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Abstract: Generating orchards spatial distribution maps within a heterogeneous landscape is challeng-
ing and requires fine spatial and temporal resolution images. This study examines the effectiveness of
Sentinel-1 (S1) and Sentinel-2 (S2) satellite data of relatively high spatial and temporal resolutions for
discriminating major orchards in the Khairpur district of the Sindh province, Pakistan using machine
learning methods such as random forest (RF) and a support vector machine. A Multicollinearity test
(MCT) was performed among the multi-temporal S1 and S2 variables to remove those with high
correlations. Six different feature combination schemes were tested, with the fusion of multi-temporal
S1 and S2 (scheme-6) outperforming all other combination schemes. The spectral separability between
orchards pairs was assessed using Jeffries-Matusita (JM) distance, revealing that orchard pairs were
completely separable in the multi-temporal fusion of both sensors, especially the indistinguishable
pair of dates-mango. The performance difference between RF and SVM was not significant, SVM
showed a slightly higher accuracy, except for scheme-4 where RF performed better. This study
concludes that multi-temporal fusion of S1 and S2 data, coupled with robust ML methods, offers a
reliable approach for orchard classification. Prospectively, these findings will be helpful for orchard
monitoring, improvement of yield estimation and precision based agricultural practices.

Keywords: multi-temporal; spectral separability; orchard classification; random forest; support
vector machine

1. Introduction

Fruit orchards play a vital role in global and regional economies, serving as cash
crops with direct economic impacts. Accurate mapping of fruit orchards is crucial for
research on their disease prevention, pest control, yield estimation, sustainable agricultural
management and other socio-economic concerns [1]. Traditionally, orchard mapping
requires time-consuming, labor-intensive and costly field surveys [2,3]. However, the
development of remote sensing technologies allows for efficient mapping at low cost
and at different geographic scales [4,5]. Remote sensing images, taking into account the
spectral and temporal characteristics, are widely used to discriminate vegetation types
based on their spectral signatures at different time periods [6,7]. Multi-temporal remote
sensing images provide crucial time-based spectral information, particularly significant
for orchard classification.

Compared to Landsat and MODIS satellites, the Sentinel-1 (S1) satellite, Synthetic
Aperture Radar (SAR) of its C-band dataset and Sentinel-2 (S2) optical satellites have
the advantage of their high spatial, temporal and spectral resolution, offering unique
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opportunities for global vegetation mapping [8]. Fusion of multi-temporal and multi sensor
(MTMS) remote sensing images provides more appropriate datasets for vegetation types
mapping [9,10]. Considering spectral similarity between vegetation types, single-date
imagery may be unreliable [11,12]. Numerous studies have attempted to classify tree
species using MTMS images [13–16], especially combining optical and SAR datasets [17,18].
The effective combination of optical and SAR datasets has shown advantages in vegetation
classification [19]. Pham et al. [20] tested S1 alone, fusion of S1 and S2 datasets and only S2
to assess the land cover (LC) classification in a complicated landscape of agricultural in the
Vietnam coastal area utilizing RF and OBIA algorithms. The findings indicated that using
S1 alone had a lower accuracy result, with an accuracy rate of 60% against 63% and 72%
accuracy rate, for S2 alone, as well as fused S1 and S2, respectively. The same conclusion was
confirmed by [21]; both individual S1 and S2 produce lower accuracies as compared to the
fusion of S1, S2 and Planet-Scope data, producing higher accuracy with a kappa coefficient
greater than 0.8%. Similarly, Steinhausen et al. [22], gathered the optical and SAR data
for high classification outputs. The utilization of optical and SAR datasets for vegetation
mapping depends on the EM spectrum which is highly sensitive to the leaf structure, water
and chlorophyll contents. SAR backscattering affects the roughness, structure, texture and
the plant canopy dielectric properties [23]. Thus, combining these two datasets provides
complementary information and improves accuracy in LC classification.

Accurate LC classification relies on advanced machine learning (ML) methods [24].
Thus, the selection of the finest classification method still remains a topic of ongoing debate
within the remote sensing community [25]. Supervised ML methods, like Random Forest
(RF) and Support Vector Machine (SVM) have shown high reliability and accuracy in
remote sensing applications, especially in tree species classification tasks [26–30]. However,
the performance variation among ML methods is often attributed to different combinations
of remote sensing variables. While MTMS datasets enhance classification, they can be
high-dimensional, redundant and multicollinear, leading to an increase in computational
time and require more storage [31]. The inclusion of highly correlated variables can make
the model sensitive to multicollinearity which affect the performance of the classification
model, as well as reduce the precision and accuracy. Selecting the most useful variables
from MTMS datasets yields more accurate results than using all the available variables. This
was supported by [32,33], showing that images acquired in peak growth seasons are more
correlated than images acquired in low growth seasons. Variable selection techniques, such
as multicollinearity tests (MCT), help optimize the selection of variables for classification
by removing highly correlated variables [31]. A threshold value of 0.7 is often considered
appropriate for variable removal [34,35].

