and
non-vegetation all over the City of Constance. Tree cover was reclassified based on land
cover from the WorldCover Land Cover product, identified as areas dominated by at
least 10% tree canopy as tree cover, including urban forests and other trees. Copernicus
Tree Street Layer 2018 data were also incorporated to fill the tree’s gaps in settlement
areas [21]. Other vegetation types were reclassified as other non-trees, and the rest as
non-vegetation. Overall, the trees were distributed in the northern and middle west of the
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city, along with some parts of the southern and urban areas, comprising various coniferous
and broadleaf trees.

3.2.2. Vegetation Indices

Atmospherically corrected and spectrally calibrated Sentinel-2 images were utilised
to generate five vegetation indices at 300 m and 10 m resolutions. These indices include
the Moisture Stress Index (MSI) for plant water stress, the Normalised Difference Vegeta-
tion Index (NDVI) for greenness, the Plant Senescence Reflectance Index (PSRI) for plant
senescence, the Red Edge Normalised Difference Vegetation Index (RNDVI) for chlorophyll
content, and the Soil-Adjusted Vegetation Index (SAVI) to account for soil brightness in
low vegetation cover areas, as explained in Table 1.

The computation was performed at a finer resolution of 10 m to align with the red-edge
band acquired in July 2022 and at a coarse resolution of 300 m to match the LAI and FAPAR
products of CDS acquired in July 2018. The SAVI index was introduced to reduce soil
effects, which identified the variables affecting vegetation index performance, including
soil reflectance, vegetation amount, and canopy architecture [22]. The calculation for SAVI
included the index’s multiplication factor (1 + L), which maintains the dynamic range. An
adjustment factor (L) was decided based on the vegetation densities. An optimal factor L
of 0.5 was chosen in the study area to reduce soil noise in the canopy cover because the
study area is covered by various vegetation densities [23].

3.2.3. Land Surface Temperature

Landsat 8 TIRs were used to retrieve the land surface temperature (LST) by inverting
the radiative transfer according to the equation referred to by Onačillová et al. (2022) from
2012 to 2022 [15]. LST was derived as one of the data points to downscale several coarse
bioclimatic indicators from CDS with a 20-year temporal resolution. The time frame was
chosen to align the selected bioclimatic indicators between 2009 and 2030. Three distinct
LSTs were obtained, each corresponding to a specific bioclimatic indicator. The first LST
represents the average LST to downscale BIO11 (the mean temperature of the coldest
quarter). The dataset is available as a three-month period dataset, holding the months
December to February for each consecutive year. The second LST dataset includes the
months June to August to downscale BIO10 (the mean temperature of the warmest quarter).
Lastly, the third LST dataset obtained by subtracting the temperatures of the warmest and
coldest quarter helped downscale BIO07 (the annual temperature range).

3.3. Vegetation Health Proxies

The proxies were constructed to derive vegetation health using biophysical param-
eters, specifically LAI and FAPAR, employing an empirical approach coupled with a
data-driven method.

3.3.1. Linear Model

An empirical approach was used through linear regression to establish the relation-
ships between the vegetation indices and biophysical variables, specifically for LAI and
FAPAR. Vegetation indices are a common indicator of vegetation status or growth model
assimilation used to estimate LAI and FAPAR using remote sensing [24]. Five vegetation
indices derived from Sentinel-2 in July 2018 were resampled to a coarser resolution of 300 m.
The resampled images served as explanatory variables in the linear regression model of
LAI and FAPAR from CDS. The relationships between vegetation indices and LAI/FAPAR
at 300 m resolution were then used as a reference to develop a generalised linear regression
model for estimating LAI and FAPAR at a higher resolution of 10 m.

The equation for LAI and FAPAR calculation at 300 m resolution is derived using the
output coefficient (a0 − a4):

LAI300m = a0 + a1 × VI300m (1) + a2 × VI300m (2) + . . . + an × VI300m (n) (1)
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LAI10m at the finer resolution is computed by applying the Equation (1) model, where
vegetation indices at 10 m resolution replace the input vegetation indices at 300 m resolution.
The following equation is used:

LAI10m = a0 + a1 × VI10m (1) + a2 × VI10m (2) + . . . + an × VI10m (n) (2)

This study made use of the abovementioned Equation (1) and the most recent available
2018 CDS dataset [25], which were used to calculate the 2022 Equation (2), assuming that
there are no significant changes in vegetation cover between the different years, especially
for vegetation cover, since there were no major climate-induced events that could have a
major impact on the vegetation in the study area.

