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Abstract: The ecological quality of large-scale farms is a critical determinant of crop growth. In this
paper, an ecological assessment procedure suitable for agricultural regions should be developed
based on an improved remote sensing ecological index (IRSEI), which introduces an integrated
salinity index (ISI) tailored to the salinized soil characteristics in farming areas and incorporates
ecological indices such as the greenness index (NDVI), the humidity index (WET), the dryness index
(NDBSI), and the heat index (LST). The results indicate that between 2013 and 2022, the mean IRSEI
increasing from 0.500 in 2013 to 0.826 in 2020 before decreasing to 0.646 in 2022. From 2013 to 2022,
the area of the farm that experienced slight to significant improvements in ecological quality reached
1419.91 km2, accounting for 71.94% of the total farm area. An analysis of different land cover types
revealed that the IRSEI performed more reliably than did the original RSEI method. Correlation
analysis based on crop yields showed that the IRSEI method was more strongly correlated with
yield than was the RSEI method. Therefore, the proposed IRSEI method offers a rapid and effective
new means of monitoring ecological quality for agricultural planting areas characterized by soil
salinization, and it is more effective than the traditional RSEI method.

Keywords: large-scale farms; ecological quality; remote sensing ecological index; salinity index

1. Introduction

Large-scale farms bear the critical mission of serving as “granaries” of society. The
quality of a farm’s ecological environment exerts a significant influence on crop growth.
Consequently, scientifically evaluating and appropriately balancing the ecological envi-
ronment of farms is of paramount importance. Ecological quality is also a crucial factor
affecting the sustainable development of plantations. Within the realm of agricultural
cultivation, sustainable development refers to the continuous maintenance of soil fertil-
ity, the ongoing health of the environment, and the stable capacity for food production.
Currently, conserving the ecological integrity of farms poses a challenge due to the irra-
tional provision of soil nutrients, the increase in human activities, and alterations in soil
salinization. The deterioration of farms’ ecological quality can lead to a reduction in soil
biodiversity, which is detrimental to the preservation of soil fertility, thereby leading to
a decrease in soil productive capacity and a decrease in arable land quality; ultimately,
constraints on food production also damage the sustainable development of agricultural
ecosystems [1,2]. Therefore, a realistic understanding of the factors affecting farm ecology
and comprehensive research into the overall ecological quality of farms are of significant
practical importance [3].
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Currently, methodologies for assessing the ecological quality of specific regions can
be categorized into single-index approaches and composite-index approaches. These
methodologies rely, to a certain extent, on remote sensing technology due to the advantages
of remote sensing data, which include temporal and spatial diversity, extensive spatial
coverage, continuous temporal acquisition, and high data stability [4]. Within the remote
sensing framework, the single-index approach utilizes individual indicators to evaluate
ecological quality [5]. This includes the application of the normalized difference vegetation
index (NDVI) [6,7], leaf area index (LAI) [8], net primary productivity (NPP) [9], and
standardized precipitation index (SPI) [10]. In recent years, the remote sensing ecological
index (RSEI) has been extensively utilized to measure the condition of ecosystems in
specific research areas [11]. Specifically, the RSEI employs remote sensing technology
and mathematical models to acquire certain component index data, which include the
reuse of these data for comprehensive assessments of ecosystem health. RSEI research
typically integrates four component indices that represent the quality of the ecological
environment: greenness, humidity, dryness, and heat. By coupling these component
indices, a comprehensive index is formed that can holistically evaluate the quality of
the regional ecological environment. It also allows for quantitative assessment of the
structure, function, and services of the ecosystem, providing a scientific basis for ecosystem
management and protection. As the acquisition of component indices depends on image
data, researchers need to obtain appropriate remote sensing image data through satellites,
aircraft, or other remote sensing technology platforms. The obtained image data include
multispectral, hyperspectral, and radar data. Only after undergoing data preprocessing
procedures such as radiometric correction, atmospheric correction, geometric correction,
and noise processing can these data be used in conjunction with models to calculate the
relevant indices.

The RSEI has been extensively applied in assessment studies of various land cover
types. These studies have addressed the evaluation of urban [12–14], rural [15,16], forest-
land [17], wetland [18,19], island [20], arid desert region [21], and coastal [22] ecological
quality, among others. The widespread application of RSEI across diverse land cover
types can be attributed to its robust periodicity and efficient, objective characteristics. In
agricultural planting areas, such as large farms, RSEI can accurately assess the growth envi-
ronment of crops through remote sensing data in conjunction with relevant models. The
results can reveal the characteristics and dynamics of farms’ ecological environments and
provide a scientific basis for implementing environment management plans and supporting
farmland protection decisions. This enhances the efficiency of agricultural production and
the utilization rate of agricultural resources.

Salinization, as a form of soil degradation, primarily refers to the phenomenon in
which salts from the deep soil layers and groundwater are transported to the surface
through tubular pathways, resulting in the accumulation of salts on the soil surface fol-
lowing the evaporation of saline water [23,24]. The occurrence of soil salinization is the
outcome of both natural and anthropogenic factors. Natural factors are influenced by the
parent material of soil formation, topography, climate, water quality, and the level of the un-
derground water table, whereas human factors include unscientific irrigation and drainage
practices, and the excessive application of pesticides and fertilizers. Currently, more than
100 countries worldwide are affected by salinized soils, with the global total area exceeding
950 million hectares, and this area is continuing to expand annually [25,26]. In China,
salinized soils are widespread, with potential large-scale soil salinization changes occurring
in the regions of North China, Northeast China, and Northwest China [27]. For instance, in
some agricultural reclamation areas of the Hulunbuir region in Northeast China, which
is characterized by a semiarid climate with low precipitation and high evaporation, the
long-term use of pesticides and fertilizers in planted soils leads to salinization changes. The
issue of soil salinization can lead to reduced soil productivity, thereby decreasing agricul-
tural production efficiency and exacerbating the deterioration of the agricultural ecological
environment, which, in turn, has adverse effects on the socioeconomic landscape [28,29].
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Hence, conducting research on regional soil salinization conditions to comprehensively
identify potential risks is instrumental for the scientific and rational planning of land re-
sources, which can enhance the intrinsic productivity of the soil and contribute to ecological
recovery [30]. Therefore, by employing certain technical methods to thoroughly understand
the spatial distribution of soil salinization, it is possible to diagnose salinized soils and
implement targeted measures to prevent the worsening of soil salinization, improve land
use efficiency in agricultural areas, and achieve the goals of ecological sustainability.

In the assessment of ecological quality associated with agriculture, the criteria for
selecting evaluation indicators include their ability to reflect the characteristics and trends
of specific environments, thereby providing a scientific basis for the ecological assessment
of agricultural land [31]. In the northeastern region of China, several large-scale farms are
situated in semiarid areas and are subject to changes in the environmental characteristics
of soil salinization. Therefore, incorporating soil salinity indicators into the theoretical
framework of remote sensing ecological indices and proposing an improved remote sensing
ecological index (IRSEI) model are highly important.

The application of the soil salinization index to ecological research also holds universal
value. In agricultural planting regions, such as large-scale farms, the IRSEI can accurately
assess the ecological environment of croplands through remote sensing data in conjunction
with relevant models. This approach enables the revelation of the characteristics and
dynamics of the farm’s ecological environment and provides a scientific basis for the
management of the planting environment and decision-making for farmland conservation,
thereby enhancing the efficiency of agricultural production and the utilization rate of
agricultural resources. The IRSEI method, which considers soil salinization characteristics
and incorporates the integrated salinity index (ISI), can also be applied to detect the
ecological quality of other region types with salinization trends, thus offering scientific data
references in support of regional ecological conservation measures.

