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Abstract: Floods are among the most severe and impacting natural disasters. Their occurrence rate
and intensity have been significantly increasing worldwide in the last years due to climate change
and urbanization, bringing unprecedented effects on human lives and activities. Hence, providing
a prompt response to flooding events is of crucial relevance for humanitarian, social and economic
reasons. Satellite remote sensing using synthetic aperture radar (SAR) offers a great deal of support in
facing flood events and mitigating their effects on a global scale. As opposed to multi-spectral sensors,
SAR offers important advantages, as it enables Earth’s surface imaging regardless of weather and
sunlight illumination conditions. In the last decade, the increasing availability of SAR data, even at
no cost, thanks to the efforts of international and national space agencies, has been deeply stimulating
research activities in every Earth observation field, including flood mapping and monitoring, where
advanced processing paradigms, e.g., fuzzy logic, machine learning, data fusion, have been applied,
demonstrating their superiority with respect to traditional classification strategies. However, a fair
assessment of the performance and reliability of flood mapping techniques is of key importance for
an efficient disasters response and, hence, should be addressed carefully and on a quantitative basis
trough synthetic quality metrics and high-quality reference data. To this end, the recent development
of open SAR datasets specifically covering flood events with related ground-truth reference data can
support thorough and objective validation as well as reproducibility of results. Notwithstanding,
SAR-based flood monitoring still suffers from severe limitations, especially in vegetated and urban
areas, where complex scattering mechanisms can impair an accurate extraction of water regions. All
such aspects, including classification methodologies, SAR datasets, validation strategies, challenges
and future perspectives for SAR-based flood mapping are described and discussed.

Keywords: synthetic aperture radar; flooding; disaster response; thresholding; reference dataset;
water extent mapping

1. Introduction

According to the United Nations, about 90% of all natural disasters worldwide are
water-related. Among them, floods are the most frequent, constituting approximately
43% of the registered events in the period of 1998–2017 [1]. Figures about damages and
victims caused by floods worldwide are impressive. As claimed in [2], 1.81 billion people,
equivalent to 23% of the global population, are directly exposed to the risk of flooding.
Bailey et al. [3] reported that, since 1980, more than 250 000 people have lost their lives due
to floods, and the financial damages have exceeded 1 trillion US dollars, accounting for
about 40% of the total losses from natural disasters during the period.

Extreme flooding events are not limited to developing countries. Recent disasters that
occurred in Germany [4], Japan [5] and Australia [6], among others, testify that they can
also devastate the most economically advanced and industrialized nations. However, in
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less developed nations, where flood protection infrastructures tend to be less resilient or
absent, these events can dramatically wipe out decades of investments and significantly
undermine economic prosperity [7].

As argued by the United Nations [8], most of the damages caused by floods could
be prevented or strongly reduced through appropriate pre-, ongoing- and post-disaster
investments in preparedness activities, infrastructures and effective land-use planning. In a
global scenario in which the threat is already substantial, climate changes can significantly
increase flood risks in the coming years. Estimates from different climate models agree that
flood frequency in Southeast Asia, East and Central Africa and part of Latin America is
expected to increase substantially by 2100 [9]. Even with optimistic climate change effect
forecasts, sea levels are estimated to rise more than 50 cm by the end of the century, thereby
intensifying the risk of large coastal cities [2]. Additionally, land subsidence phenomena
are responsible for the increase in coastal flood risks at a rate four times larger than sea
level rise [10]. As reported in [11], in most of the cases, this phenomenon is human-induced.
The major mega-cities of the world are sinking due to unsustainable underground water
management or anthropogenic factors, such as the excessive surface loading affecting New
York City [12]. Understanding the nature, extent and distribution of these risks is crucial for
adequate resource allocation and the implementation of effective and sustainable long-term
mitigation measures, as outlined in [8].

As discussed in [13], flood events can be seen as the composition of different phases
(see Figure 1). Satellite remote sensing can significantly contribute to several of these phases.
For instance, a synoptic picture of the area affected by a flood event can be invaluable
for damage assessment, providing important information for insurance companies [14],
especially during the recovery phase. Geomorphological information can contribute to
warning systems, in which satellite-derived flood maps are integrated into hydrological
and weather models to enhance forecasting accuracy [15]. Prevention and mitigation
activities can be effectively supported by monitoring river morphology [16] and assessing
the impact of green roofs and other natural-based solutions on runoff and peak flow in
urban scenarios [17].

Figure 1. Different phases of a flood event ([13]).

However, remote sensing technologies play a key role, especially in the response
phase, due to their capability to provide timely and cost-effective information to map
and monitor flooded areas [18–20]. Today, this can be achieved in near-real time thanks
to the diverse satellites and constellations orbiting around the Earth, operated both by
public authorities and private companies. In this context, synthetic aperture radar (SAR)
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sensors are particularly valuable due to their all-weather and all-time imaging capabilities
compared to optical satellite sensors [21].

The development of dependable satellite-based flood detection and monitoring sys-
tems and services necessarily relies on appropriate processing techniques to analyze the
information provided by satellite SAR data. Specifically, the issues related to the spatio-
temporal characterization of flood events, flooded-areas extraction and water-level estima-
tion from SAR images currently constitute an active and challenging research field.

From our analysis of the open scientific literature, it emerges that the research efforts
on the potentialities of SAR for flood mapping started early in the nineties of the past
century, as many Earth observation applications of SAR. Since then, according to the
Scopus database, more than five hundred contributions were published on this topic,
including journal articles, conference contributions and book chapters. In this context,
the primary objective of our study is to provide an up-to-date summary of the most
significant methodologies developed for flood detection on SAR images. They are critically
analyzed, highlighting their respective advantages and limitations. Thus, the aim is to offer
a structured and updated overview of the state of the art, outlining the challenges and
future opportunities for research in this field.

This work is organized as follows. In Section 2, the phenomenological aspects of floods
in SAR images are briefly recalled. The review of the state of the art is provided in Section 3,
together with a brief digression on the best practice for data pre- and post-processing.
Validation strategies commonly adopted in SAR-based flood detection are discussed in
Section 4, while Section 5 features openly accessible datasets to be used for training, testing
and validation purposes. A critical discussion of all issues above is provided in Section 6
along with concluding remarks on future perspectives.

2. Phenomenological Aspects of Floods in SAR Images

This section provides essential information to support the correct understanding of
the approaches used to detect flooding from SAR data by users not familiar with the topic.
In particular, some basic concepts about the phenomenological aspects involved in the
formation of SAR images of flooded areas, with particular reference to the backscattering
coefficient and the interferometric coherence, are discussed before entering into the review
of the developed techniques.

2.1. Backscattering Coefficient

Several scene and sensor parameters influence the radiometric characteristics of an
SAR image. However, in the scenario of interest, the roughness of the observed surface
certainly plays a key role. Indeed, microwave SAR backscattering strongly depends on
surface roughness, representing the main observed physical parameter in the case of
“standard” flooding events. With the adjective “standard”, we refer to events occurring in
flat and bare surface areas. In this situation, once covered by water, the areas affected by the
flooding experience a decrease in the backscattering coefficient (σ0) since bare soil surfaces
are generally rougher than water ones. The amount of this decrease depends on the actual
roughness of the water surface, which can be influenced by the presence of wind and by
system parameters, such as operating frequency, polarization and incidence angle. The
role of these parameters can be quantified using electromagnetic (EM) scattering models,
e.g., see [22]. Regarding polarization, in this standard situation, co-polarized channels are
preferred, with the HH channel leading to a higher contrast between water and rough
soil surfaces than the VV one [23,24]. As discussed in Section 3, they can be exploited to
enhance the selection of thresholds for the delineation of flooding [25].