The model performance was measured using the Akaike Information Criterion (AIC),
the corrected Akaike Information Criterion (AICc), multiple R-squared, and adjusted R-
squared. AIC considers the model’s complexity useful for comparing models with different
explanatory variables, while AICc applies bias correction to AIC for small sample sizes. AIC
with a lower value is considered more accurate. Meanwhile, multiple R-squared measures
the goodness of fits, with higher values preferable. Adjusted R-squared compensates
for the number of variables in the model, where the value is almost always less than
multiple R-squared.

The linear model has been used for similar studies to generate the equation to predict
the result in higher resolution; for example, utilising Sentinel-2 for land surface temperature
production in higher resolution based on Landsat [26] and utilising vegetation indices and
CDS bioclimate indicators to predict LAI. The limitation of this empirical relationship is
that it can be influenced by external factors that cannot be easily implemented in the model,
such as sun–surface–sensor geometry of satellite imagery, crop management practices, and
environmental and climatic conditions.

3.3.2. Vegetation Health Classification

The healthy and stressed vegetation classification was conducted using a data-driven
method. The threshold for healthy and stressed vegetation types was established, referring
to previous studies that examined LAI and FAPAR values for different vegetation types and
their statistical characteristics. Healthy vegetation was classified for all pixel values above
the first quartile of LAI and FAPAR, while stressed vegetation has mean values equal to or
below the minimum reference values (Tables 2 and 3) of each corresponding vegetation
type. The mean values of LAI and FAPAR for several vegetation types in Tables 2 and 3
show no significant difference between the Visible/Infrared Image Radiometer Suite (VIR)
and MODIS (MOD) [27].

Table 2. The comparison of LAI and FAPAR on several vegetation types [27].

Vegetation Type
LAI FAPAR

VIR MOD VIR MOD

Grassland/areal crops 0.94 0.94 0.36 0.35
Savanna 1.53 1.47 0.49 0.48

Deciduous broadleaf forest 4.23 4.15 0.80 0.79
Evergreen needle leaf forest 2.44 2.39 0.67 0.67

Table 3. The LAI value of several vegetation types [28].

Vegetation Type Min Max Mean

Grass/shrub 0.90 2.10 1.20
Cropland 1.00 2.20 1.50

Deciduous broadleaf tree 2.20 4.40 3.70
Evergreen needleleaf tree 2.20 4.50 3.10
Deciduous needleleaf tree 1.90 4.00 2.40
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We produced two vegetation health maps based on LAI and FAPAR data. In the final
step, we classified healthy vegetation if either LAI or FAPAR indicated a healthy status.
Stressed vegetation was classified when both LAI and FAPAR indicated a stressed condition.

3.4. Vegetation Climate Model

This section encompasses the procedures for downscaling the coarse resolution of
climate data to align with municipal levels (Section 3.4.1), constructing the vegetation
climate model (Section 3.4.2), and validating the model’s accuracy (Section 3.4.3).

3.4.1. Empirical Bayesian Kriging Regression Prediction

An Empirical Bayesian Kriging (EBK) regression prediction was employed to down-
scale the bioclimate indicators. It is a geostatistical interpolation method that combines
kriging and regression analysis, using an explanatory variable raster to improve interpola-
tion accuracy. This combination of methods yielded more precise predictions than kriging
or regression alone. In this process, a digital elevation model (DEM) with a resolution of
0.25 m and Landsat-derived land surface temperature (LST) data with a resolution of 30 m
were used as parameters for certain bioclimatic indicators [29]. The summary of parameters
for downscaling bioclimate indicators is presented in Table 4.

Table 4. Parameters used for downscaling bioclimate indicators.