2. Research Area and Data
2.1. Introduction to the Research Area

Tenihe Farm was established in July 1955 and comprises 11 planting divisions, rep-
resenting an agricultural reclamation enterprise with contemporary management. The
farm is geographically situated in the northern section of the Daxing’anling Mountains;
the eastern and northern parts of the farm fall within the stony mid-mountain subregion
of the northern Daxing’anling, while the western and southern parts belong to the stony
low-mountain subregion of the northern Daxing’anling’s western slope [14]. The overall
topography is characterized by lower elevations in the west and higher elevations in the
east, with a regional distribution of rocks, among which granite occupies a significant
area. Together with other types of igneous rocks, these rocks form a terrain that com-
bines plains with mountainous features, thus exhibiting typical riparian geomorphological
characteristics [32]. The mountains, shaped by long-term weathering and erosion, have
gentle slopes. The total area of the farm is approximately 1900 km2, with approximately
670,000 mu of arable land available for cultivation. It is located between 119◦45′–120◦60′E
and 49◦10′–49◦55′N, with elevations ranging from 628 to 1064 m. The cropping system used
for agricultural production is based on a single harvest per year, with land preparation and
sowing typically carried out in May and crop harvesting generally completed by October.
The water requirements for the crops during the growing season are primarily met with
natural precipitation. Owing to antiquated irrigation practices, soil moisture retention has
not been adequately maintained. The perennial evaporation of surface water, coupled with
the residual crystallization of pesticides and fertilizers, leads to salinization in the arable
soil of the farm.

The geographical location and basic information of Tenihe Farm are illustrated in
Figure 1 below.
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tion, atmospheric correction, mosaicking, and cropping processes to yield mean compo-
site data for the study area. Subsequent calculations and processing were conducted for 
the IRSEI. The period from April to October coincides with the crop growth and harvest-
ing season, and it is also the peak growth phase for surrounding vegetation, suggesting 
that this period is an opportune time for vegetation detection. Employing the IRSEI 
method facilitates a more reliable assessment of ecological conditions [33]. 

The acquired imagery data necessitate a series of preprocessing steps prior to the 
computation of indices to enhance the accuracy of subsequent spectral band calculations. 
The rationale behind preprocessing is that detectors and other instruments are influenced 
by factors such as atmospheric radiation, the satellite’s orientation during flight, the solar 
zenith angle, and the conditions of the Earth’s surface coverage. Moreover, the multitude 
of radiometric information obtained through remote sensing methods undergoes physical 
alterations such as absorption or scattering upon interaction with the atmosphere, leading 
to the attenuation of the radiative energy and, consequently, introducing errors into the 
spectral information captured. Preprocessing enables the correction of distortions in re-
mote sensing imagery, as well as the reduction or elimination of noise interference, 
thereby ensuring more accurate geometric features of the imagery and information con-
tent that is more representative of the actual conditions. The remote sensing image pre-
processing workflow conducted in this next step primarily encompassed radiometric cal-
ibration, atmospheric correction, image mosaicking, image cropping, and the combination 
of image bands. Notably, the atmospheric correction carried out in this study was per-
formed within the GEE framework using the sensor-invariant atmospheric correction 
(SIAC) method [34]. 

3. Methods 
The ecological quality assessment method proposed in this paper is based on remote 
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Figure 1. Overview of Tenihe Farm.

2.2. Data Preparation

The data utilized in this article were constructed through the Google Earth Engine
(GEE) platform, accessed on 10 January 2024 at https://developers.google.com/earth-
engine/datasets/catalog/landsat, to establish a Landsat dataset. This involved the acquisi-
tion of Landsat satellite imagery data spanning the crop growing seasons from 2013 to 2022,
specifically from April to October each year. The images underwent radiometric calibration,
atmospheric correction, mosaicking, and cropping processes to yield mean composite data
for the study area. Subsequent calculations and processing were conducted for the IRSEI.
The period from April to October coincides with the crop growth and harvesting season,
and it is also the peak growth phase for surrounding vegetation, suggesting that this period
is an opportune time for vegetation detection. Employing the IRSEI method facilitates a
more reliable assessment of ecological conditions [33].

The acquired imagery data necessitate a series of preprocessing steps prior to the
computation of indices to enhance the accuracy of subsequent spectral band calculations.
The rationale behind preprocessing is that detectors and other instruments are influenced
by factors such as atmospheric radiation, the satellite’s orientation during flight, the solar
zenith angle, and the conditions of the Earth’s surface coverage. Moreover, the multitude
of radiometric information obtained through remote sensing methods undergoes physical
alterations such as absorption or scattering upon interaction with the atmosphere, leading
to the attenuation of the radiative energy and, consequently, introducing errors into the
spectral information captured. Preprocessing enables the correction of distortions in remote
sensing imagery, as well as the reduction or elimination of noise interference, thereby
ensuring more accurate geometric features of the imagery and information content that
is more representative of the actual conditions. The remote sensing image preprocessing
workflow conducted in this next step primarily encompassed radiometric calibration,
atmospheric correction, image mosaicking, image cropping, and the combination of image
bands. Notably, the atmospheric correction carried out in this study was performed within
the GEE framework using the sensor-invariant atmospheric correction (SIAC) method [34].

3. Methods

The ecological quality assessment method proposed in this paper is based on re-
mote sensing techniques. In agricultural planting areas, ecological quality is generally
represented as a comprehensive quality evaluation, via a coupled component indicator
approach. These component indicators include vegetation coverage, ecological moisture,
aridity, thermal conditions, and the degree of soil salinization within the farm region. After
the indicators that affect agricultural planting areas through objective and reliable remote

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
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sensing data are quantified, a mathematical transformation is then applied to generate
a comprehensive evaluation index. Building upon the RSEI, this paper introduces the
improved remote sensing ecological index (IRSEI) method, which was tailored to the study
area. In addition to the conventional four indicators, the integrated salinity index (ISI) was
innovatively integrated, thereby enabling a more accurate reflection of the true ecological
quality of the research area.

3.1. Overview

The experimental procedure of the present study is illustrated in Figure 2. The specific
steps were as follows: First, preprocessing operations on remote sensing imagery were con-
ducted, which primarily involved the radiometric calibration and atmospheric correction of
the raw remote sensing images, followed by the mosaicking and cropping of the corrected
images to ensure that the cropped images were well suited to the study area’s boundaries.
Second, the five component indices of the IRSEI were computed, and these indices were
calculated according to several previous studies [35–39]. Through the dissection of algo-
rithms, the most appropriate expressions were selected, and several algorithmic models
were transformed into parameter settings for the computation of remote sensing image
bands, resulting in the acquisition of specific values and distribution characteristics of the
component indices. Thirdly, the five component indices—greenness, humidity, dryness,
heat, and salinity—were standardized and fused, followed by principal component analy-
sis to obtain statistical information for each component. Subsequently, the first principal
component post-transformation was utilized as the representative component encapsu-
lating the primary information of the indices; ultimately, mathematical transformations
were applied to obtain quantified results of the IRSEI for the farm within the study area.
Fourth, an analysis of the results was conducted, which was divided into two parts. The
first part involved categorizing and statistically assessing the IRSEI outcomes according to
annual quality grades. The second part entailed a comparative analysis of the IRSEI results
against the original RSEI outcomes across different land use types, as well as an analysis of
the correlation with crop yields. This made it possible to evaluate the advantages of the
IRSEI method.
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3.2. Calculation of Component Indicators

Prior to the comprehensive computation of the IRSEI, it is imperative to explore and
calculate the component indices within the IRSEI framework. As critical constituents
in the assessment of the ecological environmental quality of farm research areas, these
component indices need to be precisely controlled to provide an accurate foundation for
the subsequent coupling of component indices. The theoretical underpinnings and specific
calculation methods for the five component indices—greenness, humidity, dryness, heat,
and salinity—are elaborated upon in detail below.

3.2.1. Calculation of the Greenness Index

In the context of the IRSEI framework, the greenness index is an important indicator
of the quality of the ecological environment. This paper utilizes the normalized difference
vegetation index (NDVI) to characterize the greenness index [40]. Vegetation, as a vital
component of ecosystems, plays an indispensable role in the Earth’s carbon cycle and
climate dynamics. The NDVI is a commonly used remote sensing index that can also be
employed for assessing and monitoring the condition and growth of vegetation. Specifically,
the greenness and growth status of vegetation are reflected by calculating the difference
between the infrared and visible light bands in remote sensing images. The formula for
calculating the NDVI is as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR represents the reflectance in the near-infrared band, and ρRed represents the
reflectance in the visible light red band. The NDVI values ranged from −1 to 1, with higher
values indicating more vegetation cover and lower values indicating less vegetation cover.