When flood events depart from the “standard” category, other scattering phenomena
contribute to SAR image formation, thus making the phenomenology more complex. In
particular, two situations are quite common, i.e., the presence of vegetation and the presence
of man-made structures, such as buildings.
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In the former case, which is illustrated schematically in Figure 2, the overall backscat-
tering coefficient can be regarded as the result of the superposition of three different
contributions: surface scattering from soil (or water), volume scattering from vegetation
and double-bounce scattering due to vegetation stems or trunks. The magnitude of the
observed surface scattering and double-bounce contributions depends on the degree of
penetration depth of the EM field under the vegetation cover, which is related to the vege-
tation density and the operating wavelength, being higher for lower-density vegetation
and larger wavelength. Moreover, the double-bounce contribution tends to be higher for
arboreal vegetation (due to the presence of trunks) and decreases in the presence of rougher
surfaces, thus being higher in flooded areas. Regarding volume scattering, it is, in general,
responsible for a backscattering enhancement effect, more or less significant according to
the density of vegetation and to the considered wavelength: when dominant, this contribu-
tion can mask the intensity increase due to the enhancement of double bounce in flooded
areas [26]. Therefore, in this rather involved electromagnetic scenario, the identification of
flooded areas under vegetation cover may represent a quite complex task and remains a less
explored challenge. However, if not appropriately tackled, the presence of vegetation may
lead to an underestimation of the extent of inundated areas [27,28]. Approaches reported
in the scientific literature for this case are reviewed in Section 3.7.1.

Figure 2. Flooding in the presence of tall vegetation: schematic representation of scattering phenomena.

In the case of the presence of man-made structures, the double-bounce scattering
contribution plays a key role since it is generally intensified in proximity of surface water
causing an enhancement of multiple reflections, also due to the high dielectric constant of
water. However, the precise behavior in the presence of flooding is not easily predictable,
being significantly dependent on the scenario, e.g., the type of pre-flood surface (rough
bare soil or flat asphalt) and the orientation angle of the building with respect to the sensor.
In particular, the enhancement effect is maximum for buildings with sides perpendicular to
the sensor line of sight.

2.2. Interferometric Coherence

The use of the interferometric coherence (IC), obtained through multi-pass SAR inter-
ferometry, can serve as an indicator of alterations in the EM scattering properties of the
scene, thereby offering the potential to detect flooding that has occurred between the two
acquisitions (interferometric pair) [29–31]. In particular, IC is defined as the magnitude
of the normalized (complex) correlation between the two single-look complex images.
Three primary sources of decorrelation (i.e., loss of IC) over areas affected by floods can
be distinguished [32]:

• environmental change over time (temporal decorrelation);
• imaging from different viewing directions (geometric decorrelation);
• imaging volumetric backscattering (volume decorrelation).

Coherence is additionally influenced by atmospheric changes (tropospheric and iono-
spheric disturbances). Variations in atmospheric conditions, particularly in the troposphere,
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introduce an atmospheric phase screen, leading to decorrelation between images. Similarly,
changes in electron density in the ionosphere might result in decorrelation between interfer-
ometric pairs. Some illustrative examples can be found in [33–35]. Indeed, coherence-based
floodwater detection has been investigated for both vegetated and urban scenarios.

Generally, bare soils and buildings exhibit relatively high coherence values due to
their stable nature. For the urban scenario, since buildings are stable coherent targets,
some authors proposed the use of IC, which is expected to decrease after a flood event,
potentially allowing identification of flooded areas in the presence of even low changes
of σ0 [30,31,36].

The potential of interferometric phase measurements of the water and vegetation
surfaces has also been investigated. Coherence values are generally very low in densely
forested areas due to constant movement of the leaves and stems. In particular, a weak
correlation is observed in open-water areas at both C- and L-bands, while forested regions
exhibit stronger coherence at L-band compared to C-band. Because the scattering positions
of vegetation trunks and water surfaces remain consistent, temporal coherence at L-band
may be preserved in cases of double-bounce flooded vegetation [37].

Hence, IC data can be a valuable complement to backscattering coefficient data to
discriminate flooded and non-flooded areas, thus enabling a synergistic use of the SAR
backscattering coefficient and coherence [31,38,39], as discussed in Section 3.7.

3. Flood Detection Processing Techniques

The various processing techniques proposed in the literature are reviewed, from classi-
cal to more advanced ones (Sections 3.2–3.5). Best practices for pre- and post-processing are
discussed (Sections 3.1 and 3.6). These sections have informative purposes but are useful to
complete the overall picture of the general processing chain providing flood maps and/or
related products. Finally, emphasis is given to issues related to particularly challenging
scenarios (Section 3.7).

3.1. General Pre-Processing Operations

The use of SAR data for flood detection applications requires some pre-processing
operations, which should be usually performed irrespective of the specific technique
considered for information extraction. These are briefly discussed in the following.

Unavoidable radiometric distortions occur in the SAR imaging process, and their proper
rectification is necessary to reconstruct the physically meaningful backscattering coefficient (σ0)
from SAR images [40]. Therefore, radiometric calibration operation should be systematically
performed to obtain the backscattering coefficient, also referred to as normalized radar cross-
section (NRCS), including the compensation of different SAR imaging distortion effects, such
as the antenna pattern distortions and the local SAR radiometric distortions induced by
topography [41–43]. It is worth noting that the dependence of the backscattering coefficient on
the different parameters (e.g., surface roughness, wavelength, local incidence angle) [44] can
be exploited to set thresholds and/or as auxiliary processing data. In the case of significant
relief, another fundamental factor hampering the identification of flooded areas in hilly
regions is related to the severe image distortions due to the presence of shadow and layover
regions [45]. These regions should be carefully identified and handled appropriately, since the
topological properties of the imaging process hinder the proper single-image reconstruction
of the radiometric information in those regions [42]. Further discussion on related aspects
pertinent to mountainous regions is provided in Section 3.7.3.

SAR image coregistration is a fundamental preliminary operation for geometrically
aligning two or more complex images of the same scene (acquired from different viewpoints,
times, or sensors), thus ensuring that homologous pixels in all the images correspond to
the same target on the ground. Since it needs to be performed with subpixel accuracy to
preserve phase information, thus enabling IC evaluation, SAR image coregistration might be
a computationally demanding task; however, efficient implementations are available [46].
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Multi-looking, i.e., the incoherent average within a grid of pre-defined size, can be
considered to reduce the resolution or make the image pixel square while simultaneously
reducing speckle. In addition, ad hoc speckle filtering is helpful to mitigate the typical salt
and pepper effect in SAR images due to the coherent illumination of distributed scatterers
within the resolution cell [47], and it might be optionally applied before flood detection
algorithms. Specifically, this procedure can be exploited to enhance the smooth texture
of water surfaces and, thus, its contrast with rougher ones, e.g., non-flooded bare soil. In
principle, working with a single-channel image, it has been demonstrated that using simple
filters, like the refined Lee filter [48], is sufficient for obtaining satisfactory results [18]. In
multi-temporal frameworks, the choice of the most appropriate filtering approach depends
essentially on the number of images involved in the processing and on eventual constraints
on computational times [49].

3.2. Thresholding

Thresholding is one of the most frequently used segmentation techniques in image
processing. By using bi-level thresholding [50], flood mapping is addressed as a classic
binary segmentation problem in which the aim is to separate dark pixels from brighter
ones [51]. According to Section 2.1, the former can be related to flooded image samples,
while the latter to non-flooded ones. This operation can be critical [52], as basic algorithms
working on histogram analysis may fail due to the unreliability of the hypothesis they
rely on. For instance, the Otsu method of nonparametric and unsupervised threshold
selection [53] requires a bi-modal probability density function (PDF) for the analyzed
histogram and that the two dominant classes are equally represented in data. Nevertheless,
thresholding remains one of the most commonly employed approaches for flood mapping,
regardless of the adopted intermediate processing, as evidenced by the majority of the
literature in the field.