Bioclimate Indicators Parameter Unit

BIO10 DEM, LST warmest (June–August) ◦C
BIO11 DEM, LST coldest (December–February) ◦C
BIO07 DEM, LST annual range ◦C
BIO06 DEM ◦C
BIO14 DEM mm

MI DEM 0–1

Bioclimate indicators have been studied for years to predict plant-type distribution
patterns [12]. The bioclimate indicators used in this study consisted of four variables (BIO11,
BIO06, MI, and BIO14) representing winter temperature, moisture balance, dry season
precipitation, and summer temperature (BIO10) influencing vegetation distribution. BIO11
represents the mean temperature of the coldest quarter, providing insights into the effects of
environmental factors on seasonal distributions. BIO06 indicates the minimum temperature
of the coldest month, examining the impact of cold temperature anomalies throughout
the year on species distribution. MI (annual moisture index) is calculated by dividing
average annual precipitation (RCP) by average annual potential evapotranspiration (PET)
and informs about moisture availability for species distribution. BIO14 represents the
precipitation of the driest month, analysing the influence of extreme precipitation conditions
on the potential species range. BIO10 corresponds to the mean temperature of the warmest
quarter, providing information about the effects of environmental factors on seasonal
distributions. Lastly, BIO07 (annual temperature range) indicates the difference between the
maximum temperature of the warmest month and the minimum temperature of the coldest
month, assessing how extreme temperature conditions may affect species distribution.

3.4.2. Forest-Based Classification and Regression

This study utilised a forest-based regression and classification tool adopted by Leo
Breiman’s random forest algorithm. This tool was used to create a bioclimate envelope
model using finer-generated bioclimate indicators. This algorithm creates an ensemble of
decision trees using a known training dataset to predict values in unknown datasets with
several explanatory variables. The decision for the final prediction is obtained through
a voting scheme to avoid overfitting the model [30]. By examining the characteristics
of bioclimate indicators in the train samples of vegetation, this model was employed to
generate the bioclimate envelope.
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The bioclimatic envelope concept aims to predict the optimal climate conditions
for vegetation growth and reproduction. The forest-based regression and classification
method investigated the relationship between vegetation and climate conditions. Samples
of 300,000 points representing vegetation health status were obtained through stratified
random sampling; the model was trained on 90% of the data and tested on the remaining
10% to assess its performance. The explanatory variables in the model were downscaled
bioclimatic indicators. The potential distribution range of vegetation types was determined
by setting maximum and minimum thresholds for six bioclimatic variables.

Upper and lower limit values for each bioclimatic indicator were identified to assess
the potential suitability of climatic conditions for vegetation growth. These values indicated
whether the climate conditions were suitable for vegetation to grow. However, the model
did not provide the probability of vegetation growing healthy or stressed. The climate
envelope was overlaid with the vegetation health status obtained from the linear model
of LAI and FAPAR using a raster calculator to derive the probability of vegetation health.
This process generated vegetation health probability maps, indicating locations where
vegetation will grow in healthy and stressed states.

3.4.3. Model Validation

In this study, model validation aimed to assess the reliability and effectiveness of the
derived models by comparing them to reference data. Two validation procedures were con-
ducted. First, the linear model’s performance in estimating LAI and FAPAR was evaluated
by comparing the results with those obtained using the SNAP 9.0.0 software commonly
used in vegetation-related research. Scatter plots were created to examine the correlation
between the two data sets, with SNAP-derived LAI and FAPAR considered suitable for
this study due to their focus on urban areas with limited or very dense vegetation. Second,
the accuracy of the climate envelope generated through forest-based classification and
regression. The result was summarised using a confusion matrix. This matrix compared
the predicted vegetation types with actual land cover classifications from Copernicus ESA’s
WorldCover dataset. For validation purposes, 5456 samples were randomly generated
using a stratified random sampling approach.

4. Results
4.1. Vegetation Health Proxies

Vegetation compositions in the City of Constance exhibit considerable diversity. In
this study, we assessed vegetation health by examining satellite-derived biophysical param-
eters, specifically leaf area index (LAI) and fraction of absorbed photosynthetically active
radiation (FAPAR).

4.1.1. Vegetation Indices, LAI, and FAPAR

The LAI and FAPAR products from CDS with 300 m resolution were insufficient for
application in urban vegetation studies. Therefore, we used several downscaling methods
to generate finer-resolution data, and an empirical approach was used to estimate LAI
and FAPAR at a higher resolution. It adapted relationships from general linear regression
equations derived from field data collection [24].