3.2.2. Calculation of the Humidity Index

The humidity index primarily characterizes the moisture content of vegetation and soil
within image coverage. This index is extensively employed across various domains, such
as ecological monitoring and evaluation [41–43]. The humidity index can be represented
using the WET component of the tasseled cap transform (TCT), also known as the K-T
transform. The WET component is essentially a feature component generated through the
K-T transform [44]. The K-T transform can be viewed as a specialized form of principal
component analysis (PCA). However, a notable distinction is that, unlike conventional PCA,
the K-T transform utilizes a fixed transformation matrix. The K-T transform introduces a
constant matrix into the digitized original remote sensing image and translates it into a
new feature space with which humidity can be aptly transformed to obtain results. The
transformed components can enhance image information and effectively represent spatial
moisture content. The transformation formula is as follows:

B = λA (2)

where B represents the image after the K-T transformation, λ denotes the matrix coefficients
of the transformation, and A signifies the original image. To perform a K-T transformation
on remote sensing images, it is necessary to obtain information about the transformation
matrix coefficients. The transformation matrix coefficients vary with the different settings
of the satellite sensors; thus, the coefficient settings of the WET calculation formula are not
identical. Expert experience can guide the humidity calculation formula, corresponding to
different Landsat satellite sensors through different parameter settings [41,42]. The specific
settings of the transformation matrix coefficients for the humidity indices are shown in
Table 1 below.
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Table 1. K-T transformation matrix coefficients of Landsat series satellites.

Sensor
Band

Blue Green Red NIR SWIR1 SWIR2

Landsat TM 0.0315 0.2021 0.3102 0.1594 0.6806 0.6109
Landsat ETM+ 0.1509 0.1973 0.3279 0.3406 0.7112 0.4572
Landsat OLI 0.1511 0.1973 0.3283 0.3407 0.7117 0.4559

Through the configuration of different K-T transformation matrix coefficients, various
WET index calculation formulas for different sensors can be derived, as shown below:

The WET index calculation formula for Landsat 5 TM is as follows:

WET(TM) = 0.0315ρBlue + 0.2021ρGreen + 0.3102ρRed + 0.1594ρNIR−
0.6806ρSWIR1 − 0.6109ρSWIR2

(3)

The WET index calculation formula for Landsat 7 ETM+ is as follows:

WET(ETM) = 0.1509ρBlue + 0.1973ρGreen + 0.3279ρRed + 0.3406ρNIR−
0.7112ρSWIR1 − 0.4572ρSWIR2

(4)

The WET index calculation formula for Landsat 8 OLI is as follows:

WET(OLI) = 0.1511ρBlue + 0.1973ρGreen + 0.3283ρRed + 0.3407ρNIR−
0.7117ρSWIR1 − 0.4559ρSWIR2

(5)

In the aforementioned three equations, ρBlue represents the reflectance in the blue
band, ρGreen denotes the reflectance in the green band, ρRed signifies the reflectance in the
red band, ρNIR corresponds to the reflectance in the near-infrared band, ρSWIR1 is indicative
of the reflectance in the shortwave infrared-1 band, and ρSWIR2 stands for the reflectance in
the shortwave infrared-2 band. A higher WET value suggests increased humidity.

3.2.3. Calculation of the Dryness Index

Due to the presence of human settlements and construction areas in the study area,
as well as the existence of bare soil, the aridity index in this chapter is characterized using
a composite approach combining the Building Index and the Bare Soil Index. These two
indices can, to some extent, reflect the condition of soil health, soil aridification phenomena,
and consequently, to a certain degree, the changes and quality of the local ecological
environment. The aridity index, known as the normalized difference build and soil index
(NDBSI) [45], is calculated by adding the soil erosion index (SI) [46] and the index-based
build-up index (IBI) [47] and then averaging the result. The specific formulas are as follows:

NDBSI = (SI + IBI)/2 (6)

SI = [(ρSWIR1 + ρRed)− (ρNIR + ρBlue)]/[(ρSWIR1 + ρRed) + (ρNIR + ρBlue)] (7)

IBI = {2ρSWIR1/(ρSWIR1 + ρNIR)− [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρSWIR1)]}/
{2ρSWIR1/(ρSWIR1 + ρNIR) + [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρSWIR1)]}

(8)

In this context, ρSWIR1 represents the reflectance in the shortwave infrared 1 (SWIR1)
band, ρRed represents the reflectance in the visible red band, ρNIR represents the re-
flectance in the near-infrared band, ρBlue represents the reflectance in the visible blue
band, and ρGreen represents the reflectance in the visible green band. The values of these
parameters typically range from −1 to 1. These indicators characterize two types of content,
namely, content that enhances dryness and content that reduces dryness; the enhancing
content typically includes buildings and bare soil, while content that reduces dryness
includes vegetation and water bodies, among others.
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3.2.4. Calculation of the Heat Index

This study investigated the use of land surface temperature (LST) as a representation of
heat [48]. The thermal infrared bands of the Landsat satellite series are sensitive to the ther-
mal radiation of surface coverings, allowing them to be extensively utilized in monitoring
LST variations [49]. Regarding LST computations, there are two conventional methodolo-
gies: the single-channel algorithm and the multichannel algorithm. The single-channel
algorithm encompasses methods such as atmospheric correction (also referred to as the
radiative transfer equation), the universal single-channel method, and the single-window
algorithm. The multichannel algorithm primarily includes the split-window algorithm and
the temperature emissivity separation algorithm. In this chapter, the atmospheric correction
method is adopted for LST inversion. The principle of calculating surface temperature
using the atmospheric correction method involves initially aggregating the total thermal
radiation detected via the satellite sensor. Subsequently, various techniques have been
employed to simulate and quantify the influence of the atmosphere on surface thermal
radiation. The total thermal radiation is subsequently reduced by the radiation amount
consumed by atmospheric effects, yielding the actual thermal radiation at the surface. This
genuine surface thermal radiation undergoes mathematical transformation to derive the
inverted surface temperature. The process of calculating surface temperature using the
atmospheric correction method is illustrated in Figure 3.
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Figure 3 shows that the computation of LST necessitates several intermediary steps,
involving the acquisition of remote sensing imagery and some preprocessing routines, as
well as the calculation of certain indices and parameter retrieval. The specific intermediary
processes and steps are described in detail below.

(1) Image preprocessing

This paper divides the preprocessing of remote sensing imagery into two distinct
segments. The initial segment pertains to the processing of multispectral data (MTL.txt),
with a preprocessing sequence encompassing radiometric calibration, atmospheric cor-
rection, image mosaicking, and image cropping. The second segment addresses image
preprocessing for thermal infrared data and follows a procedure of radiometric calibration,
image mosaicking, and image cropping. These divergent image preprocessing methodolo-
gies are tailored to accommodate the disparities in computational approaches for different
component indices. For instance, prior to the computation of indices such as greenness,
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wetness, dryness, and salinity, the first preprocessing method is needed. Conversely, the
computation of the thermal index necessitates radiometric calibration information from the
thermal infrared band, thereby integrating both preprocessing techniques.

(2) NDVI calculation

The calculation of the NDVI is synonymous with the computation of the greenness
index, as shown in Formula (1).

(3) Vegetation cover calculation

Vegetation cover is primarily calculated by comparing the vertical projection surface of
vegetation to the overall study area, including branches, stems, and leaves in the projection.
Numerous studies have focused on estimating vegetation cover using remote sensing
methods, among which vegetation indices are a frequently applied approach. A commonly
used vegetation index is expressed as NDVI. The vegetation cover calculation outlined
in this chapter was calculated mainly through NDVI. In the imagery, areas with and
without vegetation cover, as well as monotypic vegetated areas, are visible. Vegetation
cover was characterized by calculating the ratio of the difference between NDVI and the
nonvegetated area to the difference between completely vegetated and nonvegetated areas.
The formula can be expressed as follows:

FV = (NDVI − NDVIS)/(NDVIV − NDVIS) (9)

Here, FV represents the magnitude of vegetation coverage, NDVIS denotes the NDVI
value for areas devoid of vegetation coverage, and NDVIV signifies the NDVI value
for completely vegetated areas. In the experiments of this chapter, based on empirical
evidence, NDVIS and NDVIV were set to 0.05 and 0.7, respectively. This implies that,
when the value of NDVI within a pixel exceeded 0.7, the value of FV was set to 1; when
the value of NDVI within a pixel was less than 0.05, the value of FV was set to 0 [50].