In this context, several thresholding-based segmentation approaches have been pro-
posed to optimize the selection of the threshold [54]. Methods relying on global (i.e., one
threshold for the entire image) or on local information (i.e., using a distinct threshold for
each subregion of the image) can be distinguished. The aforementioned (classical) Otsu’s
method finds an optimum global threshold that maximizes the interclass variance. This
method has been widely utilized for flood mapping [55,56], although the characteristics
of SAR images make it challenging to consistently meet its underlying assumptions. The
Kittler and Illingworth minimum classification error thresholding technique is another
solution usually employed in the literature to strengthen automatic thresholding [19,57–59].
In this case, it is assumed that the observations come from a mixture of two Gaussian
distributions. The optimum threshold is determined according to a criterion accounting
for the amount of overlap between the Gaussian density functions of foreground and
background classes.

As argued in [54], global thresholding is affected by several weaknesses due to both the
relative extent of the flooded area against the overall image size and the contrast between
flooded and non-flooded pixels. To tackle this problem, Bovolo and Bruzzone [60] intro-
duced the concept of tiling. This operation, in its first version, was a simple partitioning of
the image into sub-images aimed at isolating areas characterized by bi-modal PDF, which is
the fundamental assumption for proper functioning of most of automatic thresholding algo-
rithms. Successively, the concept has been widely revived and improved by the literature.
For instance, in [19], the authors suggested to divide the scene into non-overlapping tiles,
which are, in turn, split into four subtiles. The statistics of each subtile are then computed,
and those having a standard deviation of subtile means higher than the 95% percentile and
a mean lower than the mean of all tiles are selected for automatic thresholding processing.
The final global threshold is determined as the arithmetic mean of the thresholds resulting
from the selected tiles.

More recently, Chini et al. [61] proposed a hierarchical tiling approach that searches
for tiles of variable size. The suitability of a tile is assessed according to three criteria,
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one of which is given in terms of the Ashman coefficient [62]. This coefficient, originally
introduced to analyze astronomic datasets, quantifies the separability of two Gaussian
distributions in a mixture model and is defined as follows

A(h) =
√

2
|µ1 − µ2|√

σ2
1 + σ2

2

, (1)

where µ1 and µ2 are the means and σ1 and σ2 the standard deviations of the two Gaussian
distributions. The parameter h represents the inherent histogram of the mixture model. Ac-
cording to [61], the Ashman coefficient should be higher than 2 to ensure clear separability.

A key topic in flood mapping is the selection of the most suitable layer to be treated
with thresholding. In this context, change detection environments are probably the most
exploited to solve flood mapping problems due to the significant changes in the SAR
backscattering triggered by temporary water coverage [44]. The simplest approach to
change detection is the thresholding of an appropriate change index. The literature pro-
vided several examples. Long et al. [63] proposed the exploitation of the difference operator.
However, as reported in [64], the PDF of the difference between two intensity images,
assumed to be Gamma-distributed due to the application of spatial multilook, leads to
different change detection accuracy in high- and low-intensity regions. Therefore, the ratio
operator has been widely exploited for flood delineation because the distribution of the
ratio image depends only on the relative change in the average intensity response of the
two images. This makes changes detected in the same way all over the histogram, i.e., the
detection accuracy is no longer dependent upon intensity [65]. The ratio image is usually
expressed in logarithmic scale in order to make the class distribution more symmetrical
and to enhance the contrast between changed and unchanged pixels [66]. Other change
indicators introduced in the literature for flood detection include likelihood ratios [67],
normalized band ratios and multi-temporal change estimators. As for normalized band
ratios, a simple formulation has been proposed in [68], wherein the temporary water
TWI ∈ [−1, 1], is defined as follows

TWI = (1− I2)

(
I1 − I2

I1 + I2

)
, (2)

where I1 and I2 represent the pre- and post-event images, respectively.
Concerning multi-temporal change estimators, a solution is represented by the abso-

lute change violet estimator (ACE) proposed in [69] which is given in the form

ACE = 10 log

[
2

N(N − 1)

N

∑
i=1

∑
j>1

Rij

]
, (3)

where

Rij = max

(
< Ii >

< Ij >
,
< Ij >

< Ii >

)
, (4)

N is the total number of images in the dataset and < · > denotes an average in a window
of prescribed size. Equation (3) uses the maximum ratios for every possible image couple,
Rij, to compute a kind of total unsigned backscattering change.

3.3. Fuzzy Classifiers

Fuzzy systems represent an effective solution to manage the intrinsic uncertainty of
data [70]. A fuzzy set represents an extension of the classical notion of a set, in which
the concept of membership is binary, i.e., an element belongs or does not belong to the
set. In the fuzzy theory, an element can belong to a set with a degree of membership,
defined through a mathematical function assuming values in the interval [0, 1]. Examples
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of membership functions are the S-function, the Z-function, or the π-function [71]. The
S-function is defined as follows

S(DN, a, b, c) =


0, DN ≤ a
2[(DN − a)/(c− a)]2, a < DN ≤ b
1− [(DN − a)/(c− a)]2, b < DN ≤ c
1, DN > c,

(5)

where DN stands for digital number and a, b and c represent the fuzzy set parameters to
be determined. Starting from the S-function, the Z-function can be easily retrieved, being
Z(DN, a, b, c) = 1− S(DN, a, b, c). The π-function is given by the junction of an S-function
and a Z-function.

According to the fuzzy paradigm, Pulvirenti et al. [72] designed a classification system
exploiting as fuzzy variables the backscattering coefficient of pre- and post-event SAR
images in combination with several textural, ancillary and contextual parameters like pixel
homogeneity, proximity to water bodies and elevation. The authors proposed the exploita-
tion of SAR simulation models [73,74] for the fuzzification of the reflectivity function and
statistical and/or empirical considerations for the parametrization of the other layers to
create, for each variable, a corresponding degree of membership to the class “flood”. This
step, as suggested in [75], can be also implemented using neural networks. Based on
the processing level, the diverse layers are combined using the fuzzy union rule or the
weighted average rule [76]. The last part of the algorithm implements the defuzzification
of the fuzzy set of flooded areas via automatic thresholding, thus assigning the class “flood”
to all the pixels with a score higher than the determined value. A similar approach has
been designed by Pierdicca et al. [25].

Another solution, proposed in [77], implements a fuzzy classifier as a refinement of a
threshold-based segmentation producing a preliminary flood map. The fuzzy system is
supplied with layers of information, such as the mean elevation and backscattering intensity
of the identified flooded areas regions, and the size of each individual water object. The
fuzzy elements are then combined into a unique set by averaging the membership degree
for each pixel. The refined flooding map is finally generated through a defuzzification step
implemented via thresholding.

An alternative interpretation of the fuzzy system is suggested in [18], where classes
are discerned based on statements rather than predefined thresholds. In this framework,
the membership functions are used to model verbal attributes, like “low” or “high”, to
be associated with the variables used to classify. In particular, the authors proposed two
workflows using different fuzzy sets for flooded area discrimination. In the first case, the
SAR intensity map is appropriately processed by using histogram quantization [78], and a
Haralick texture measure [79] is employed. In the second case, the texture is replaced by a
change detection index [68], which represents stronger evidence of flood occurrences. As a
result, the class “flood” can be identified by the statement “Flooded areas are characterized
by low backscattering and low texture”. However, the k fuzzy variables and the n associated
verbal attributes generate kn classes corresponding to all the combinations of the involved
fuzzy variables and verbal attributes. In other words, each pixel is associated with four
values identifying the membership score against that particular class. Defuzzification is
therefore necessary and implemented according to the maximum score criterion [80]. The
final flood map is given by pixels showing the highest score against the class corresponding
to the statement above. The considered approach is applicable to either a single acquisition
or a couple of pre- and post-event acquisitions.