Pakistan is a rich country in terms of food production, particularly in major orchards
contributing significantly to global exports. Notably, bananas, dates and mangoes play a
pivotal role. Bananas hold a key position in the agriculture economy, covering an area of
34,800 hectares with a production of 154,800 tons [36]. Sindh province, where the soil and
climatic conditions are favorable for banana cultivation, contributes 82%, while Punjab,
Khyber Pakhtunkhwa and Baluchistan share 5%, 9.9% and 3%, respectively [37]. Mango,
ranking high in both area and production, covers 156,000 hectares and 1,753,000 tons.
Pakistan stands as the fourth largest mango producing and exporting country in the
world [38]. Mango cultivation is prominent in Punjab and Sindh, recognized for the
best quality mangoes in the world [39–41]. In dates production, Pakistan is the seventh
largest producer with 557,279 metric tons in 2011, also leading in exports [42,43]. Dates
are cultivated in all four provinces of Pakistan, with major producing districts including
Khairpur and Sukkar (Sindh), Panjgur (Balochistan), Jhang, Muzaffar Garh and Multan
(Punjab) and Dera Ismail Khan (Khyber Pakhtunkhwa). Sindh, particularly the Khairpur
district, contributes significantly, accounting for approximately 85% of the total production
with an area of 24,425 hectares yielding 164,653 tons [44,45].

Generally, several studies have been conducted using MTMS datasets for tree species
classification. However, in Pakistan, no study has been conducted on orchards clas-
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sification using MTMS images. Therefore, this study aims to utilize fine resolution
multi-temporal S1 SAR and S2 optical images for orchard classification, focusing on
the Khairpur district of Pakistan. Two well-known ML algorithms, RF and SVM, were
applied to classify major orchard types including bananas, dates and mangoes. This
study provides a relevant basis for applying fine spatial resolution, multi-temporal SAR
and optical datasets for orchard classification, as well as supporting planting subsidies
and production layout planning. The key objectives include (1) orchard discrimination
with single and multi-temporal SAR and optical datasets using the JM Distance test,
(2) comparative assessment of orchard classification abilities using RF and SVM methods,
(3) evaluation of the significance of combining multi-temporal SAR and optical variables,
along with vegetation indices, to improve orchard classification accuracy. The research
outcomes are expected to provide a foundation for future applications of multi-temporal
SAR and optical datasets in orchard classification.

2. Materials and Methods
2.1. Research Area

The research area of the Khairpur district is situated in the Southeast of Pakistan,
bounded by Shikarpur and Sukkur districts in the North, Sanghar and Nawabshah districts
in the South, with Larkana and the Indus River in the West and India to the East (Figure 1).
The reason for selecting the Khairpur as a research area is that all the major orchards
including bananas, dates and mangoes can be found in this region.
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The topography of Khairpur can be divided into a plain cultivated area in the Northern
and Western parts of the district and desert area to the East and Southeast. This area is
very rich and fertile in the vicinity of the Indus River and its irrigation canals. The Eastern
part of Khairpur lies in the Nara desert, which is part of the great Indian desert. This area
is characterized by extreme temperatures and severe droughts. The district has two well
defined seasons: hot summers which begin after March and continue until October as well
as cold winters with December, January and February as the coldest months. In addition,
dust storms are frequent during April, May and June while the cooling Southern winds
during summer nights are the only soothing element. Mean annual rainfall in this area is
120 to 230 mm mostly occurring during July and August. Based on its natural conditions,
the orchards in this focused study area have been planted for decades; hence, making it
one of the major fruit production areas in Pakistan. The primary orchards here include
dates, mango and banana plantations, while cotton, wheat and sugarcane are the other
main agricultural crops.

2.2. Training and Validation Data

To train the ML algorithm for classification tasks, ground samples representing differ-
ent LC types were needed. For this study, the training data were collected on a random
samples basis, using android-based GPS application through a field survey conducted in
late July 2022. Due to the harsh weather conditions and the high flood alert in this area
during the survey period (July 2022), 70% of the samples were collected during the field
survey while the remaining 30% were collected from high-resolution google earth images.
The total 180 sample polygons representing four categories of LC (banana (50), dates (40),
mango (30) and other LC (60)) were used as the training dataset (Figure 1B) for classification
of LC. Other LC includes the mosaic of agriculture land, barren land, built-up area and
water bodies. For accuracy assessment of the classified maps, overall, 625 systematic grid
points were generated at a distance of 200 × 200 m throughout the area and validated
during the survey and from Google Earth high resolution imagery (Figure 1A).

2.3. Data Processing
2.3.1. Sentinel-2 Data

In the present study, monthly based S2 Level-2 (L2A) images from January to December
2022, with cloud cover of less than 10% were downloaded from the website https://scihub.
copernicus.eu/ assessed on 4 March 2023. L2A products have been pre-processed for
atmospheric and geometric correction. S2 mission consists of the Sentinel 2A and 2B
satellites equipped with a multispectral instrument, which provides global coverage at
5-days’ time intervals [46].

The S2 has 13 bands with different spectral resolutions ranging from 0.433 to 2.19µm.
In visible and NIR regions, it has four 10 m bands. Six 20 m red-edge, NIR and SWIR
bands as well and three 60 m bands for characterizing aerosol, cirrus cloud and water
vapor [47]. In this study, 60 m bands including band-1, band-9 and band-10 were elimi-
nated because these were specified for characterization of atmosphere and not for land
surface observation. The 20 m spatial resolutions bands were resampled to 10 m spatial
resolution utilizing an S2 resampling operator with nearest neighborhood techniques in
SNAP 9.0 software.