By integrating the formula for vegetation coverage with the set parameters for NDVIV
and NDVIS, the formula can be transformed into a band calculation method. The band
calculation formula is as follows:

FV = (b1 gt 0.7)× 1 + (b1 lt 0.05)× 0 + (b1 ge 0.05 and b1 le 0.7)× ((b1 − 0.05)/
(0.7 − 0.05))

(10)

Herein, b1 is the result of NDVI.

(4) Calculation of surface emissivity (SE)

Based on prior research, remote sensing images are categorized into three types: water
bodies, urban areas, and natural surfaces [51]. In this chapter, the following methodology
is adopted to compute the surface emissivity for the study area: the emissivity value for
water body pixels was set to 0.995, while the emissivity estimates for natural surface pixels
and urban pixels were represented by εsur f ace and εbuilding, respectively [50,51]. The specific
formulas are as follows:

εsur f ace = 0.9625 + 0.0614FV − 0.0461FV2 (11)

εbuilding = 0.9589 + 0.086FV − 0.0671FV2 (12)

Incorporating these parameters allows the equation to be transformed into a band
calculation method. The formula for band calculation is as follows:

SE = (b1 le 0)× 0.995 + (b1 gt 0 and b1 lt 0.7)× (0.9589 + 0.086 × b2−
0.0671 × b2 × b2) + (b1 ge 0.7)× (0.9625 + 0.0614 × b2 − 0.0461 × b2 × b2)

(13)

where SE denotes the surface reflectance ratio, b1 represents the value of NDVI, and b2 sig-
nifies the vegetation cover fraction FV.
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(5) Calculation of blackbody radiance values under identical temperature conditions

The computation of radiance values involves three types of radiative signals received
via the detector from the Landsat satellite. The first signal pertains to the atmospheric
transmittance in the thermal infrared band, which represents the portion of ground-level
radiance that, after being filtered through the atmosphere, is captured via the satellite
sensor (t). The second signal is the upward atmospheric radiance (Lu). The third signal is
the energy reflected back after being radiated downward by the atmosphere and received
via the detector (Ld). These three sets of data can be accessed from a website published
by NASA (http://atmcorr.gsfc.nasa.gov/, accessed on 1 January 2024). Upon acquiring
the values of t, Lu, and Ld, the formula for calculating the brightness value (L) of thermal
infrared radiation received via the satellite can be expressed as follows:

L = [SEBT + (1 − SE)Ld]t + Lu (14)

where T represents the true surface temperature, SE denotes the surface emissivity, t signi-
fies the atmospheric transmittance under thermal infrared conditions, and BT represents
the blackbody brightness value of thermal radiation.

From the aforementioned equation, the brightness BT of the blackbody radiation in
the thermal infrared band at temperature T can be derived, and the formula is presented
as follows:

BT = [L − Lu − t(1 − SE)Ld]/tSE (15)

Through the intervention of the inverse function of Planck’s law, the surface tempera-
ture can be obtained. The actual surface temperature obtained at this point is expressed in
Kelvin (K), not the Celsius (◦C) unit commonly used in general contexts. Consequently, a
conversion of temperature units is needed. Converting Kelvin to Celsius merely necessi-
tates subtracting 273.15 from the original temperature. Hence, the expression for LST is
as follows:

LST = K2/ ln K1/(BT + 1)− 273.15 (16)

In this context, K1 and K2 represent predefined constants prior to the satellite launch.
The settings for K1 and K2 for different sensor types of Landsat satellites are presented in
Table 2.

Table 2. Settings of K1 and K2 for different sensor types.

Sensor Types K1 K2

Landsat 5 TM (band 6) 607.76 1260.56
Landsat 7 ETM+ (band 6) 666.09 1282.71
Landsat 8 TIRS (band 10) 774.89 1321.08
Landsat 8 TIRS (band 11) 480.89 1201.14

Due to the susceptibility of the 11th band of Landsat 8 TIRS to interference from
stray light and other noise, calibration can introduce significant biases. If introduced into
calculations, this approach may compromise the accuracy of subsequent results [52]. Hence,
this study utilizes the 10th shortwave band of Landsat 8 TIRS for computation, employing
the corresponding K1 and K2 values from the table for analysis.

When translated into band calculation format, the formula is as follows:

LSTb = K2/a log(K1/b1 + 1)− 273.15 (17)

Within this context, b1 represents the blackbody radiance image under identical
temperature conditions.

http://atmcorr.gsfc.nasa.gov/
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From this, the Celsius temperature band calculation formula for Landsat 5 TM can be
derived as follows:

LST5 = 1260.56/a log(607.76/b1 + 1)− 273.15 (18)

The Celsius temperature band calculation formula for Landsat 7 ETM+ is as follows:

LST7 = 1282.71/a log(666.09/b1 + 1)− 273.15 (19)

The Celsius temperature band calculation formula for Landsat 8 TIRS is as follows:

LST8 = 1321.08/a log(774.89/b1 + 1)− 273.15 (20)

where b1 are the blackbody radiance brightness images for the same temperature conditions.

3.2.5. Calculation of the Salinity Index

Soil salinity serves as an effective evaluative metric for the degree of soil salinization.
Given that the visible and near-infrared spectral bands of remote sensing exhibit certain
responses to soil salinity, it is feasible to consider the estimation of soil salinity information
via remote sensing techniques. Recently, inversion research on soil salinity indices using
remotely sensed spectral information has garnered growing attention. This method holds
advantages for large-scale monitoring, offering benefits such as a continuous temporal
sequence and the strong timeliness of data. The results of remote sensing inversion estima-
tions can also serve as a reference, providing assistance for subsequent soil environmental
remediation and land reclamation efforts [53]. This paper employs an integrated salinity
index (ISI) that integrates three different remote sensing salinity indices to quantify the soil
salinity index of the study area. The first method of integration is the SI-S method [54],
which utilizes the red, green, blue, and near-infrared spectral bands for the estimation of
the soil salinity index. The calculation formula is as follows:

SI − S =

√
(ρNIR × ρRed)− (ρGreen × ρBlue)

(ρNIR × ρRed) + (ρGreen × ρBlue)
(21)

In this context, ρNIR denotes the reflectance of the near-infrared band, ρRed repre-
sents the reflectance of the red band, ρGreen signifies the reflectance of the green band,
and ρBlue corresponds to the reflectance of the blue band.

The second fusion method is the SI-W method [55], which utilizes the red and green
bands to estimate the soil salinity index. The calculation formula is presented below:

SI − W = (ρGreen + ρRed)/2 (22)

where ρGreen represents the reflectance of the green band, and ρRed denotes the reflectance
of the red band.

The third fusion method is the SI-K method [56], which employs the red band and the
near-infrared band to estimate the soil salinity index. The calculation formula is as follows:

SI − K = (ρRed − ρNIR)/(ρRed + ρNIR) (23)

where ρRed represents the reflectance of the red band, and ρNIR denotes the reflectance of
the near-infrared band.

Fusion is conducted by adding the values and then calculating the mean. Prior to
fusion, the three indices are normalized to constrain the values within the range of 0 to 1.
Given that the SI-S index is negatively correlated with the soil salinity index, a positive
correlation transformation is performed in advance. The resultant ISI exhibited a positive
correlation with the soil salinity conditions in which higher values indicated a greater
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degree of salinity, and lower values suggested reduced soil salinity. The calculation formula
for the ISI is as follows:

ISI = (NDSI − S + NDSI − W + NDSI − K)/3

=

ND√
(ρNIR×ρRed )−(ρGreen×ρBlue )
(ρNIR×ρRed )+(ρGreen×ρBlue )

+ ND(ρGreen+ρRed)/2 + ND(ρRed−ρNIR)/(ρRed+ρNIR)

/3
(24)

where NDSI − S represents the normalized value of SI − S after a positive correlation trans-
formation, NDSI − W denotes the normalized value of SI − W, and NDSI − K indicates
the normalized value of SI − K.