3.4. Machine Learning

In recent years, machine learning (ML) methodologies have been increasingly ex-
ploited in the SAR community to solve object identification and classification problems [81],
including flood delineation [82]. This broad class of methods includes traditional machine
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learning (TML) techniques, like decision trees [83], gradient boosting [84] and support
vector machines (SVMs) [85], and more recent deep learning (DL) architectures [86], based
on the exploitation of neural networks.

TML methodologies exploited for flood mapping are mostly supervised, therefore the
provisioning of training data is essential [87]. The authors in [88] used a random forest
classifier to delineate floods in the area of Khartoum (Sudan). The same technique was used
by Mastro et al. [89] to investigate the capability of different coherent/incoherent change
detection indices extracted from Sentinel-1 data for the rapid mapping of changed areas.
Reference [90] focused on urban areas, proposing a TML framework to extract flooding
information from Sentinel-1 data. To this end, the authors exploited different techniques
obtaining the best precision metric from SVM. This technique was also exploited in [91] as
a part of a hybrid approach including metaheuristic optimization procedures like the grey
wolf optimization, the differential evolution and the imperialist competitive algorithm. A
variant of SVM, known as reference vector machine [92], has been adopted in [93] to map
floods in Aqqala, Iran. Elkhrachy [94] proposed an ML methodology for mapping flood
extent and depth exploiting SAR images and elevation information targeted on historical
floodwater data.

TML methodologies have been also used to compute flood risk maps in inundation-
prone areas. Saravanan et al. [95] tested the reliability of five different TML algorithms
with the mapping of flood susceptibility in the Idukki district (Kerala, India), arguing that
the best results were obtained using the stochastic gradient descendent method. Support
vector regression [96], belonging to the family of SVMs, was exploited in [97]. The authors
in [98] addressed the topic by means of random forests. Shahabi et al. [99] proposed a new
methodology for flood detection and susceptibility mapping using Sentinel-1 data based
on the k-nearest neighbor classifier [100].

Differently from TML techniques, DL architectures are representation-learning meth-
ods that automatically discover the representations needed for detecting or classifying the
specific object or pattern of interest within the available data. They are characterized by
multiple levels of decomposition of the original information, which allow for the learning
of hidden patterns in data and thus the solution of complex classification tasks [86].

DL architectures are trained using examples, the so-called training dataset, i.e., patches
representing the specific phenomenon of interest, which should be ingested into the system
in adequate quantity and reliability. The collection of the training dataset in SAR-based
applications is the principal hurdle in the usage of these methodologies because, differently
from optical satellite data, there is limited availability of publicly available datasets and/or
pre-trained networks to be used in applications.

Nevertheless, the literature produced several studies using DL methodologies for
flood mapping using SAR data. The performance of global thresholding-based approaches
and those of some popular DL architectures are compared in [101], obtaining convincing
results using a dataset composed by 32 Sentinel-1 SAR images corresponding to 16 flood
events that occurred in the Yangtze River Basin (China). The authors claimed that the better
performance was achieved by the UNet architecture, which is probably the most adopted
solution in the literature, eventually with some modifications against the basic structure
introduced in [102] and reported in Figure 3.

UNet is a typical encoding (downsampling) and decoding (upsampling) model. The
encoder and decoder have a symmetrical structure, creating the U-shape inspiring the name
of the net. The encoder and the decoder have four upsampling and four downsampling
layers, respectively. Each sampling layer comprises 2 or 3 stacked convolutional layers,
each one with a number of channels varying between 64, 128, 256, 512 and 1024. The feature
maps of the upsampling and downsampling layers are connected by a concatenation
function useful to recover the details lost during the max pooling.
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Figure 3. UNet basic structure. UNet architecture. Blue boxes correspond to a multi-channel feature
map, with the number of channels indicated on top of the box. The x- and y-size of each feature map
is provided at the lower left edge of the box. White boxes represent copied feature maps.

As aforementioned, this solution inspired several studies, in which the basic structure
has been modified to optimize the performance at computational and/or classification
levels [103–105]. As an example, the authors in [106] proposed the exploitation of Seg-
Net [107], which, differently from UNet, has no concatenation operation but retains the
index of max pooling in the downsampling layer (see Figure 4a), thus allowing for more
accurate feature reconstruction in the upsampling branch.

(a)
(b)

Figure 4. Example of (a) SegNet architecture and (b) ResNet residual learning block.

The increase in network depth is useful for the production of richer semantic features.
However, this can cause the well-known vanishing gradient problem. In other words, as
the depth of the net increases, the gradient constituting the base for loss function calculation
tends to shrink to zero after several applications of the chain rule. This prevents the update
of network weights and, consequently, the effectiveness of the learning. As suggested
in [108], this behavior can be mitigated by using the ResNet architecture [109] as an encoder
within a UNet architecture. This schema is characterized by the residual learning module
(see Figure 4b), which introduces the simple concept of adding an intermediate input to the
output of a series of convolution blocks. In other words, the output of the residual learning
block can be expressed as H(x) = F(x) + x, where x is the input of the residual block and
F(x) is the residual function, i.e., the difference between the input and the output of the
convolution block.

A different approach consists of the exploitation of Siamese networks [110]. They are
composed of a symmetric structure with two similar convolutional layer branches used
to evaluate the similarity of two images. These networks ingest two images separately
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into two branches with the same structure and weights and evaluate their differences by
transforming the two inputs into the same feature space.

Following this principle, Siam-DWENet is introduced in [111] (see Figure 5). Its
architecture comprises two modules (named DWE in Figure 5) devoted to extracting high-
level water features from the pre- and post-event SAR images. The DWE modules include a
pyramidal convolution (PyConv) module [112], a context-aware feature extraction (CAFE)
module, devoted to the enhancement of multi-scale feature extraction, and several channel
attention (CA) modules, whose aim is to favor the algorithm to focus on crucial information,
thus ignoring irrelevant one [113]. The last layer in the two DWE modules is connected
with the output layer of Siam-DWENet, which fuses those features extracted from DWE
modules and identifies the range of changes.

Figure 5. The structure of Siam-DWENet (source [111]).

3.5. Other Methodologies
3.5.1. Multi-Sensor Data Fusion

Multi-sensor data fusion proves to be an effective solution for flood mapping enabling
the combination of the strengths of active and passive imagery, namely the certainty of the
acquisition provided by the SAR and the robustness of the relation between the spectral
response at micrometric frequencies and the presence of water bodies [114]. According
to [115], the fusion can be implemented at pixel, feature and decision level. In the first case,
data are combined at the lowest processing level, i.e., the sensor level. In the decision-level
fusion, multi-sensor data are processed independently of each other up to the final merge.
The feature-level fusion approach is based on extracting features/objects from diverse
sources and their combination through statistical methods, fuzzy logic, or neural networks.

The literature provided several data fusion solutions to map floods. For example,
Irwin et al. [116] fused SAR, optical and LIDAR data using hybrid decision and pixel fusion.
In particular, the authors proposed to process each dataset separately for surface water
classification. Then, a fused classification model of the three datasets is created using a
multi-level decision tree to minimize the differences between models originating from
single datasets. A similar hybrid approach has been proposed in [117]. In this case, the
decision tree was applied to composite images obtained from the fusion of SAR and multi-
spectral (MS) data. Feature-based fusion is currently the most employed method for flood
mapping based on multi-sensor data, mainly due to the spreading of solutions based on
convolutional neural networks (CNNs). CNNs represent a promising model for information
extraction from multi-modal datasets due to their ability to handle heterogeneous sources
and effectively learn data representation from them [86]. In this context, [118,119] proposed
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a flood mapping framework based on a tri-branch CNN architecture that simultaneously
processes MS, SAR and elevation data. Among various approaches, solutions based on
UNet (or its modifications) have been developed in [120,121].