2.3.2. Vegetation Indices

To measure the vegetation growth and health conditions, remote sensing indices are the
main indicators. In this study, seven vegetation indices were used, calculated for all multi-
temporal S2 images including Normalized Difference Vegetation Index (NDVI), Green
Normalized Difference Vegetation Index (GNDVI), Transformed Normalized Difference
Vegetation Index (TNDVI, Soil Adjusted Vegetation Index (SAVI), S2 Red-Edge Position
(S2REP), Inverted Red-Edge Chlorophyll Index (IRECI) and Pigment Specific Simple Ratio
(PSSRa). The formulas of these indices are given in Table 1.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Table 1. Vegetation indices derived from the Sentinel-2 images.

Full Name Index Formula

Normalized Difference Vegetation Index NDVI NIR − Red
NIR + Red

Green Normalized Difference Vegetation Index GNDVI NIR − Green
NIR + Green

Transformed Normalized Difference Vegetation Index TNDVI
√(

NIR − Red
NIR + Red + 0.5

)
Soil Adjusted Vegetation Index SAVI (1 + L)× (NIR − Red)

(NIR + Red + L)

S2 Red-Edge Position S2REP 705 + 35×
((Red + NIR)/2− Red2)/(Red3− Red2))

Inverted Red-Edge Chlorophyll Index IRECI (NIR− Red1)/
(

Red2
Red3

)
Pigment Specific Simple Ratio PSSRa NIR

Red

NDVI is the common vegetation index used to monitor vegetation density, intensity,
health and growth [48]. It exploits the vigor and strength of the earth’s surface vegetation.
The GNDVI developed by [49] was more reliable than NDVI in identifying the different
concentration rates of chlorophyll. A green spectral band was shown to be more effective
than a red band for assessing vegetation chlorophyll variability [49]. TNDVI is the square
root of NDVI and indicates the relationship between the amount of green biomass in
a pixel [50]. The SAVI introduced by [51] aims to be a cross between the ratio-based
indices and the perpendicular indices. A soil adjustment factor (L) is included in SAVI to
distinguish the impact of soil brightness. The factor ranges from 0 to 1 where the maximum
value is used in regions with more visible soil. For intermediate vegetation densities, 0.5
is the conventional value that is mostly used in most applications [52]. The S2REP index
based on linear interpolation was presented by [53]. Red-edge, as the point of strong red
absorption to near infrared reflectance, includes the information on growth status and
chlorophyl content of crops. The reflectance at the inflexion point was determined and
REP was obtained through interpolation of S2 red-edge band-5 and -6, respectively. The
IRECI incorporates four spectral bands to estimate canopy chlorophyll content [54]. The
PSSRa, introduced by [55], investigates the range potential of spectral bands for quantifying
pigment at the scale of the whole plant canopy. It has the strongest and most linear
relationships with canopy concentration per unit area of chlorophyll and carotenoids.

2.3.3. Sentinel-1 Data

With the development of S1 mission, the SAR applications have gained increased usage
due to the global data availability at free cost and their high temporal resolution. The S1
mission is a constellation of polar-orbiting Sentienl-1A and -1B satellites, prepared with C-band
SAR sensors enabling data acquirement in all weather conditions [17]. S1 data are acquired in
dual polarization with vertical transmit and horizontal receive (VH) and vertical transmit as
well as (VV) backscattering, polarized vertical for transmission and horizontal/vertical for
reception [56]. To examine the sensitivity of SAR backscatter for orchards classification, in
the present study, multi-temporal S1 Level-1 Ground Range Detected (GRD) interferometric
wide swath (IW) products were obtained with a temporal range of January to December 2022
(one image per month) from the website https://scihub.copernicus.eu/ assessed on 4 March
2023. The S1 images at GRD level are dual polarization VH and VV products which need to
be preprocessed before being used for analysis. However, it required less processing time as
compared to the Single Look Complex products.

The preprocessing of S1 GRD products includes four major steps: radiometric calibration,
speckle filtering, radiometric terrain flattening and geometric correction. Radiometric cali-
bration converts the pixels values to backscatter coefficients [57]. Before performing analysis
in SAR, data speckle noise removal is necessary, as this degrades the quality of the image,
making it difficult to understand the backscatter response from different LC [58]. To reduce

https://scihub.copernicus.eu/
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the speckle noise effect, we applied a Lee filter with 3 × 3 window size to all multi-temporal
images. The geometric correction of SAR images is also important because of the topographic
variations in the scene and inclinations of the sensor, which distort the acquired images. As
geometric correction is not considered in the GRD images, therefore, it is essential to perform
and increase the Geolocation accuracy. The Range Doppler Terrain correction method was
used for correction; we applied the Range Doppler Terrian Correction method by using a 30 m
Copernicus Digital Elevation Model (DEM) to correct the topographic deformations. The
Copernicus DEM was acquired automatically in SNAP software [59]. After the preprocessing,
two polarization ratios were also calculated for all the multi-temporal images. The simple
ratio of VV and VH (Equation (1)) and normalized ratio between the VV and VH bands
(Equation (2)) [60] was calculated using the following formulas.

simple ratio =
VH
VV

(1)

normalized ratio =
VV −VH
VV + VH

(2)