3.3. Calculation of IRSEI

The principal component analysis (PCA) method is employed to perform a principal
component transformation of five indicators. Prior to executing the principal component
transformation, it is imperative to normalize the five component indicators. In the exper-
iment of this chapter, the range normalization method was utilized, standardizing the
numerical values of the component indicators to a uniform scale between 0 and 1. The
computational formula is as follows:

RInorm =
X − Xmin

Xmax − Xmin
(25)

where RInorm represents the value of the component indicator after standardization, X repre-
sents the numerical value of a single indicator, Xmax represents the maximum value within
the indicator range, and Xmin represents the minimum value within the indicator range.

After the principal component transformation, the first principal component often
contributes a substantial proportion of the variance and can purely and objectively repre-
sent ecological characteristics. The second, third, fourth, and fifth principal components
frequently contain disordered information; indiscriminately incorporating them into calcu-
lations may bias the final results. Therefore, the first principal component can represent the
general trend of comprehensive ecological characteristics. The transformed first principal
component, PC1, represents the initial remote sensing ecological index value, denoted
as IRSEI0, and its formula can be expressed as follows:

IRSEI0 = FPC1(NDVI, WET, NDBSI, LST, ISI) (26)

For the convenience of statistical analysis, it is necessary to standardize IRSEI0, yield-
ing IRSEI. Hence, IRSEI can be expressed as follows:

IRSEI =
IRSEI0 − IRSEI0min

IRSEI0max − IRSEI0min
(27)

where IRSEI represents the value after standardization, IRSEI0 represents the initial value
of the remote sensing ecological index, IRSEI0min represents the minimum value among
the initial values, and IRSEI0max represents the maximum value among the initial values.
The interval of IRSEI is between 0 and 1; a high value indicates better ecological quality
and a low value indicates poorer ecological quality.

4. Results
4.1. Results of the Component Indicators

To facilitate the presentation of the results, the dimensions were standardized, and
the results of the five component indices of the Tenihe Farm IRSEI are displayed using
normalized outcomes. The results of component indices spanning from 2013 to 2022 are
presented as follows.
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4.1.1. Results of the Greenness Index

As shown in Figure 4, the remote sensing ecological NDVI data for Tenihe Farm have
been favorable over the past decade. Although there have been instances of diminished
performance in certain years, the greenness index has remained relatively high for the
majority of the period under consideration. This indicates that the vegetation cover in the
study area has maintained a consistently positive state over an extended duration.
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(a–j) correspond to the results from 2013 to 2022, respectively.

4.1.2. Results of the Humidity Index

Figure 5 reveals that the ecological WET index for Tenihe Farm exhibited relatively
stable performance over the course of a decade. The ecological moisture indices for the
entire study area demonstrated favorable conditions in recent years, with both soil and
surface vegetation maintaining satisfactory levels of moisture.
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4.1.3. Results of the Dryness Index

Figure 6 indicates that the ecological NDBSI index for Tenihe Farm reflects some
variation over the past decade. For instance, in 2013, the NDBSI index exhibited a low
value, whereas in 2022, the NDBSI was greater. Theoretically, the NDBSI is considered
to exert a negative impact on the ecosystem. However, a comprehensive reflection of
the overall ecological index can be ascertained only through an integrated analysis in
conjunction with other component indices.
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4.1.4. Results of the Heat Index

An analysis of Figure 7 reveals that the ecological LST index for Tenihe Farm has
remained relatively stable over the past decade. This suggests that there has been minimal
variation in surface temperature during the crop growing season, indicating conditions
that are conducive to crop growth.
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4.1.5. Results of the Salinity Index

As shown in Figure 8, Tenihe Farm has experienced notable salinization over the
course of a decade. The areas characterized by agricultural land cover are more impacted
by salinization than are the surrounding regions, indicating that prolonged agricultural
practices, coupled with the semiarid salinized environmental characteristics of the study
area, have perpetuated a state of salinization in the farmlands.
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Figure 8. The salinity index results for the ecological environment assessment of Tenihe Farm:
(a–j) correspond to the results from 2013 to 2022, respectively.

The series of figures presented herein illustrate developmental variations over the
course of a decade in the indices of greenness, humidity, dryness, heat, and salinity at
Tenihe Farm. These fluctuations indicate that the ecological environment is subject to
dynamic transitions. Alterations in the indicators that affect the ecological environment
inevitably precipitate a shift in the overall quality of the ecological milieu. The mean
values and standard deviations of these five component indices over the ten-year period
are depicted in Table 3.
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Table 3. Mean and standard deviation statistics for IRSEI component indicators.

Year Index NDVI WET NDBSI LST ISI

2013
Mean value 0.7253 0.6783 0.3364 0.5504 0.6157

Standard deviation 0.2248 0.2007 0.0775 0.1941 0.0313

2014
Mean value 0.8373 0.6372 0.4815 0.7249 0.3888

Standard deviation 0.1836 0.2074 0.2257 0.1127 0.0309

2015
Mean value 0.7365 0.6162 0.6864 0.5058 0.5170

Standard deviation 0.2405 0.2578 0.2473 0.2230 0.0370

2016
Mean value 0.7483 0.5751 0.6873 0.4360 0.4387

Standard deviation 0.1737 0.2066 0.2050 0.1843 0.0709

2017
Mean value 0.7438 0.6550 0.6114 0.5222 0.4081

Standard deviation 0.1904 0.1893 0.1748 0.2231 0.0180

2018
Mean value 0.9350 0.6048 0.6566 0.4581 0.3975

Standard deviation 0.0999 0.2306 0.1896 0.2281 0.2041

2019
Mean value 0.7124 0.6652 0.4354 0.5896 0.5768

Standard deviation 0.0435 0.1927 0.0374 0.2227 0.0110

2020
Mean value 0.7036 0.6198 0.5008 0.5106 0.4480

Standard deviation 0.0542 0.2302 0.0489 0.2550 0.2289

2021
Mean value 0.7257 0.5987 0.4580 0.4829 0.5135

Standard deviation 0.0529 0.2404 0.0388 0.2359 0.1090

2022
Mean value 0.7856 0.6227 0.7391 0.6134 0.3825

Standard deviation 0.1450 0.2402 0.0681 0.2243 0.0176

Representing the data graphically facilitates a more discernible comprehension of the
fluctuations in values. Figure 9 illustrates this representation.

Remote Sens. 2024, 16, 684 18 of 31 
 

 

2015 
Mean value 0.7365 0.6162 0.6864 0.5058 0.5170 

Standard deviation 0.2405 0.2578 0.2473 0.2230 0.0370 

2016 
Mean value 0.7483 0.5751 0.6873 0.4360 0.4387 

Standard deviation 0.1737 0.2066 0.2050 0.1843 0.0709 

2017 
Mean value 0.7438 0.6550 0.6114 0.5222 0.4081 

Standard deviation 0.1904 0.1893 0.1748 0.2231 0.0180 

2018 
Mean value 0.9350 0.6048 0.6566 0.4581 0.3975 

Standard deviation 0.0999 0.2306 0.1896 0.2281 0.2041 

2019 
Mean value 0.7124 0.6652 0.4354 0.5896 0.5768 

Standard deviation 0.0435 0.1927 0.0374 0.2227 0.0110 

2020 
Mean value 0.7036 0.6198 0.5008 0.5106 0.4480 

Standard deviation 0.0542 0.2302 0.0489 0.2550 0.2289 

2021 
Mean value 0.7257 0.5987 0.4580 0.4829 0.5135 

Standard deviation 0.0529 0.2404 0.0388 0.2359 0.1090 

2022 
Mean value 0.7856 0.6227 0.7391 0.6134 0.3825 

Standard deviation 0.1450 0.2402 0.0681 0.2243 0.0176 

Representing the data graphically facilitates a more discernible comprehension of the 
fluctuations in values. Figure 9 illustrates this representation. 