Vegetation indices generated from Sentinel-2 at a resolution of 10 m were computed,
representing various aspects of vegetation, including the MSI, NDVI, SAVI, PSRI, and
RNDVI. These indices were derived from specific bands commonly associated with captur-
ing vegetation characteristics based on their reflectance properties [31]. NDVI and SAVI
showed strong correlations with leaf area index (LAI) and fraction of absorbed photosyn-
thetically active radiation (FAPAR), reaching 0.71 and 0.74, respectively. RNDVI exhibited
slightly lower correlations with LAI and FAPAR, at 0.69 and 0.70, respectively. In contrast,
MSI and PSRI showed negative correlations, with MSI having a correlation of 0.66 for LAI
and 0.67 for FAPAR, while PSRI had the lowest correlation values, with 0.52 for LAI and
0.50 for FAPAR.
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4.1.2. Linear Model

Linear regression equations were developed to predict LAI and FAPAR using combi-
nations of these vegetation indices (Tables 5 and 6). The most optimal regression equations
have high R-squared values and low AIC values. In this study, explanatory regression was
used to investigate the consistency of vegetation indices in predicting LAI and FAPAR.
NDVI, SAVI, and PSRI showed significant and stable influences on LAI and FAPAR, with
NDVI and SAVI demonstrating 100% positive relationships, while PSRI showed 91.67%
positive and 8.33% negative relationships. The NDVI, PSRI, SAVI, and PSRI combinations
produced the most optimal regression equations with high R-squared and low AIC values.

Table 5. The LAI equations were derived from general linear regression.

Equation Multiple R2 Adjusted R2 AIC AICc

−4096.52 × NDVI + 2733.57 × SAVI − 0.31 0.74 0.73 844.80 844.79
1.39 × PSRI + 2.5 × SAVI − 0.82 0.74 0.74 826.89 826.89

3.79 × NDVI + 1.39 × PSRI − 0.82 0.74 0.74 826.90 826.90
3.28 × NDVI − 0.33 0.73 0.73 867.78 867.78
2.19 × SAVI − 0.33 0.73 0.73 867.74 867.74
−4.76 × PSRI + 2.38 0.35 0.35 1700.35 1700.35

Table 6. The FAPAR equations were derived from general linear regression.

Equation Multiple R2 Adjusted R2 AIC AICc

−767.77 × NDVI + 512.40 × SAVI + 0.19 0.76 0.76 −2125.85 −2145.85
0.41 × PSRI + 0.59 × SAVI + 0.04 0.78 0.77 −2212.72 −2212.72
0.88 × NDVI + 0.41 × PSRI + 0.04 0.78 0.77 −2212.73 −2212.73

0.73 × NDVI + 0.19 0.75 0.75 −2127.75 −2127.75
0.49 × SAVI + 0.19 0.75 0.75 −2127.79 −2127.79
−1.02 × PSRI + 0.79 0.33 0.34 −1178.90 −1178.90

Considering the study area’s characteristics with varied vegetation cover and tree
cover, the NDVI and PSRI equations were chosen. However, if the study area is primarily
covered by low vegetation, SAVI is recommended for use. The vegetation index of SAVI
attempts to minimise the influence of soil brightness in areas of low vegetation cover using
a soil brightness correction factor.

The mathematical equations derived from 2018 data were used to estimate LAI and
FAPAR in 2022, assuming no significant landscape changes in the City of Constance within
the four years. The coefficient determination (R-squared) for the NDVI and PSRI equations
was approximately 0.78, indicating the model’s accuracy based on CDS data as a reference.

The equations used for generating LAI and FAPAR were

LAI10m = 3.79 × NDVI + 1.39 × PSRI − 0.82 (3)

FAPAR10m = 0.88 × NDVI + 0.41 × PSRI + 0.04 (4)

The comparison of the originally downloaded LAI and FAPAR from CDS and the
generated linear model LAI and FAPAR is shown in Figure 3.