2.4. Multicollinearity Test (MCT)

Utilization of MTMS data requires investigation of the correlation between MTMS
variables. Using highly correlated variables can influence the model performance, using
too many variables is also time consuming. Therefore, it was desirable to exclude the
highly correlated variables and produce a model that can contribute to high accuracy and
performance. In the present approach, based on the assumption that orchards may have
the same spectral response at different time periods leads to correlation of variables, the
MCT among all the multi-temporal S1 and S2 variables was performed using a psych
package in R 2023.03 software, in order to eliminate the highly correlated variables. The
analysis revealed that multi-temporal S2 spectral bands, vegetation indices and S1 bands
and ratios were highly correlated. Hence, the threshold value of correlation >0.7, suggested
in previous studies [34,35], was set to remove all the variables with a correlation greater
than this threshold value. Figure 2 depicts variables used for classification after resolving
the issue of multicollinearity.
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2.5. Feature Combination Schemes

The total multi-temporal S1 and S2 variables were 252. However, after the MCT, only
56 multi-temporal variables were left among which 13 were S2 spectral bands, 16 vegetation
indices, 5 S1 bands and 22 S1 bands ratios. To quantify the multi-temporal S1 and S2, both
individually and combined impacts on the classification of orchard types, six different
feature combination schemes were developed. These schemes were used as predictors for
the classification of banana, dates, mango and other LC, in the study area. The details of
each scheme are given in Table 2.

Table 2. Feature combination schemes.

Schemes Description Number of Bands

Scheme-1 Spectral bands 13
Scheme-2 Spectral bands + Vegetation Indices 29
Scheme-3 SAR variables 27
Scheme-4 SAR variables + Vegetation Indices 43
Scheme-5 SAR variables + Spectral bands 40

Scheme-6 SAR variables + Spectral bands +
Vegetation Indices 56

2.6. Spectral Separability Analysis

Spectral separability refers to quantifying the degree of separation between LC classes
in different remote sensing images. Jeffries-Matusita (JM) distance is the indicator of
separability commonly used in the applications of remote sensing [61–65]. JM distance
was recommended to be more reliable for assessing separability [66] and demonstrated
increased reliability for classes within homogenous distributions [67]. Therefore, we choose
JM distance to examine the spectral separability among orchard types in multi-temporal S1
and S2 images.

JM distance [68] was calculated as

JM = 2
(

1− e−B
)

(3)

where, Bhattacharyya distance is represented with B as given below:

B =
1
8
(x− y)t

(
Σx + Σy

2

)−1

(x− y) +
1
2

ln


∣∣∣Σx+Σy

2

∣∣∣√
|Σx| ·

∣∣Σy
∣∣
 (4)

where, x is the spectral response of the first object vector and y is the spectral response of the
second object vector, Σx and Σy is the covariance matrix of samples x and y, alternatively.

JM distance value ranges from 0 to 2, where 0 value represents complete inseparability
and a value of 2 represents completely separable [69]. We performed the JM distance analy-
sis by using the training samples statistics at each class based on probability distribution.

2.7. Classification Algorithms

A variety of classification algorithms are available for LC mapping, but the ML-based
RF and SVM methods are widely recognized for their reliable performance across a range
of remote sensing applications [70–73]. RF is an ensemble learning method based on
decision trees [74,75]. It predicts the classification class by constructing numerous decision
trees, each trained on randomly selected samples [76]. Final classification is determined
by majority votes across all trees [77]. Two parameters, namely the number of predictors
(mtry) and the number of trees (ntree), must be chosen before training the RF model. For
the presented dataset, mtry was set to 56 and ntree to 500. SVM suggested by [78], is a ML
method based on a statistical theory that performs nonlinear classification using kernel
functions [79]. Input vectors are mapped into a high-dimensional feature space through
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nonlinear transformation, and the SVM model identifies the best classification hyperplane
to maximize the separation between classes in this space [80]. SVM primarily achieves
fitting nonlinear functions by choosing a kernel function and other parameters, including
gamma, which controls the smoothness of the hyperplane, and the cost, which controls the
penalty for misclassification. In this study, we opted for the polynomial kernel function
with gamma and cost values both set to 1.

2.8. Accuracy Assessment

To measure the performance of classification methods, accuracy assessment is very
important. Commonly used accuracy assessment indicators are user accuracy (UA), pro-
ducer accuracy (PA), overall accuracy (OA) and kappa coefficient (KC) [81,82], and are
obtain through a confusion matrix [83]. A total of 625 systematic points, generated at a
fixed distance of 200 × 200 m throughout the study area (Figure 1B), were used to calculate
the confusion matrix and obtain the accuracy assessment indicators.

2.9. Feature Importance Measurement

Feature importance measurement aims to rank the relative importance of input multi-
ple variables in ML models [84] and can be measured in several ways. The RF algorithms
have benefits over other ML algorithms by having a built-in feature important measure-
ment. The primary benefit of the RF method is that all the important input features can be
calculated during the training of the RF model. In this study, Gini Index (GI) [85] was used
for the feature importance measurement. The Gini index described the whole reduction
in impurity of all nodes average and whole decision trees [86,87]. GI computes to reduce
different samples through the whole nodes fragmented by a predictor variable in RF model.
Gini examines the advantage of each feature, applying the information of all the features in
the decision trees. However, all the features of the six classification schemes were input
into the SVM without additional feature selection.