 
Figure 9. The means and standard deviations of the ecological assessment component indices of 
Tenihe Farm over the past decade. 

Figure 9 reveals that the values for the five component indices influencing the eco-
logical environment quality at Tenihe Farm have fluctuated and changed over the past 
decade, a phenomenon attributable to the combined effects of natural factors and human 
activities. The mean peak values for the greenness, humidity, dryness, heat, and salinity 
indices were observed in 2014, 2019, 2022, 2014, and 2013, respectively. Conversely, the 
mean trough values for the greenness, humidity, dryness, heat, and salinity indices were 
recorded in 2020, 2016, 2013, 2016, and 2022, respectively. 

  

Figure 9. The means and standard deviations of the ecological assessment component indices of
Tenihe Farm over the past decade.



Remote Sens. 2024, 16, 684 19 of 31

Figure 9 reveals that the values for the five component indices influencing the ecologi-
cal environment quality at Tenihe Farm have fluctuated and changed over the past decade,
a phenomenon attributable to the combined effects of natural factors and human activities.
The mean peak values for the greenness, humidity, dryness, heat, and salinity indices were
observed in 2014, 2019, 2022, 2014, and 2013, respectively. Conversely, the mean trough
values for the greenness, humidity, dryness, heat, and salinity indices were recorded in
2020, 2016, 2013, 2016, and 2022, respectively.

4.2. Results of IRSEI
4.2.1. Validity Analysis of the IRSEI

The component indices were normalized and subsequently transformed through
PCA, resulting in a remote sensing image that integrates a novel spectral combination of
five principal components. This image constitutes the new representative layer for the
IRSEI model, and the eigenvalues for each principal component were ascertained. The
eigenvalues and corresponding contribution percentages of the five principal components,
PC1, PC2, PC3, PC4, and PC5, post-transformation, offer a more precise delineation of the
PCA-derived outcomes. Within the IRSEI framework for the Tenihe Farm experimental
zone, the eigenvalues and contribution percentages of the five newly derived principal
components after the PCA of the five component indices—NDVI, WET, NDBSI, LST, and
PSI—are shown in Table 4.

Table 4. Results of PCA (eigenvalues and contributions).

Year Index PC1 PC2 PC3 PC4 PC5

2013
Eigenvalue 0.1556 0.0206 0.0103 0.0019 0.0008

Contribution 0.8225 0.1088 0.0546 0.0098 0.0043

2014
Eigenvalue 0.1239 0.0323 0.0152 0.0048 0.0002

Contribution 0.7021 0.1829 0.0863 0.0275 0.0012

2015
Eigenvalue 0.2298 0.0337 0.0138 0.0029 0.0001

Contribution 0.8199 0.1203 0.0492 0.0102 0.0004

2016
Eigenvalue 0.1732 0.0257 0.0050 0.0023 0.0007

Contribution 0.8373 0.1243 0.0242 0.0109 0.0033

2017
Eigenvalue 0.1524 0.0329 0.0113 0.0045 0.0004

Contribution 0.7562 0.1635 0.0563 0.0222 0.0018

2018
Eigenvalue 0.1830 0.0305 0.0092 0.0033 0.0021

Contribution 0.8021 0.1337 0.0404 0.0144 0.0094

2019
Eigenvalue 0.0969 0.0221 0.0039 0.0014 0.0004

Contribution 0.7767 0.1769 0.0316 0.0116 0.0032

2020
Eigenvalue 0.1399 0.0214 0.0149 0.0019 0.0008

Contribution 0.7822 0.1196 0.0833 0.0105 0.0044

2021
Eigenvalue 0.1001 0.0290 0.0095 0.0022 0.0013

Contribution 0.7041 0.2041 0.0671 0.0154 0.0093

2022
Eigenvalue 0.1634 0.0266 0.0138 0.0024 0.0007

Contribution 0.7896 0.1287 0.0666 0.0118 0.0033

Table 4 above illustrates that, over the past decade, the contribution of the first prin-
cipal component (PC1) following the principal component transformation of the IRSEI
component indices for the remote sensing imagery covering Tenihe Farm has consistently
exceeded 70%. This suggests that PC1 can essentially represent the condition of the farm’s
IRSEI. As previously discussed, since PC2, PC3, PC4, and PC5 often contain noisy informa-
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tion, indiscriminately combining principal components is not prudent. The unscientifically
based merging of principal components may lead to deviations or even inaccuracies in
the results.

To further substantiate the validity of the experimental outcomes, an analysis of data
quality was conducted. Typically, indices of greenness and humidity tend to reflect a
positive ecological environment condition, whereas indices sensitive to dryness, heat, and
salinity are likely to reflect impacted environments, diminishing the quality of the ecological
environment assessed. Consequently, when conducting a correlation analysis between
these indices and the IRSEI, one would expect to obtain disparate results indicative of both
positive and negative correlations. This study employed the Pearson correlation coefficient
(PCC) method for the quantitative analysis of the correlation between component indices
and the IRSEI. The PCC method is a classical approach to calculating correlation coefficients,
and it is primarily used to characterize linear correlations. It operates under the assumption
that the two variables in question are normally distributed and possess nonzero standard
deviations. The calculation formula condenses values into a range between −1 and 1. The
closer the absolute value of the PCC to 1, the greater the degree of correlation between
the two variables, indicating greater similarity. The formula for calculating the PCC is
as follows:

PCC =
∑n

i=1 (xi − x)(yi − y)n√
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

(28)

In this context, PCC denotes the computed result of the correlation coefficient, i signi-
fies the index associated with the variable, n represents the total number of variables, xi and
yi respectively correspond to the values of variable x and variable y for index i; and x and y
respectively denote the mean values of variable x and variable y.

The PCC correlations between the IRSEI outcomes of Tenihe Farm across different
years and the component indicators are presented in Table 5.

Table 5. Correlation analysis between IRSEI results and component indicators over the past decade
at Tenihe Farm.

Year NDVI WET NDBSI LST PSI Average
Correlation

2013 0.935 0.951 −0.336 −0.874 −0.983 0.816
2014 0.843 0.959 −0.204 −0.985 −0.807 0.771
2015 0.960 0.886 −0.709 −0.837 −0.944 0.867
2016 0.915 0.844 −0.560 −0.974 −0.986 0.856
2017 0.911 0.897 −0.879 −0.966 −0.887 0.908
2018 0.965 0.876 −0.439 −0.934 −0.899 0.823
2019 0.946 0.908 −0.775 −0.942 −0.876 0.889
2020 0.957 0.930 −0.518 −0.896 −0.913 0.843
2021 0.972 0.967 −0.549 −0.906 −0.945 0.868
2022 0.981 0.958 −0.472 −0.927 −0.964 0.860

Mean value 0.939 0.918 −0.544 −0.924 −0.920 p < 0.01

Table 5 reveals that the correlation coefficients between different annual component
indicators and the IRSEI are both positive and negative, yet they follow a discernible
pattern. Specifically, the NDVI and WET are positively correlated with the IRSEI, whereas
the NDBSI, LST, and PSI are negatively correlated with the IRSEI. The p-values associated
with these correlations were all less than 0.01, indicating statistically significant correla-
tions. Notably, the component indicators for the year 2017 showed the strongest average
correlation with the IRSEI, reaching a value of 0.908, while other years also demonstrated
high correlation values. The mean values of the five indicators across different years also
maintained high levels, with the highest absolute value of correlation in the ten years
being for NDVI, at 0.939. This finding suggests that greenness has a substantial impact on
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ecosystem quality, while other indicators such as heat, humidity, salinity, and dryness are
similarly closely linked to the quality of the ecological environment.

4.2.2. Analysis of Spatial and Temporal Variations

The spatial statistical analysis and cartographic representation of the IRSEI results
after principal component transformation reveal clear temporal and spatial variations in
the IRSEI scores. The scoring standard employed an interval of 0.2 to divide the values
into five categorical levels: excellent (0.8 < RSEI ≤ 1.0), good (0.6 < RSEI ≤ 0.8), moderate
(0.4 < RSEI ≤ 0.6), poor (0.2 < RSEI ≤ 0.4), and inferior (0 < RSEI ≤ 0.2). The scoring results
are shown in Figure 10.
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The graphical representation clearly indicates that the numerical changes and distribu-
tion of the IRSEI at Tenihe Farm have varied over the past decade. This variability can be
attributed to the differential impacts of various component indices each year, as well as the
discrepancies inherent in the representation methods of PCA. The cartographic outcomes
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suggest that the overall value of the IRSEI is relatively favorable. A detailed quantitative
analysis of these results is provided in the subsequent statistical summary.