The performance of the linear model in estimating LAI and FAPAR was compared to
the SNAP software results for the same year. The R-squared values for the linear model and
SNAP-derived LAI were 0.65 and 0.92 for FAPAR. SNAP-derived LAI tended to produce
higher values than the linear model, which is consistent with previous studies [32,33].
However, for the study area’s vegetation, which primarily consists of tree-covered forest
and urban areas, both linear models and SNAP-derived LAI and FAPAR are feasible.
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4.1.3. Vegetation Health Classification

The classification value for vegetation health status is presented in Table 7, and the
map of vegetation health classification is shown in Figure 4. Similar studies using different
datasets to estimate LAI have demonstrated comparable values for corresponding types
of vegetation cover. The classification outcomes indicate the presence of negative LAI
and FAPAR values across all vegetation types. Therefore, to understand the causes, we
overlayed the results with land cover data. The overlay analysis showed that these areas
were frequently found at mixed and misclassified pixels.
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Table 7. The range of LAI and FAPAR values of the vegetation cover in the study area.

Landcover Status
LAI FAPAR

Min Max Mean Min Max Mean

Tree
Healthy 1.54 2.76 2.45 0.65 1.05 0.82
Stressed −2.62 2.23 1.65 −0.38 0.76 0.63

Other vegetations Healthy 0.50 2.77 2.09 0.28 1.06 0.74
Stressed −2.36 1.71 1.05 −0.25 0.64 0.42

Non-vegetation −8.48 2.60 0.52 −1.36 0.96 0.37
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Healthy trees were predominantly found in forested areas with a dense concentration
of trees, especially in urban forests. Stressed trees were commonly found in street areas and
close to built-up regions, with dead branches as indicators of stress symptoms. Warmer
temperatures can enhance the carbon assimilation rate, leading to enlarged canopy cover in
trees. However, water deficits can cause defoliation, especially in urban areas where rising
temperatures may result in early summer defoliation.

While stressed trees in urban areas may face challenges, their presence is crucial
in mitigating urban heat and creating a cooling effect. Understanding the correlation
between vegetation and climate is essential, especially in urban areas, as urban vegetation
can mitigate the negative impacts of climate change while being vulnerable to increasing
temperatures and drought events.

In other vegetations, the difference between healthy and stressed vegetation is based
on the amount of vegetation cover. Stressed vegetation was predominantly found in
grasslands with high soil reflectance and unplanted cropland areas, even during peak
summer when satellite images were acquired (July).
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4.2. Vegetation and Climate Relations

Various bioclimate parameters were utilised across different vegetation types to iden-
tify optimal climate conditions conducive to the healthy growth of each vegetation type.
This investigation aimed to establish the correlation between local-scale climate conditions
and vegetation.

4.2.1. Vegetation Climate Model

The vegetation climate model identifies optimal climatic conditions for vegetation
growth and adaptation to extreme climate changes, as shown in Figure 5a. It defines
climatic boundaries for trees and other vegetation in the City of Constance, assuming they
will not grow if local climate variables exceed those defining its envelope. The range value
of the bioclimate envelope is shown in Table 8.
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Figure 5. The probability of location for vegetation generated from random forest regression and
classification: (a) vegetation can grow both healthy and stressed; (b) vegetation can grow healthy
and stressed.

Table 8. The range of bioclimate indicators of the vegetation cover in the study area.

Vegetation/Indicators BIO10 BIO11 BIO07 BIO06 BIO14 MI

Tree
Min 18.46 1.02 17.48 6.71 439.16 0.66
Max 19.39 1.87 17.81 7.83 483.36 0.76

Other vegetations Min 18.50 1.05 17.48 6.75 439.12 0.66
Max 19.38 1.87 17.80 7.82 483.38 0.76