3. Results
3.1. Spectral Separability Analysis

The JM distance between each pair of orchard classes were calculated for single-
date, multi-temporal and fusion of S1 and S2 datasets. The detailed results are shown
in (Figure 3a) representing three pairwise orchards combinations. The horizontal axes
represent datasets and vertical time scale individually. The color of each grid signifies the
JM distance value of the resultant datasets and time. The redder the grid cell, the higher
the JM distance value and more independent the two classes at time scale specifically.
Banana was highly distinguishable from dates in blue, red, red-edge bands, NIR bands,
NDVI, TNDVI, GNDVI, SAVI, PSSRA and IRECI index during the summer months (May,
June, July and August), because these are the peak growing months (vegetation density is
high) and SWIR-1 and SWIR-2 from January and February. The single date S1 variables
throughout the year were not found suitable for separation of banana from dates. Because
of the degree of lushness during the summer months, the mango and banana were highly
distinguished in Red-Edge and NIR bands, GNDVI, SAVI, IRECI and S2REP and also in
Red, SWIR bands and all vegetation indices expect S2REP from the winter months (January,
February). However, no separation was detected between mango and banana in blue, green
bands and S1 variables throughout the year. Dates and mango were least distinguishable
from each other in all the S1 and S2 variables except for the summer months blue band,
as well as September, October and November NDVI and TNDVI. However, different SAR
and optical variables have different capacities for vegetation discrimination. All in all,
red-edge, NIR bands and vegetation indices were superior to the other spectral bands and
S1 variables. During the peak growing period (May to Aug), red-edge and NIR bands were
slightly better than the vegetation indices in distinguishing banana from the other orchards.
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Consequently, the JM distance of multi-temporal S1 and S2 variables was advance
calculated as shown in (Figure 3b). The horizontal axes represent S1 and S2 variables,
while the vertical axes represent the time scale in unit of two months, i.e., the two-month
composite period. For the whole year, six temporal combinations were developed to
calculate the JM distance. The results show that an increase in time series length increased
the JM distance meaningfully. Once the time series length was greater than 4 months,
banana-dates and mango-banana classes become almost completely separable, the JM
distance reached 2.0, except for the simple ratio of VH/VV. However, the JM distance
among dates-mango increased gradually with increasing the time series length. Once
half year of time series composite was used, dates-mango were moderately separable.
Furthermore, when the whole year composite was used, the JM distance reached 2.0
between dates-mango in blue band, red band, SWIR-1 band, NDVI, TNDVI and PSSRA
only. For all the S1 variables, the dates-mango discrimination ability was lower even
when the whole year composite was used. However, it can be observed that spectral
bands and vegetation indices perform better than S1 variables. It is remarkable that for the
most indistinguishable pair of dates-mango, multi-temporal S2 variables outperformed
S1 variables.
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The JM distance of the multi-temporal fusion of S1 and S2 features was also calculated,
as shown in (Figure 3c). The results show that orchard classes were completely separable
when multi-temporal optical and SAR features were combined while only date-mango
was less separable in multi-temporal SAR features. In the fusion of multi-temporal S1 and
S2 features, the JM distance value approached 2.0 for all the pairs of orchards including
banana-dates, mango-banana and dates-mango. These results were in parallel with the
classification results as, combining multi-temporal S1 and S2 features, achieved highest
classification accuracy.

3.2. Assessment of Different Classification Schemes

Classification schemes with different features combinations were classified using RF
and SVM methods. The overall accuracy and kappa value of each classification scheme are
shown in (Figure 4). It was observed that RF and SVM algorithms achieved the highest
accuracies of 93% and 94%, respectively, with scheme-6 which is the fusion of all multi-
temporal S1 and S2 variables. Scheme-2 (optical bands + vegetation indices) ranked second
with an accuracy of 91% and 93% for RF and SVM, respectively. Using only multi-temporal
SAR variables (scheme-3) produces the relatively least reliable results with an accuracy of
less than 80% in both RF and SVM methods. Compared with scheme-3, the combination
of SAR variables with vegetation indices and optical bands (scheme-4 and scheme-5)
significantly improved the accuracy of orchards classification. However, compared to other
classification schemes, scheme-6 retrieved the best classification results in both RF and
SVM methods. Hence, it revealed that a combination of multi-temporal optical and SAR
features increased the classification accuracy.
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Figure 4. Classification results with different feature combination schemes.

3.3. Comparison of the Classification Algorithms

The comparative analysis revealed that the SVM method slightly outperformed the RF
method in terms of accuracy across all classification schemes as shown in Figure 4. Across
scheme-1 to -6, the OA and KC for SVM were consistently higher compared to RF, except
in scheme-4 where RF showed a slight advantage with a marginally higher OA and KC
value by 1% and 0.7%, respectively.

The PA and UA of each orchard class, classified by using different classification
schemes with RF and SVM algorithms, are shown in (Tables 3 and 4). The UA and PA of the
mango class was relatively low with the SVM method and much lower with the RF method
using multi-temporal SAR features only. In all other classification schemes, mango achieves
greater than 70% UA and PA with RF and SVM methods, respectively. For the dates class,
the highest PA with RF and SVM was reached by 96% and 99%, respectively, in scheme-6.
However, the same approach produces the lower UA for dates as 82% and 87%, respectively,
mainly due to confusion with mango class. The banana class with RF and SVM approaches
achieves PA and UA higher than 90% in all the classification schemes except for scheme-3,
while RF produced less than 90% PA and less than 86% UA in this scheme. Overall, the
lowest UA (<70%) was obtained by mango and dates with both RF and SVM methods using
scheme-3 (multi-temporal SAR features only). While in the same classification scheme,
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banana achieved a good UA (>80%) with both classification methods. The UA and PA of
mango, dates and banana were relatively high with both classification algorithms using
scheme-6. These findings were consistent with the JM distance separability analysis (as
discussed in Section 3.1). This is easy to comprehend because the JM distance for all the
orchard classes approaches 2.0 when all the multi-temporal features (scheme-6) were used.