TML is also an effective tool for flood mapping using feature fusion of multi-modal
data. For example, Benoudjit and Guida [122] proposed a novel algorithm for flood
mapping exploiting SAR and MS feature fusion. The methodology described in [122]
is fully automated, since the training of the classifier is performed starting from water
and land masks derived from the Normalized Difference Water Index (NDWI) without
any intervention from the human operator. In the training phase, pre-event SAR and MS
data are needed. The classification is carried out on a post-event SAR acquisition. An
interesting comparative study on the performance of ML and DL frameworks has been
proposed in [123].

3.5.2. Active Contour Models

Active contour models (ACMs) refer to segmentation techniques based on a dynamic
curve searching the edge image space through a suitable energy function. This function
(commonly referred to as snake) is attracted by edge points and tends to settle on a line
feature, even if it is incomplete [124]. The contour is usually represented as a series of nodes
linked by straight-line segments. Initially, the snake was designed to work on the gradient
image or the edge map [125]. Successively, Horrit [126] proposed an algorithm working on
the SAR amplitude image, thus avoiding any processing aiming at edge detection. These
findings allowed the community to design snakes to contour flooded areas. An ACM
able to delineate a flood in SAR imagery as a region of homogeneous speckle statistics
is proposed in [124]. The segmentation uses both local tone and texture measures and is
capable of accurate feature boundary representation. The snake is represented as a series
of nodes guided by an energy function. According to the optimization strategy, it iterates
through the nodes, assessing the energy change δE for moves towards each neighboring
pixel. The selected neighbor is the one showing the most negative energy change according
to the relation

δE = −GδA + δEt + δEc, (6)

where G is the goodness function, δA is the local area change, δEt is the change in tension
constraint and δEc is the change in curvature constraint. The goodness function is a measure
of the matching between the statistics of the pixels along the lines linking the node with its
neighbors against those of the area enclosed by the snake. In the case of a good agreement,
G is positive and makes the snake expand. Otherwise, the snake retreats from the area. The
algorithm requires initialization with an initial contour position. This can be performed via
manual selection [124] or, as suggested in [54], using external datasets or starting from a
seed of dark pixels.

This approach, with successive modifications and refinements, has been widely ex-
ploited for flooding applications [127–129]. Insightful comparative studies between differ-
ent techniques, including ACMs, have been recently proposed in [54,130].

3.5.3. Data Assimilation

Data assimilation is a powerful tool to combine model-based simulations and observa-
tions. In the context of flood mapping applications, this process involves assimilating prob-
abilistic flood maps derived from satellite images into hydrodynamic models to improve
parametrization and/or establish initial and boundary conditions [131]. Using satellite
data allows for overcoming limitations associated with the accessibility and availability of
in situ data.

As argued in [132], SAR images contain some information that can be exploited to
improve the performance of hydrodynamic models. As an example, the authors in [133]
quantified the observation uncertainty by using an image processing approach to associate
each pixel with a probability of being flooded based on its backscattering value. The
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assimilation is usually implemented using Kalman filtering [134,135] or variational data
assimilation [136]. These techniques assume that the distributions of observation and model
errors follow a Gaussian distribution. However, this assumption is not always verified
when using real-world data [137].

As a consequence, particle filters (PFs) have been exploited to address the data as-
similation problem due to their ability to deal with nonlinear and non-Gaussian sys-
tems [137]. PFs model the prior and the posterior PDFs with an ensemble of model states,
also known as “particles”. An equal weight is assigned to each particle a priori. Next, as a
result of the assimilation, weights are updated to represent the posterior probability given
the observations [138].

PFs are based on the Bayes theorem, according to the relation

p
(

xk|yk
)
=

p
(

yk|xk
)

p
(
yk
) p

(
xk
)

, (7)

where the observation y at time k represents the flood probability given by the SAR reflectiv-
ity function and x is the forecast provided by numerical modeling. The posterior probability
p(xk|yk) is obtained by multiplying the prior probability density function p(xk), represent-
ing the probability of the model before any observation is considered, by the likelihood
p(yk|xk), i.e., the probability that the model state xk produces the observation [138].

Another approach proposed in the literature consists of the assimilation of SAR-
derived water levels, obtained with the aid of a DEM, into hydrodynamic models [15,139].
In this case, SAR images are prior processed for flooded area detection and then assimilated
within the model to improve its forecasting capability and/or to calibrate its parameters.

3.6. Post-Processing Operations

Post-processing usually accounts for flood map refinement and reprojection into a
cartographic system [140].

Refinement of flood maps is in most of the cases implemented using both pixel-based
and object-based processing. In the first case, the objective is to make maps more homoge-
neous through compensation, as an example, of small holes within large areas identified as
flooded. This can be obtained by application of mathematical morphology [141] or texture
filters [142]. The use of objects allows for setting more articulate conditions involving
objects’ size, geometry, local statistics and topology [143,144]. As an example, it is possible
to mask out from the flood map isolated regions having areas smaller than a threshold
or close all the holes within a flooded area regardless of their dimension [18]. This is not
possible using pixel-based techniques, as they are constrained by the size of the filtering
kernel, which acts on the whole map. Exploitation of objects is generally more complicated
but introduces significant flexibility in the processing.

Geocoding consists of the reprojection of a map from the SAR geometry into a car-
tographic reference system [140,145]. This process is implemented based on the platform
trajectory and a digital elevation model (DEM) to solve the range-doppler equation system.
This usually closes the flood mapping workflow. However, it is worthwhile to remark that
if the processing involves geocoded auxiliary data and/or fusion with MS images, georef-
erencing of SAR data shall be implemented as a pre-processing step, after despeckling.

3.7. Challenging Situations

In the following, we consider three scenarios for which the detection of flooded areas
is particularly challenging. For these situations, the current research is relatively less
advanced, both in terms of published works and the degree of automation of the proposed
techniques. In these cases, to obtain meaningful results, the use of multi-dimensional SAR
data is advisable, since these data provide a means for isolating the different scattering
mechanisms contributing to the formation of the overall received signal.
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3.7.1. Vegetation Cover

The possibility of detecting water beneath vegetation cover using SAR data is of great
importance for flood monitoring applications in rural or forested areas, being essential for
accurately delineating flood extents. In these areas, the capability of SAR to penetrate up to
a certain (wavelength-dependent) depth beneath the vegetation cover is a unique feature,
marking a great difference with respect to optical/MS sensors. The EM phenomenology
underlying SAR image formation in the presence of flooded vegetation is quite different
from that relevant to the “standard” bare soil case, as previously discussed in Section 2.

The backscattering intensity results to be generally increased due to double-bounce
scattering between water surface and vegetation stems or trunks, although the actual
possibility to discriminate water strongly depends on vegetation density, soil water content
and acquisition geometry [27]. For this reason, in this case, the availability of a pre-flooding
image, to be used as a reference in the context of a change detection approach, is particularly
important. Due to the relevant enhanced penetration under canopy, L-band SAR sensors
are usually preferred for this task [146–150]. However, C-band data have been also used
with a certain degree of success, especially in low vegetation density conditions [151–157].
Some contributions also considered the use of X-band sensors, which can potentially
provide highly detailed maps, due to their higher spatial resolution [158–161]. However,
the possibility to use these sensors is restricted to sparse vegetation, leaf-off conditions,
or, at least, slender leaf plants (e.g., rice). Moreover, in general, the use of small incidence
angles is preferred, since, in this case, the propagation path, and consequently the relevant
wave attenuation in the canopy layer, is minimized. This allows for a more noticeable
increase in backscattering intensity due to double-bounce effects, so a larger backscattering
intensity increase due to double bounce can be observed [146,152].