This model predicts the natural location range of vegetation to grow in healthy and
stressed conditions. It assumes vegetation can grow well within its predicted natural
conditions. However, specific adjustments may be needed outside of these locations. The
model was combined with LAI- and FAPAR-derived vegetation health status to determine
the probability of healthy and stressed vegetation, as shown in Figure 5b. The model
achieved high r-squared values for training (0.97) and validation (0.84) data, utilising six
downscaled bioclimatic indicators as explanatory variables.
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The bioclimate envelope model outlines the potential occurrence range for each vege-
tation type based on six variables’ maximum and minimum values. Minimum precipitation
during the driest month (BIO14) represents the maximum drought vegetation can with-
stand, with trees and other vegetation requiring 0.02 mm. The upper limit of precipitation
indicates the drought level inducing dormancy. Trees show better acclimatisation ability
under changing climates (higher BIO14) than other vegetation types. The mean temperature
during the warmest quarter (BIO10) is relatively similar among trees and other vegetation,
with trees having a slightly wider range. Warmer temperatures within an optimal range
stimulate photosynthetic activities. The lower limit represents the minimum temperature
requirement for growth. The annual moisture index is useful for predicting vegetation types
and forest areas. The minimum temperature of the coldest month (BIO06) can help identify
anomalies in cold temperatures that may impact vegetation, while the annual temperature
range (BIO07) indicates the potential effects of extreme temperatures on vegetation. BIO10
and BIO14 indicate the ability of that vegetation to withstand the average warmest period
and the driest month.

4.2.2. Model Validation

The climate envelope model was validated by comparing it with existing vegetation
from ESA WorldCover 2020, resulting in an overall accuracy of 86.7%. The result was
summarised in the confusion matrix, as shown in Table 9.

Table 9. Confusion matrix of the climate envelope and ESA WorldCover 2020.

Tree Other Vegs. Non-Vegs. Total User Accuracy

Tree 1279 90 0 1369 93.4%
Other vegetations 491 3091 137 3719 83.1%
Non-vegetation 0 5 363 368 98.6%

Total 1770 3186 500 5456
Producer Accuracy 72.3% 97.0% 72.6%

Overall Accuracy 86.7%

Kappa 0.74

The kappa value, representing the level of agreement beyond chance, was 0.74, which
is slightly lower than the overall accuracy. The model utilised a bioclimatic envelope
concept, associating various climate aspects with species occurrences to estimate suitable
conditions for vegetation. Producer accuracy for vegetation types shown in the climate
envelope and ESA WorldCover ranged from 70.1% to 75.7%, indicating the percentage of
reference pixels classified correctly. User accuracy varied for trees and other vegetation:
83.1% for other vegetation, 93.4% for trees, and 98.6% for non-vegetation.

4.3. Integrate Workflows into a Toolbox

This study utilised a range of global climatic data from CDS and other resources
for climate monitoring, integrating different data sources to improve the results at the
municipal level. Multiple processes of data acquisition and processing were employed in
this study. The main process involved sequences of geoprocessing performed using model
builders from ArcGIS Pro combined with a Python notebook. The model builder is an
automated tool that connects data and available tools in ArcGIS Pro to execute workflows
efficiently.

We created a toolbox called vegetation health, containing four toolsets represent-
ing different geoprocessing steps: vegetation indices (Figure 6), biophysical processors
(Figure 7), vegetation health (Figure 8), downscale climate indicators (Figure 9a), and
climate envelopes (Figure 9b).
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The biophysical processor toolset generated LAI and FAPAR using a model builder
with a raster calculator and equations derived from general linear regression. The chosen
vegetation indices (NDVI and PSRI) better predicted LAI and FAPAR than others.
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The vegetation health toolset consisted of four model builders to classify vegetation
health status based on LAI and FAPAR values. The process involved separating each
vegetation type, identifying their health status, combining all types into a single map, and
classifying vegetation health using LAI and FAPAR.

The downscale climate indicators toolset downscaled bioclimate indicators using
EBK regression prediction with coarse and fine resolution rasters as explanatory variables,
producing bioclimate indicators in finer resolution. The climate envelope toolset executed
forest-based classification and regression, building a vegetation climate model called the
climate envelope. It used vegetation-type point samples and bioclimate indicators in finer
resolution as explanatory variables, providing a vegetation map showing the probability of
healthy and stressed vegetation growth.

5. Discussion
5.1. Consideration of Approach and Interpretation of Vegetation Climate Model

Climate factors play a crucial role in influencing vegetation greenness, which is one
of the key indicators of vegetation health. We used greenness and senescence indexes
for assessing vegetation health in this study. The vegetation response to climate varia-
tion and adaptability is complex yet challenging to accurately simulate. Most studies
assumed that vegetation has a fixed response pattern to climate change. Despite its limita-
tions, the vegetation–climate relations model is important to understand how it impacts
the environment.