Table 3. Confusion matrix of RF with different feature combination schemes.

Random Forest (RF)

Scheme-1 Others Mango Banana Dates User accuracy

Others 353 1 2 1 98.88

Mango 1 147 3 41 76.56

Banana 7 2 187 1 94.92

Dates 25 31 10 198 75

Producer accuracy 91.45 81.22 92.57 82.16

Scheme-2 Others Mango Banana Dates User accuracy

Others 354 0 1 3 98.88

Mango 6 154 5 3 91.67

Banana 11 0 191 6 91.83

Dates 15 27 5 229 82.97

Producer accuracy 91.71 85.08 94.55 95.02

Scheme-3 Others Mango Banana Dates User accuracy

Others 320 14 4 51 82.26

Mango 10 78 2 27 66.67

Banana 6 9 186 19 84.54

Dates 52 76 16 157 52.16

Producer accuracy 82.47 44.07 89.42 61.81

Scheme-4 Others Mango Banana Dates User accuracy

Others 363 1 14 5 94.78

Mango 2 143 0 6 94.70

Banana 2 1 177 5 95.67

Dates 19 36 11 225 77.32

Producer accuracy 94.04 79.00 87.62 93.36

Scheme-5 Others Mango Banana Dates User accuracy

Others 372 0 0 3 99.2

Mango 1 142 2 28 82.08

Banana 0 0 186 1 99.46

Dates 13 39 14 209 76

Producer accuracy 96.37 78.45 92.08 86.72

Scheme-6 Others Mango Banana Dates User accuracy

Others 368 0 0 3 99.19

Mango 4 150 1 5 93.75

Banana 3 1 193 1 97.47

Dates 11 30 8 232 82.56

Producer accuracy 95.34 82.87 95.54 96.26
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Table 4. Confusion matrix of SVM with different feature combination schemes.

Support Vector Machine (SVM)

Scheme-1 Others Mango Banana Dates User accuracy

Others 357 0 3 0 99.17

Mango 0 161 2 11 92.53

Banana 2 1 188 0 98.43

Dates 27 19 9 230 80.70

Producer accuracy 92.49 88.96 93.07 95.44

Scheme-2 Others Mango Banana Dates User accuracy

Others 365 0 2 2 98.91

Mango 1 163 4 14 89.56

Banana 2 0 191 0 98.96

Dates 18 18 5 225 84.59

Producer accuracy 94.56 90.05 94.55 93.36

Scheme-3 Others Mango Banana Dates User accuracy

Others 324 2 1 28 91.27

Mango 3 121 5 49 67.98

Banana 1 1 190 4 96.94

Dates 60 53 12 173 58.05

Producer accuracy 83.50 68.36 91.35 68.11

Scheme-4 Others Mango Banana Dates User accuracy

Others 336 0 7 0 97.96

Mango 0 159 0 12 92.98

Banana 2 0 176 0 98.88

Dates 48 22 19 229 72.01

Producer accuracy 87.05 87.84 87.13 95.02

Scheme-5 Others Mango Banana Dates User accuracy

Others 357 1 3 0 98.89

Mango 0 154 2 19 88

Banana 2 1 190 0 98.44

Dates 27 25 7 222 79.00

Producer accuracy 92.49 85.08 94.06 92.12

Scheme-6 Others Mango Banana Dates User accuracy

Others 363 0 2 1 99.18

Mango 4 166 5 1 94.32

Banana 2 1 191 0 98.45

Dates 17 14 4 239 87.23

Producer accuracy 94.04 91.71 94.55 99.17

3.4. Overall Classification Results and Accuracy Assessment

The spatial distribution maps of the classification from different feature combination
schemes using RF and SVM are depicted in (Figure 5). It can be spatially observed that
dates are largely distributed in the East and Southeast of the research area while mangos
are in the middle and Southeast of the area. Bananas cover a large area and are distributed
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throughout the focused area. Other LCs, such as agricultural land, built-up areas and water
bodies, collectively contribute a small amount of the total area. The classified maps obtained
from the RF and SVM methods, using different features combinations, are consistent in most
regions of the area. However, through the comparative analysis of the confusion matrixes
results from RF and SVM methods (Tables 3 and 4), a high confusion of mango and dates was
found in all the classification schemes which leads to the misclassification of two classes. The
classification results of RF and SVM algorithms for banana and other classes are relatively
consistent among all the feature combination schemes. In addition, the speckled effect
observed over the LC classes with the RF method as shown in Figure 5(b1,c1,d1,f1) was
resolved with the SVM method (Figure 5(b2,c2,d2,f2)). Moreover, the RF produced relatively
little “salt and pepper” maps as compared to SVM maps in all the schemes (Figure 5). Overall
findings illustrate the synthesis of multi-temporal SAR and show that optical features have a
significant role in the LC classification improvement.
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3.5. Evaluating Features Importance for Orchards Classification

The feature significance scores were examined by the average reduction in the Gini
Index (GI), using the RF model (Figure 6). Based on the top 20 important features in GI,
multi-temporal SWIR and NIR bands, S2REP and NDVI indices are the most important
features for orchards classification. Particularly, the multi-temporal S2REP index was more
relevant, and in GI, the top 20 features has 7 multi-temporal S2REP indices, respectively.
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When assessing the relevance of time periods, March and August were the most
important months for the discrimination of orchard classes as three features from each
month were ranked in the top 20 important features. In addition, March to October also
appeared to be the critical time period as there was at least one high ranked feature from
each month. February was the least important month as no single feature was ranked in
the top 20 important features. Among the multi-temporal S1 features, October-VH was
among the top 15 essential features. However, all other features were ranked much lower
in GI scores.