A literature survey devoted to flooded vegetation and updated to 2018 is provided
in [27]. We provide here a brief overview on the methods and techniques proposed in
the literature, noticing that they can be classified on the basis of the kind of observable
used for flood mapping, which, in turn, changes according to the considered single- or
multi-channel SAR system.

In the great majority of cases, single-channel SAR systems are used due to their wider
availability. In this case, the feature used for the identification task is mainly the backscatter
intensity [24,149–152,159,160]. In particular, HH-polarized images present high returns in
the presence of flooded vegetation due to the double-bounce scattering effect. Therefore,
techniques based on thresholding can be devised and possibly supported by the joint use
of ancillary information, such as DEMs and land cover maps [153]. In the presence of man-
made structures (e.g., buildings), the relevant ancillary information is particularly useful to
identify these sources of double-bounce scattering. This kind of approach can also be refined
using time series. In this case, multi-temporal features can be fruitfully used in support of
classification [149,154,156,158,162]. Moreover, multi-temporal approaches also provide the
possibility to dynamically observe changes in the flood characteristics [149,150,154,156]. In
general, approaches used for flood identification in standard conditions can be applied upon
adaptation and appropriate definition of new threshold values and processing rules. Indeed,
approaches based on thresholding [149,150,154,159,160], fuzzy logic [24,158] and/or object-
based image analysis [163] are commonly used.

Regarding multi-channel SAR, approaches based on the use of polarimetry are fre-
quently reported in the relevant literature. They potentially enable the extraction of the
scattering mechanism by using appropriate decomposition techniques so that they can be
used for the identification of areas with dominant double bounce component, significantly
reducing the uncertainty of intensity-based extraction. However, their use is certainly
limited with respect to single-channel data, also due to the reduced area coverage and
resolution of polarimetric acquisitions. Examples of commonly used decompositions are
Freeman and Durden [155,164], Yamaguchi four-component decomposition [155,165] and
Cloude and Pottier [155,165]. However, these decompositions can be only obtained from
fully polarimetric (quad-pol) data, whose availability is rather limited. Anyway, some
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decomposition methods suitable also for dual-pol SAR data are also available [166]. Finally,
compact-pol systems have been only sparsely considered in the literature [167], also due to
scarce availability of this kind of data.

Once data decomposition has been performed, the obtained decomposed data still
need to be classified in order to identify inundated areas. TML (such as SVM [166] and
random forests [165]), distance-based classification methods, or specific polarimetric classi-
fication methods (such as Wishard classifiers [155,161]) can be used to perform this task.

Finally, it is worth noting that, as anticipated in Section 2.2, the use of the IC has
been considered by some authors in the case of inundated vegetation mapping [30,168]. In
particular, an increased coherence, due to strong double-bounce returns, might be indicative
of flooded vegetation, helping in discriminating intensity increases due to other sources,
e.g., soil moisture.

3.7.2. Urban Areas

The vast majority of floodings mainly interest rural areas and, accordingly, most of the
available literature on flood detection focused on this kind of scenario. However, flooding
occurring in urban areas has the greatest impact in terms of both human lives and economic
costs, thus making flood detection in the urban scenario a fundamental task. However, due
to the presence of huge geometric and radiometric distortions, SAR-based flood monitoring
in urban areas is probably the most challenging situation for this application.

The approaches available in the literature first focused on the accurate identification
of layover and shadow areas in order to mask them out. Subsequently, they relied on
traditional methods and ancillary information for water-covered surface identification, e.g.,
thresholding, region growing, change detection and ACMs [127,169]. However, it was noted
that masking of the layover areas determines in turn a masking of the double reflection
contribution, which, for monostatic SAR configurations, is located in correspondence of
the building bases [73]. Indeed, the increase in the double reflection contribution can
be used as an indicator of flooding, as was firstly proposed and implemented in [170].
The increase in the double-bounce contribution is due to possibly lower roughness of the
water with respect to the terrain in front of the building and, more significantly, to the
increase in the dielectric constant due to the presence of water [30]. Note that the double
reflection contribution can be also potentially used to estimate the flood water depth
through the appropriate inversion of EM scattering models, at least when the involved
buildings are sufficiently isolated [171]. However, the use of the double-bounce effect
remains challenging, as it becomes noticeable only in specific geometric configurations, in
which the observed buildings are approximately aligned with the sensor line of flight [30].

Another feature that has been used with some success in this challenging situation is
the IC, which can increase detection accuracy at the cost of requiring multiple pre- and post-
event acquisitions [30,31]. In particular, it is observed that the presence of a water-covered
surface might be responsible for a significant decrease in the IC, so this information can be
used along with the backscattering intensity to devise effective flood detection strategies.
Several contributions proposing this kind of approach appeared in the literature in the last
decade [36,172], also exploiting bistatic TanDEM-X/TerraSAR-X coherence, which is well
suited to deal with mixed urban/vegetated areas [173]. In the last years, the coherence
information has been used also in the frame of DL-based approaches [174,175] and dual-
polarization SAR systems [176]. Finally, some authors argued that, especially for point-like
targets, interferometric phase statistics should be preferred to coherence, presenting a more
robust behavior [177].

3.7.3. Mountainous Regions

In general, flooded regions exhibit a backscattering (σ0) similar to most of the pixels
associated with snow-covered areas in mountainous terrain, shadow regions, runway and
broad road networks and other smooth surfaces. Accordingly, flood mapping involving
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non-water areas, such as those above-mentioned, might be critically affected by potentially
large errors [77,178].

More specifically, shadow regions, which typically occur in SAR imaging of areas with
significant topographical reliefs, may exhibit similar backscattering as open water, with a
significant impact on the results of flood detection [77]. On the other hand, layover regions,
which generally result in a strong return, may also lead to misclassification [179].

Hence, the classification of flooded areas in non-flat regions might be more prob-
lematic, especially in areas characterized by significant variations in terrain topography
characteristics. This difficulty arises from inherent layover and shadow distortions present
in SAR imaging.

The magnitude of SAR radiometric distortions induced by topography might significantly
increase in mountainous areas; however, regions affected only by foreshortening are generally
correctable. Nevertheless, achieving rigorous radiometric correction in shadow and layover
regions of a single image becomes unattainable [42,180]. Subsequently, local terrain reliefs
must be carefully considered, removing the shadow (or layover) areas before proceeding with
the subsequent classification process for determining the flood extent [179,181–183]. This
can be achieved by masking out the relevant shadow- or layover-disturbed pixels of the pre-
processed SAR images (see also Section 3.1) once the relevant pixels have been systematically
identified according to an appropriate identification technique [42,45].

Although appropriate procedures for SAR shadow and layover regions identification
should be carefully considered for mountainous regions (see, for instance, [45]), which
usually requires a considerable computational burden, those adopted in the specific flood-
ing context not always fully encompass a proper non-local analysis. Moreover, having
accurate topographic information, obtained through a DEM of the area of interest, is crucial
to perform a successful identification of layover and shadow regions.

Insome cases, alternative approaches have also been considered. For instance, to get
rid of the SAR shadow effects, in [184], river boundaries extraction is achieved by combining
usage of local connectivity feature of the river and a region-based active contours approach.

Finally, it is worth emphasizing that, in mountainous regions, different natural hazards
like landslides, avalanches, floods and debris flows can conjointly occur. Consequently,
from a detection standpoint, diverse and complex scenarios may arise. In this context, an
interesting investigation, for instance, is provided in [185].

4. Validation Strategies and Map Quality Indicators

Remote sensing images, including SAR ones, are inherently uncertain, regardless of
the environmental and instrumental configurations, as they are the result of a measurement
process (backscattering coefficient for SAR sensors). This makes the validation of the
obtained flooding maps a crucial phase in the development of flooding-related products.