The mean and standard deviation of the IRSEI for the Tenihe Farm experimental zone
over the past ten years are presented in Table 6. The data reveal remarkable stability in the
standard deviation values over the decade, indicating the effectiveness and consistency of
the statistical measurements. Specifically, the mean value of the IRSEI reached its peak in
2020, while the lowest point was observed in 2013. The mean IRSEI values from 2013 to
2018 were within the intermediate range (0.4 < IRSEI ≤ 0.6). In contrast, the mean values
for 2019, 2021, and 2022 were classified within the good range (0.6 < IRSEI ≤ 0.8), and the
mean value for 2020 was categorized within the excellent range (0.8 < IRSEI ≤ 1). This
indicates that the ecological quality of Terni Farm exhibited a consistent upward trajectory
from 2013 to 2020, followed by a downward trend in the subsequent two years.

Table 6. Changes in the mean and standard deviation of the IRSEI at Tenihe Farm over the past
decade.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Mean value 0.500 0.500 0.522 0.544 0.584 0.588 0.707 0.826 0.736 0.646
Standard deviation 0.129 0.172 0.153 0.139 0.122 0.133 0.075 0.051 0.039 0.047

The subsequent categorization and area statistics of the IRSEI results across different
years are presented in Table 7 below.

Table 7. Grading statistics of IRSEI area by year at Tenihe Farm.

Year Index Inferior Poor Moderate Good Excellent

2013
Area/km2 13.82 459.73 986.87 509.53 3.55

Proportion/% 0.70 23.30 50.01 25.82 0.18

2014
Area/km2 44.23 623.53 652.07 621.16 32.51

Proportion/% 2.24 31.60 33.04 31.47 1.65

2015
Area/km2 10.16 494.35 794.15 651.32 23.52

Proportion/% 0.51 25.05 40.24 33.00 1.19

2016
Area/km2 5.15 329.49 916.66 704.86 17.35

Proportion/% 0.26 16.70 46.45 35.72 0.88

2017
Area/km2 0.00 139.10 959.58 840.48 34.35

Proportion/% 0.00 7.05 48.62 42.59 1.74

2018
Area/km2 4.63 185.96 800.40 941.05 41.47

Proportion/% 0.23 9.42 40.56 47.68 2.10

2019
Area/km2 0.00 0.21 172.31 1568.98 232.01

Proportion/% 0.00 0.01 8.73 79.50 11.76

2020
Area/km2 0.39 0.08 1.23 433.47 1538.33

Proportion/% 0.02 0.00 0.06 21.96 77.95

2021
Area/km2 0.00 0.05 11.06 1955.49 6.90

Proportion/% 0.00 0.00 0.56 99.09 0.35

2022
Area/km2 0.00 3.49 286.90 1679.89 3.22

Proportion/% 0.00 0.18 14.54 85.12 0.16

To further investigate the spatiotemporal variations in the IRSEI at Tenihe Farm, a
differential calculation was conducted for the period spanning from 2013 to 2022, followed
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by stratified statistical analysis. The classification comprised five intervals, which were
delineated as follows: significantly deteriorated (−1, −0.1), moderately deteriorated (−0.1,
−0.05), essentially unchanged (−0.05, 0.05), moderately improved (0.05, 0.1), and signifi-
cantly improved (0.1, 1). A visualization of the results is presented in Figure 11. Figure 11
clearly shows that, over the course of a decade, there have been alterations in the IRSEI,
with some regions experiencing improvements in ecological environmental quality, while
others have witnessed a decline.
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of Tenihe Farm.

The quantitative results of the temporal differentiation of the IRSEI at Tenihe Farm
are presented in Table 8 below. Table 8 reveals that, between 2013 and 2022, the most
significant change in the ecological quality of Tenihe Farm was a marked improvement,
encompassing an area of 1152.81 km2, which constitutes 58.41% of the total area. This was
followed by areas that remained essentially unchanged, covering 501.29 km2, or 25.40%
of the total area. Subsequently, areas that experienced a slight improvement accounted
for 267.10 km2, representing 13.53% of the total area. Areas with slight deterioration
covered 44.52 km2, comprising 2.26% of the total, while those that significantly deteriorated
comprised 7.79 km2, or 0.39% of the total area. It is evident that, over the course of the
decade, the ecological quality of Tenihe Farm significantly improved, with only a minimal
proportion of the area ecologically degrading. The combined percentage of areas that had
slightly or significantly worsened was only 2.65%.
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Table 8. Analysis of changes in the IRSEI over a ten-year period at Tenihe Farm.

Changes Index (−1, −0.1) (−0.1, −0.05) (−0.05, 0.05) (0.05, 0.1) (0.1, 1]

2013–2022
Area/km2 7.79 44.52 501.29 267.10 1152.81

Proportion/% 0.39 2.26 25.40 13.53 58.41

4.3. Comparative Analysis with the Original RSEI Method
4.3.1. Comparative Analysis of Different Land Use Types

To further validate the efficacy of the IRSEI evaluation method proposed in this paper,
we conducted a statistical analysis across different land use types. Given that the study
area, Tenihe Farm, is a large-scale, intensively managed agricultural enterprise, the land
use types have not changed over the span of a decade. Consequently, it is sufficient to
categorize the land use types and perform a decadal statistical analysis of both the IRSEI
and the RSEI within each category to clearly demonstrate the differences between the
two ecological assessment methods. The land use type data were sourced from the farm
management department. Following the creation of maps via ArcGIS 10.2, the land use
types of Tenihe Farm can be identified, as shown in Figure 12.
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The figure above illustrates that the land cover types of Tenihe Farm are predominantly
categorized into six classifications: cropland, forest, grassland, wetland, bare land, and
artificial surface. The statistical outcomes presented in the following table, Table 9, were
obtained by conducting a computational analysis of the IRSEI and RSEI results from 2013
to 2022 for each of the six land cover types.
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Table 9. Mean IRSEI and RSEI values for different feature cover types over a ten-year period.