4. Discussion
4.1. Multi-Temporal Imagery

We applied two approaches to examine the orchards judgment capacity of multi-
temporal S1 and S2 datasets. In the first approach, JM distance was used to specify the
separability among each orchard pair in single date images, multi-temporal and fusion of
multi-temporal S1 and S2 images. The whole output illustrates that the multi-temporal
data show superiority to single-date data. During the summer months (May to August),
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red-edge bands and NIR bands perform better to distinguish banana-dates and mango-
banana. However, the performance for dates-mango in the same months was relatively poor.
Date-mango only showed dissimilarity in the blue band during the growing season which
may be linked to the blue band sensitivity to the water content in vegetation [88,89] and
vegetation indices during monsoon season. In addition, the SWIR bands also showed good
performance in January and February for discriminating banana-dates and mango-banana.
These results correlate with the results obtained in other studies. Nelson and Immitzer
et al. [90,91] reported that the NIR, SWIR and red-edge bands were among the most
important for discriminating different LC. On the other hand, orchard types were difficult
to differentiate from each other in all the single-date S1 variables. Also, the multi-temporal
VH/VV ratio showed no advantage in discriminating orchard pairs on all dates. The VV
and VH backscatter are more useful than VH/VV for discriminating orchard types [92].
Also, in the dates-mango discrimination, all the S1 multi-temporal variables showed almost
no discrimination or very low JM distance value. Furthermore, the JM distance of the S1
and S2 variables mostly approached 2.0 when more than half year multi-temporal images
were combined (Figure 3b). Hence, it can be concluded that S1 data could not be used alone
due to the limited number of channels for discriminating the orchard types [93]. However,
the fusion of multi-temporal S1 and S2 images demonstrate exceptional performance in
the separation of orchards pairs. Similar to previous studies on fusion of S1 and S2 [94–96],
from the combination of multi-temporal SAR and optical imageries, high classification
accuracy was attained, compared with the result of multi-temporal SAR and optical alone.

In the second approach, we implemented RF and SVM algorithms to classify orchard
categories in the study area by using different multi-temporal features combination. The
best feature combination scheme was made up of a fusion of multi-temporal S1 and S2 fea-
tures (scheme-6) with an overall accuracy of 93% and 94% with SVM and RF methods, cor-
respondingly. This indicates that multi-temporal remote sensing imagery complements the
information in single-date images and enhances the predictive power of the classification
models. Moreover, these outcomes support previous studies concerning LC classification
using multi-temporal data [90,97,98]. Hill et al. [99] utilized multi-temporal high-resolution
Airborne Thematic Mapper images for the classification of the deciduous tree species. It
was found that a single image provides satisfactory results with an accuracy of 71%, but
combined multi-dates images notably achieves a higher accuracy of 84%. Kollert et al. [100]
applied multi-temporal S2 images for the classification of tree species and their output
illustrated that classification output attained with S2 temporal images was 10% higher
than the single S2 images. Additionally, Zhu and Liu [101] achieved the highest accuracy
of 88% for forest type classification using dense time series imagery. In our research, the
multi-temporal optical bands (scheme-1) performed well independently but the overall
accuracy plateaued when additional multi-temporal features were combined. Notably,
this could be due to the spectral variation in orchard types being different in different
time periods. Moreover, the multi-temporal SAR images (scheme-3) poorly performed,
likely due to the small variations in backscatter coefficients of the orchard types. However,
together with either optical bands or vegetation indices, it made up good classification
results. These findings were similar to the findings of [102], who assessed the potential of
S1 alone, S2 alone and combination of both S1 and S2 data for mapping forest-agricultural
mosaic over Cantabrian Range, Spain and Paragominas in Brazil. The results obtained from
S2 alone were more accurate than S1 alone. However, the highest accuracy was achieved
by the fusion of S1 and S2. This may be due to the fact that SAR sensors are sensitive to
vegetation structure while optical sensors are sensitive to the concentration of vegetation
chlorophyll. Consequently, upon examination of a 10m spatial resolution, orchard classes
can be easily distinguished based on their physiology and physical structure. Patel et al. [92]
found that both polarizations VV and VH and their ratio VH/VV contributed equally but
to a low importance in classifying the forest-agricultural mosaic. Thus, this leads to the
conclusion that only the C-band SAR dataset is not appropriate to classify orchard types.
Generally, C-band SAR has a faster single saturation rate and lower penetration depth than
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L-band SAR, it is less effective for monitoring trees [103]. Furthermore, Patel et al. [92] also
highlighted that L-band is more sensitive to a variation in plant density than the C-band,
which interacts mostly with the primary branches of the canopy, while the L-band is within
the vegetation canopy. However, in the case of bare soil and artificial surfaces, the SAR
data sometimes discriminate better than the optical data as the SAR single reacts differently
to these two LC classes [104].