If SAR data and corresponding flooding reference maps are available for only a small
number of flood events, the validation process is constrained and limited in scope. In this
case, the validation strategies are typically aimed at comparing the SAR-derived map with
the reference one to assess how well they match. The comparison is undertaken qualitatively
by visual inspection of the features appearing in the two maps and/or quantitatively
by evaluating simple similarity indicators, like the root mean square error (RMSE) and
the mean absolute error (MAE), that could highlight the main features of the classifier.
Generally speaking, MAE may be preferred to RMSE, as the former is scarcely influenced
by classification outliers.

If a sufficiently extended SAR dataset and accompanying ground-truth information
are available, a more accurate assessment of the algorithm classification performance
can be carried out. For the binary flood/non-flood classification problem, the basic four
performance metrics read as:

• True Positive (TP): number nTP of flooded image samples classified as flooded.
• False Positive (FP): number nFP of flooded image samples classified as non-flooded.
• True Negative (TN): number nTN of non-flooded image samples classified as non-flooded.
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• False Negative (FN): number nFN of non-flooded image samples classified as flooded.

According to the definitions above, TP and TN refer to correctly classified samples,
while FP and FN to misclassified ones. TP, FP, TN and FN are typically collected in the
so-called confusion matrix, which is pictorially represented in Table 1.

Table 1. Confusion matrix.

Reference

Flooded Non-Flooded
SA

R Flooded TP FN
Non-flooded FP TN

The confusion matrix can also be used to compare classification performance of two
different algorithms. In this case, the reference map is that obtained with the competing
technique, as performed, e.g., in [72].

The following simple relations can be derived:

nTP + nFP + nTN + nFN = nTOT (8)

nTP + nFP = nF,re f (9)

nTN + nFN = nNF,re f (10)

nTP + nFN = nF,SAR (11)

nFP + nTN = nNF,SAR (12)

where nTOT is the overall number of image samples; nF,re f and nNF,re f are the num-
ber of flooded and non-flooded samples on the reference map, respectively; nF,SAR and
nNF,SAR are the number of flooded and non-flooded samples as derived from the SAR
image, respectively.

Several desirable properties of a flooding extent map derived from SAR measurements
can be inferred from the aforementioned basic measures. Precision measures the ability of
the algorithm to correctly classify the flooded samples. It is defined as:

Precision =
nTP

nTP + nFP
. (13)

Accordingly, a precise classifier has nFP significantly lower than nTP. Precision is also
commonly referred to as detection rate or producer’s accuracy (for flooded area), i.e., the
probability that a flooded sample is classified correctly. However, precision alone does
not provide a complete description of the algorithm performance, as it does not consider
classification in the non-flooded regions. An overall picture of the classification quality is
offered by accuracy, defined as

Accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
, (14)

which measures the overall number of correctly classified samples over the total.
Moreover, recall measures the fraction of detected flood samples compared to all flood

samples and is defined as

Recall =
nTP

nTP + nFN
. (15)
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Recall is also referred to as user’s accuracy (for flooded area), i.e., the probability that
a predicted flooded sample is really flooded.

Intersection-over-union (IoU) is defined as follows:

IoU =
nTP

nTP + nFP + nFN
. (16)

It measures the ratio between the intersection and the union of the flood class sets as
extracted from the reference and the SAR-derived maps.

All the above performance metrics are in the range [0, 1], and larger values denote
better flooding delineation capabilities. They are routinely adopted for assessing classifica-
tion capabilities of flooding detection algorithms, regardless of the methodology adopted.
Indeed, the performance of probabilistic and fuzzy methods can be assessed using such
metrics once binary classification maps are derived by assigning a probability threshold,
typically set at 0.5, as it is performed, e.g., in [186]. This procedure is typically referred to
as defuzzification in the context of fuzzy methods.

However, such simple metrics should be adopted with caution, as they might lead to
unreasonable conclusions in the presence of unbalanced classes. For example, a naïve clas-
sification algorithm classifying every image sample as non-flooded will reach an accuracy
of 90% if applied to an image patch containing only 10% flooded samples. This misleading
behavior might be unveiled by recall that accounts for flooded areas only. However, it can
be easily proved that also recall suffers from analogous issues. As a result, a single metric
does not tell the whole story about the performance of the classification algorithm, and
multiple independent scores should be evaluated.

The harmonic mean of precision and recall is computed as follows:

F1 = 2
Precision× Recall
Precision + Recall

(17)

It is simple to verify that the harmonic mean corresponds to taking the arithmetic mean
of the numbers of false positives and false negatives. Finally, the following probabilities
can be evaluated as well:

PFN =
nFN

nTP + nFN
= 1− Recall (18)

PFP =
nFP

nTP + nFP
= 1− Precision (19)

We highlight that PFN is also commonly referred to as commission error or probability
of false alarm, while PFP as omission error or missed detection rate.

An uncertain map of the observed inundated area is inherently provided by probabilis-
tic detection approaches, such as [20]. This approach provides the user with a probability
flooding map, obtaining for each image sample the probability that the pixel is inundated.
The accuracy and reliability of such methods cannot be easily assessed through the perfor-
mance parameters described above, and a different strategy should be adopted. In [187],
the authors propose the following reliability metric

εprob =

√√√√∑N
i=1( p̂F

i − p̃F
i )

2ni

∑N
i=1 ni

, (20)

where N is the number of probability bins; ni is the number of image samples (also referred
to as sample size) falling in the ith probability bin with central probability p̂F

i ; p̃F
i is the

fraction of all ni samples that are classified as flooded in the validation map.
An ideal statistical method should have p̂F

i = p̃F
i with i = 1, 2, . . . , N, i.e., on av-

erage, the p̃F
i fraction of all the samples in the ith probability class should be actually

flooded. Accordingly, the smaller the parameter in (20), the more accurate (from a statis-
tical perspective) is the detection method. Indeed, (20) defines a probabilistic weighted
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root-mean-square error (PWRMSE), where the weighting accounts for the non-uniform
distribution of the image samples across the bins. The accuracy of a probabilistic algorithm
is also visually inspected via the reliability diagram, which is generated by placing all
the N ( p̂F

i , p̃F
i ) couples in a scatter plot. Deviation of the reliability diagram from the 1:1

line is indicative of the classification error. The PWRMSE and reliability diagram are the
most common validation strategies for probabilistic and fuzzy-based maps and have been
adopted in a number of works, e.g., [20,75,187].

For fuzzy methods, a number of fuzzy performance metrics conceived for handling
uncertainties in validation data have been developed for model calibration. However, the
application of such metrics for the assessment of SAR-based flood detection algorithms
has been tested in a limited number of works, e.g., [75], where some fuzzy metrics, namely
the similarity measure Smeas and the fuzzy Kappa statistic K f uzzy, first introduced in [188],
have been adapted to SAR-based flood mapping. Given two fuzzy vectors for a specific
image sample, namely FSAR and FVAL, relevant to SAR-based and validation flooding maps,
respectively, the similarity measure SM is defined as follows [75,189]:

SM(FSAR, FVAL) =
[
|FSAR f lood , FVAL f lood |min, |FSARnon− f lood , FVALnon− f lood |min

]
max

(21)

where FSAR, f lood and FSAR,non− f lood stand for the fuzzy membership of the SAR image sam-
ple to the flood and non-flood classes, respectively; analogously, FVAL, f lood and FVAL,non− f lood
are the fuzzy values for the validation map. According to (21), SM is the maximum value
of the set obtained by taking the minimum of the two fuzzy vectors FSAR and FVAL on a
sample by sample basis. An overall performance measure is obtained by evaluating the
fuzzy Kappa statistic K f uzzy [75]:

K f uzzy =
SMobs − SMexp

1− SMexp
, (22)

where SMobs is the observed agreement, i.e., the similarity measure between SAR-derived
and validation fuzzy maps evaluated according to (21), while SMexp stands for the ex-
pected agreement evaluated as in [188]. The fuzzy Kappa statistic provides a quantitative
indication of the classification accuracy with respect to a random categorization with the
same histogram [190].