Understanding how vegetation responds to local weather changes is crucial in mi-
croclimate. Microclimate refers to localised variations in heat and water moisture levels
near the earth’s surface, leading to temperature and humidity differences compared to the
surrounding areas. This local atmospheric condition can be influenced by a range of factors,
such as energy absorption, shading, and wind speeds, which either trap or remove heat and
moisture. The variations surrounding vegetation could potentially influence vegetation
health, with healthier vegetation located near denser vegetation and stressed vegetation
in isolated areas. Vegetation growing close to dense vegetation benefits from shading and
moisture. In contrast, isolated vegetation surrounded by non-vegetation areas tends to
experience more stress. It was shown in the vegetation health classification from the linear
models of LAI and FAPAR that stressed vegetation is often found farther away from other
vegetated areas.

This study combined the big data platform and local data to provide an adequate
municipal-level model on a finer resolution scale. We performed multiple processes to
downscale existing coarse data using remote sensing and local data. Statistical downscaling
methods were employed, representing a flexible and straightforward approach to enhance
the data of coarse resolution. Notably, though our models can be used for monitoring
vegetation health, they cannot thoroughly describe the relationship between the climate
and vegetation, especially for non-trees, which consist of various types of vegetation, such
as wetland-sensitive biomes to temperature and with the highest interannual variability.

The climate envelope model was valuable for assessing suitable tree and other veg-
etation locations based on current climate conditions. For example, areas close to parks
can be cooler during daylight hours compared to rooftops due to the cooling effect of
transpiration. Sparse foliage areas exhibit higher temperatures due to less evaporation
than areas covered by dense foliage. Besides the climate factors, elevated atmospheric CO2
concentration, varying nitrogen deposition rates, land use, and other anthropic factors
could also influence vegetation health, which may bring a greater potential for vegetation
change due to the more complex factors. We have not considered these additional factors
in the model in this study. Further, we can explore the more complex social-ecological
systems by inputting more natural and anthropogenic variables and coupling them with
specific physical processes based on advanced modelling to better understand the complex
relationship between vegetation and environments.
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5.2. Additional Management Considerations

We produced linear model equations and a vegetation–climate model that exhibits
potential applicability to municipalities sharing similarities with the City of Constance. This
contribution extends beyond the specific study area, offering a transferable framework for
regions exhibiting comparable characteristics. Additionally, the incorporation of a toolbox
into our methodology serves as an effective means to introduce these models to municipal
stakeholders lacking expertise in spatial data analysis. This approach enhances accessibility,
facilitating wider utilisation and implementation in diverse municipal contexts.

Vegetation climate models at the municipal level offer valuable contributions to the
conservation and management of urban ecosystems. The bioclimate envelope models
derived from this study have numerous sources of uncertainty, including method choices,
data used, and climate dynamics. Despite its limitations, the analysis provides useful
tools for assessing climate impacts on urban vegetation, especially the information on the
potential location for vegetation growth. This information empowers decision-makers
to explore existing ecosystems within these environments, understand their function,
and gather essential information for adaptation measures and planning. Integrating non-
climatic factors and adaptive capacity information enhances the potential for conducting
comprehensive ecological climate change vulnerability assessment in urban environments,
presenting a crucial step towards effective urban ecosystem conservation.

6. Conclusions

This study proposes utilising Copernicus data, which provide various climatic and
environmental data and information in various resolutions for municipal-level studies.
The entire process was executed using the model builder functionality within ArcGIS,
enabling conversion into toolboxes along with a sequence of Python scripts. We used
downscaled methodologies to improve the resolution of data LAI, FAPAR, and bioclimate
indicators by investigating the best and most reliable method for each dataset based on
its characteristics and combining data from satellite images and local data. This method
was used, including general linear regression and EBK regression and prediction, which
are simple and fast statistical techniques to derive local-scale data. The final results were
climatic envelopes to predict the probability location for vegetation to grow healthy and
stressed based on the bioclimate indicators. This overall approach is especially useful
for characterising the optimum location for vegetation types in an urban environment in
response to climate conditions.
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