4.2. Performance on Orchard Types

In this study, three major orchard types in the focused study area including dates,
mango and banana were classified with higher accuracy through the fusion of S1 and S2
multi-temporal data. Among these orchards, mango-dates were highly confused with each
other in all the multi-temporal feature combination schemes. This was probably due to the
reason that these two orchards mostly have a heterogenous pattern inside the study area
shown in (Figure 5). Mango has the lowest PA of 44% and 68% in SAR data only, using
RF and SVM, respectively. Similarly, using SAR data only, the dates retrieved the lowest
accuracy of 61% and 68% with RF and SVM, respectively. While for both mango and dates,
the PA reached 91% and 99% in a combination of multi-temporal SAR and optical datasets.
As noticed, RF showed a substantial underestimation of orchard types, which produced
low PA as relate to SVM method. The difference in the confusion matrices, from scheme-1
to scheme-6, is that the PA of mango and dates greatly improved. The reason is that the
combination of multi-temporal S1 and S2 data increased the two classes separability. As
compared to mango and dates, banana was less confused with these and vice versa in all
the combination schemes. It could be due to the fact that bananas have a homogenous
pattern in the research area. The research findings indicated that in similar prospective
studies, bananas can be separated by using multi-temporal S1 and S2 data only. The class
specific UA and PA is reported in (Tables 3 and 4). However, for illustrative purposes,
thematic maps (Figure 5) have also been included. For similar prospective studies, thematic
mapping focusing on this study area may suggestively incorporate more LC classes, such as
agricultural crop types, barren land and built-up area. The outputs of the present research
are encouraging; homogenous areas of orchard types instead of mixed tree species, which
vary greatly on spectral basis and are generally more challenging to classify [105] have
been explored.

4.3. Feature Importance

In the present study, the MCT excluded 196 of the 252 features, presumably because
they were highly correlated (R2 > 0.7) with the 56 features that were selected. Among
these 56 features, the temporal SWIR band, NDVI and S2REP indices were ranked highly
in the Gini Index, as well as typically from the growing month which strengthened the
position of these images. Furthermore, a majority of their S2REP indices ranked among
the top 10 features. However, discrepancies occur regarding the importance of specific
features. The study’s results from [90,91] reports that the blue and red bands were more
critical. However, in this study, these bands were removed due to their high correlation
with other bands.

4.4. Performance of Classification Algorithms

In this study, the classification performance of RF and SVM algorithms was evaluated.
These algorithms demonstrate less sensitivity to the choice of input features [18] and
are equally reliable [106–108]. The maps in (Figure 5), obtained through RF and SVM
methods with different features combinations, were quite similar, except for differences in
accuracies. Indeed, the kappa values and overall accuracy revealed discrepancies in the
output classifications. Overall, SVM performance is superior to the RF algorithm which
is consistent with previous studies [109,110]. However, other research studies comparing
SVM and RF have reported contrasting results [111–113] possibly due to the application
of a small training dataset. The RF model used a huge number of decision trees for the
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training data of high dimensional tree selection [85]; hence, it is crucial to train the RF
model with a small dataset [114]. The SVM model can escape a small training dataset, as
well as high-dimensional decision trees selection [79]. Moreover, other studies of SVM
and RF comparisons propose the advantages of SVM method [115–117]. The details of the
kappa coefficient and the overall accuracy attained by the SVM and RF methods using
different classification schemes is shown in (Tables 3 and 4).

5. Conclusions

This research examined the effectiveness of S1 and S2 multi-temporal SAR and optical
data for orchard classification using two ML algorithms in the sub-arid region of Pakistan.
The use of multi-temporal SAR data proved unreliable for the orchard discrimination, due
to insufficient spectral dissimilarity. Though the multi-temporal S2 optical data performed
relatively better than the SAR data, the fusion of multi-temporal S1 and S2 showed that
high classification accuracy can be achieved regarding the accuracies with each sensor
independently. In addition, the spectral dissimilarity in the fused datasets is high as
compared to the single-date or temporal S1 and S2 datasets. Particularly, for the most
indistinguishable pair dates-mango, fused data achieve a relatively high JM distance
value and overall accuracy. However, the results of the present research suggested most
multi-temporal variables are highly correlated; hence, there is need to conduct the MCT
and remove highly correlated variables to reduce overfitting, as well as the time needed
for analysis.

Although SVM was superior to RF in orchard classification, the differences in their
performance were not significant, suggesting RF can also be considered a viable option. The
important features ranked by the Gini Index were multi-temporal SWIR bands, NIR bands,
S2REP and NDVI indices. Considering the S1 bands and ratios derived from these bands,
multi-temporal S2 perform best in the orchard discrimination. The findings demonstrated
that the multi-temporal fusion of SAR and optical is well-suited for orchard mapping using
ML methods and can be applied to future research such as vegetation mapping, change
detection and monitoring in the heterogeneous landscapes. The outcomes provide baseline
information for the spatial-distribution-based mapping of orchards, yield estimations and
agricultural practices. Future research should consider advanced deep learning and fusion
techniques for improving LC classification and include more LC classes for detailed spatial
distribution-based maps.
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