Year Index Cropland Forest Grassland Wetland Bare Land Artificial
Surface

2013
IRSEI 0.4661 0.6538 0.4813 0.5370 0.3414 0.3396

RSEI 0.4681 0.6134 0.5833 0.5579 0.4143 0.3956

2014
IRSEI 0.4586 0.7026 0.4731 0.5506 0.3449 0.3269

RSEI 0.5173 0.6962 0.5245 0.5608 0.3963 0.3126

2015
IRSEI 0.4956 0.7057 0.4937 0.5716 0.3615 0.3455

RSEI 0.5741 0.6713 0.5273 0.5492 0.3847 0.3131

2016
IRSEI 0.5325 0.7088 0.5143 0.5926 0.3780 0.3642

RSEI 0.5783 0.5371 0.4849 0.6270 0.3836 0.3013

2017
IRSEI 0.5628 0.7330 0.5608 0.6120 0.3975 0.3264

RSEI 0.6313 0.6051 0.5269 0.5794 0.4386 0.4049

2018
IRSEI 0.6064 0.7149 0.5554 0.6347 0.3112 0.3015

RSEI 0.6501 0.7068 0.5751 0.6410 0.3676 0.3782

2019
IRSEI 0.6971 0.7876 0.6951 0.7028 0.3694 0.3882

RSEI 0.7049 0.7853 0.6835 0.6595 0.3898 0.3894

2020
IRSEI 0.7879 0.8602 0.8348 0.7962 0.3297 0.3749

RSEI 0.7927 0.8473 0.8015 0.7533 0.3324 0.3614

2021
IRSEI 0.7170 0.7660 0.7382 0.7630 0.3489 0.3567

RSEI 0.7591 0.7805 0.7741 0.7231 0.3001 0.3621

2022
IRSEI 0.6462 0.6717 0.6516 0.6697 0.3680 0.3384

RSEI 0.7060 0.6984 0.6874 0.6982 0.3585 0.3301

Different land use types often exhibit distinctive ecological characteristics, and a
meaningful and precise ecological quality assessment should align with the environmental
features specific to these various land use categories. Within the study area addressed in
this article, land cover types are primarily classified into six categories: cropland, forest,
grassland, wetland, bare land, and artificial surface. Among these, grasslands may exhibit
changes such as salinization due to factors such as grassland degradation, leading to
potential instability in their ecological quality. Conversely, the ecological quality of forests
and wetlands is expected to be superior to that of other types of forests. The ecological
quality of cropland could surpass that of grasslands if scientific management practices are
implemented; however, due to the impacts of activities such as fertilization and artificial
planting, its ecological quality is unlikely to exceed that of forests and wetlands. Among the
six categories, bare land and artificial surfaces are anticipated to have the lowest ecological
quality. The data presented in the table corroborate the aforementioned ecological quality
trends as reflected in the IRSEI. However, the RSEI results exhibit some deviations due to
the omission of ecological characteristics such as soil salinization, as evidenced by the 2022
data in which croplands’ ecological quality was erroneously rated the highest among the
six categories, which contradicts established ecological patterns. Therefore, we can infer
that the IRSEI method proposed in this article offers a more accurate ecological assessment
of the agricultural research area in question.

4.3.2. Comparative Analysis of the Correlation of the IRSEI and RSEI with Crop Yield

High-quality ecological conditions are a critical determinant of high crop yields; hence,
the assessment of farmland ecological quality can, to some extent, reflect trend changes
in crop yield. This paper conducted a comparative analysis of the correlation between
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the IRSEI method and the RSEI method with yield data to evaluate the effectiveness and
accuracy of ecological quality assessments. Research revealed that Tenihe Farm adjusts
the geographical locations of the types of crops planted annually. However, the overall
crop types are categorized into five varieties, namely wheat, rape, milk thistle, barley, and
beet. The composition and structure of the crop types over a decade are illustrated in
Figure 13 below.
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Figure 13. Crop types and spatial distribution of crops grown on Tenihe Farm over a ten-year period:
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Prior to conducting a correlation analysis, it is imperative to acquire data on the yield
of each crop over a span of ten years, which are furnished by the Department of Farm
Management. This paper delineates a methodology to assess the correlation between two
ecological quality evaluation outcomes and crop yields, as illustrated in Table 10 below.
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Table 10. Process for calculating the correlation of the IRSEI and RSEI with yield.

Input: IRSEI results, RSEI results, crop planting structure, the yield of each crop, and the extent of farmland.

Procedure:

(1) Calculate the mean IRSEI and RSEI for each field unit.
(2) Obtain statistics on the yield of field units based on crop classification (wheat, rape, milk thistle, barley, and beet).
(3) Normalize the yield of crops by type, obtain five normalized results, and assign the results to the field units.
(4) Use the PCC method to analyze the correlation between the IRSEI, the RSEI, and yield.

Output: The correlation results between the annual IRSEI and RSEI with the yield over the past decade.

As shown in the table above, once the input data are prepared, the computational
process for correlation primarily comprises four steps: The first step involves the calculation
of IRSEI and RSEI values for the agricultural plots. The second step encompasses the
compilation of yield data for five cultivated crops within these plots. The third step entails
the normalization of the yield data for the five crops, with the standardized data laying the
groundwork for subsequent correlation analysis. The fourth step is the computation of the
correlation results. Following the procedural workflow and relevant computations, two
sets of correlation outcomes between the IRSEI, RSEI, and crop yields over the decade from
2013 to 2022 were obtained. The results are depicted in Figure 14 below.
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As can be inferred from Figure 14, over the decade from 2013 to 2022, the IRSEI
exhibited a greater correlation with crop yields. Therefore, it can be deduced that the IRSEI
method offers a higher degree of accuracy in evaluating the ecological quality of farms.

5. Discussion

This paper commenced from the perspective of the environmental characteristics
present in semiarid agricultural planting regions with saline soils, and it constructed the
IRSEI model to evaluate the temporal sequence of ecological quality in the farm study
area. The model addressed the current state of soil salinization in the research area and
proposed an integrated salinity index (ISI), which is a composite index derived from the
amalgamation of three distinct salinity indices. The NDVI was used to represent the
greenness component of the study area; the humidity component was characterized using
the WET from the tasseled cap transformation, the dryness component was indicated with
the NDBSI, a synthesis of the SI and the IBI, and the LST was utilized to denote the heat
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component. Through principal component transformation for the integration of component
indicators, the normalized first principal component’s contribution rate exceeded 70%,
effectively integrating the valid characteristic information of each indicator. Consequently,
the generated IRSEI results proficiently represent the changes in the quality of the ecological
environment of the farm within the study area.

To ensure the reliability of the data quality, a correlation analysis was conducted for
the NDVI, WET, NDBSI, LST, and ISI indices with the IRSEI. The analysis revealed positive
correlations between the greenness and humidity indices and the IRSEI and negative
correlations between the dryness, heat, and salinity indices and the IRSEI. These results are
consistent with the characteristic influences of ecological environmental factors, and they
serve to validate the integrity of the data quality.

In the monitoring and assessment of ecological quality within a specific region, it is
imperative to consider not only the commonly utilized indices within the RSEI framework,
such as the greenness, humidity, dryness, and heat indices, but also unique ecological
indicators pertinent to the study area. In the research presented in this paper, the study area
was characterized by soil salinization. Consequently, we proposed an integrated salinity
index (ISI) based on remote sensing to characterize the salinization trends of farms. This
index was then integrated with the aforementioned four ecological indices to develop an
improved remote sensing ecological index (IRSEI). A comparative analysis of the results
between the IRSEI and RSEI outcomes was conducted, which was divided into two parts.
The first part compared different land use types, with findings indicating that the IRSEI
more accurately reflected the actual conditions across various land use categories, whereas
the RSEI results deviated. The second part involved a correlation analysis between the
IRSEI and RSEI results and the yield data of five different crops based on agricultural units.
In comparison to the RSEI results, the IRSEI results demonstrated a stronger correlation
with crop yield, thereby suggesting that the IRSEI more closely aligns with the growth
trends of cultivated crops. This also, to a certain extent, underscores the precision advantage
that IRSEI offers over RSEI.

The quality of the ecological environment in farming areas is a crucial component of
food security. Only by ensuring the ecological integrity of farm regions can agricultural
sustainability be guaranteed. In turn, sustainable agriculture can provide a green and
healthy food source for human habitation. It can be argued that the quality of the ecological
environment in crop cultivation areas is a vital foundation for the stable and healthy
operation of the economy and society. Therefore, assessing farms’ ecological environment
quality based on the IRSEI is highly important. Given that this method incorporates the
ISI and considers the semiarid climate attributes of agricultural planting areas and the
salinization characteristics of the soil, it has potential applicability and expansion potential
in agricultural planting regions with soil salinization characteristics.

6. Conclusions

This paper has investigated the feasibility of the dynamic monitoring of ecological
quality over time in semiarid agricultural planting areas characterized by soil salinization.
An improved remote sensing ecological index, the IRSEI, was proposed, and spatial mea-
surements and temporal evolution analyses of the ecological quality in the experimental
area of Tenihe Farm were conducted based on objective remote sensing data. The IRSEI
method was compared with the original RSEI method, revealing that the IRSEI performs
more reliably across different land cover types. Compared to those of the RSEI method, the
results produced using the IRSEI method have a greater correlation with the crop yields of
the farm. These findings validate the effectiveness and increased accuracy of the proposed
IRSEI method in assessing the ecological quality of salinized farms. Future research will
consider other factors that contribute to changes in the ecological quality of agricultural
planting areas, such as atmospheric conditions, precipitation, species diversity, and human
activities, to more comprehensively evaluate the ecological quality of agricultural planting
areas. Additionally, future work will explore the ecological quality of nonagricultural plant-
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ing areas with soil salinization characteristics to test the generalizability of the proposed
IRSEI method.
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