Both the similarity measure and the fuzzy Kappa statistic vary in the range [0, 1]
and account for categorical uncertainties in both maps. In addition, they can be properly
adapted to account for spatial uncertainties as well, see, e.g., [75,188]. The growing availabil-
ity of computational power is boosting the development of increasingly computationally
demanding classification methods, particularly those based on the DL paradigm.

Therefore, computational time emerges as a crucial performance metric, especially
in near-real time applications. The ability to rapidly provide delineation maps becomes
paramount in supporting an efficient disaster response. Consequently, strict time re-
quirements may take precedence over accuracy. Computational complexity can be evalu-
ated via the algorithm throughput measured as the average number of processed pixels
per second [186].

Finally, it is worth noting that the performance metrics are strictly dependent on the
quality of the reference or ground-truth delineation maps used in the validation phase.
Here, we briefly describe the most common approaches used for generating reference data,
grouped by source type.

• SAR imagery: Reference maps are obtained by application of well-assessed and well-
recognized SAR-based methods to be taken as reference. One main example is the
CEMS service, which is described in Section 5. This is the methodology followed in,
e.g., [18]. Using maps derived from the same sensor has the advantage of likely neither
temporal nor spatial misalignment between the reference map and the derived one.
The co-registration step is also simplified. Notwithstanding, the reference algorithm
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should be manifestly superior in terms of classification accuracy, something that is not
ensured when developing new methods.

• Optical/MS imagery: Reference maps are obtained by either visual interpretation
and labeling by experts or automatic processing of aerial photography or optical/MS
satellite imagery. Both approaches can be combined in a semi-automatic procedure
where an initial delineation map is derived by means of classification algorithms
and manually refined. Common automatic strategies include thresholding of NDWI
where the Otsu’s method [53] is a common approach to find the optimal threshold.
Manual quality check and classification refinement is optionally performed to reduce
misclassifications and partially compensates for the temporal gap between the SAR
and optical/MS acquisitions, possibly with the support of hydrodynamic models.
In the case of a purely manual approach, optical/MS images are commonly digi-
tized by remote sensing experts in two (flood/non-flood areas) or more (as in fuzzy
approaches) classes, possibly with the support of permanent water information de-
rived from existing external databases, such as the JRC surface water dataset, or from
pre-event images.
When deriving flooding extent maps from optical/MS imagery, it should be taken
into account that these data are not affected by geometrical distortions, thus leading
to potential misregistrations between the test and validation datasets. Additionally,
optical/MS satellite sensors are sensitive to sunlight and cloud cover, which might
impair data availability and quality.

• Ground-truth campaigns: reference maps are obtained through ground surveys on the
flooded area. It is noteworthy that the use of lumped field data might lead to highly
accurate reference data but, at the same time, they might not allow for a comprehensive
validation of the model behavior at large spatial scales and/or in different scenarios.

Finally, it should be noted that, regardless of the reference map generation strategy,
there could be a time delay as large as different days between the SAR acquisition and
the reference data. Such a temporal misalignment could lead to misclassifications due to
flood dynamics. Time delay effects could be partially overcome or estimated by applying
proper hydrodynamic models, which provide indications about the potential misalignment
between the validation map and the retrieved one by evaluating the temporal evolution of
the flood extent and its receding rate.

5. Publicly Available Datasets

This section is devoted to describing freely available datasets specifically conceived
for flood mapping applications using SAR. The availability of such datasets is relevant
for validation and testing of flood detection algorithms and is even more stringent for DL
detection methods, which require a large amount of data to accomplish the training, testing
and validation phases. Indeed, while shallow learning methods can be easily trained on
relatively limited datasets such as that described in [191], the more recent DL paradigm calls
for much wider datasets to achieve adequate generalization capabilities and performance
on heterogeneous scenarios [192].

The creation of such datasets has been deeply boosted in the last decade by the free
availability of both cloud-based geospatial analysis platforms, such as Google Earth Engine,
and an unprecedented amount of remote sensing data, such as those provided by the
European Space Agency (ESA) within the Copernicus programme, which provides multi-
sensor high-resolution remotely sensed data with high revisit rate and global coverage.

Most scientific works adopt their own labeled reference maps and datasets to val-
idate their flooding detection algorithms or to train, validate and test their DL method.
Remarkably, in many cases, these datasets exhibit poor heterogeneity, primarily because
they cover a limited geographical area and/or a small number of flooding events, thus
preventing adequate generalization capabilities of the trained network. Notwithstanding,
the lack of shared methodologies and datasets for training, validation and testing prevents
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a fair comparison of different detection methods and compromises the reproducibility,
transparency and significance of the results.

To address these challenges, global and heterogeneous datasets for flooding mapping
have been developed and are released at no cost to the advantage of the remote sensing
community. Some of these datasets, including Sen1Floods11, S1S2-Water, S1S2-Flood,
Sen12-Flood, UNOSAT and CEMS, are discussed in the following and synthetically sum-
marized in Table 2. It is worth mentioning that the most recent datasets for flood detection
include both SAR and MS images. Indeed, it is well recognized that such sensors offer
complementary features for detection of flooded areas, and recent works have proved that
the best accuracy is achieved by a combined use of both kinds of data [121,186]. A proper
scenario-based weighting of the two types of inputs is envisaged in [121].

5.1. Sen1Floods11

The Sen1Floods11 dataset has been developed by Bonafilia et al. [193] to support the
training and validation steps of DL algorithms for flood detection and mapping based
on SAR imagery. It consists of 4831 labeled patches, each sized 512 × 512, encompassing
the whole globe and covering 11 flood events at a spatial resolution of 10 m. In addition
to capturing flooding events, the dataset also includes permanent water bodies. The
majority of the patches (namely, 4370) were labeled automatically by means of simple
classification algorithms and can be used as weakly supervised training data, while the
remaining ones were hand-labeled and can be utilized for a refined training, as well as
for testing and validation purposes. The Sen1Floods11 dataset is publicly available at
https://github.com/cloudtostreet/Sen1Floods11 (accessed on 21 January 2024) along with
training and evaluation codes provided by the authors.

https://github.com/cloudtostreet/Sen1Floods11
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Table 2. Open SAR datasets.

Dataset
Website

(Accessed on 21
January 2024)

Ref. Data Patches Coverage Classification
Method

Sen1Floods11

https:
//github.com/
cloudtostreet/
Sen1Floods11

[193] dual-pol S1,
13-band S2 4800+ 512× 512 global

Automatic labeling
of 4300+ patches;

hand-labeling of the
remaining ones.

S1S2-Water
https:

//zenodo.org/
records/8314175

[186]

dual-pol S1
GRD IW,

6-band S2 L1C,
DEM

75000+
256× 256 global

Semi-automated
labeling based on

NDWI thresholding
and manual
refinement.

S1S2-Flood
https:

//zenodo.org/
records/8314175

[186]

dual-pol S1
GRD IW,

6-band S2 L1C,
DEM

38000+
256× 256 global

Semi-automated
labeling based on

NDWI thresholding
and manual
refinement.

Sen12-Flood
https://clmrmb.

github.io/SEN12-
FLOOD

[121]
dual-pol S1

GRD IW,
12-band S2 L2A

5600 S1; 3600 S2 Africa, Iran,
Australia

Binary
flood/no-flood

information derived
from CEMS; no

pixel-level
annotation maps.

UNOSAT https://unosat.
org/products [105] VV S1 GRD IW 58000+

256× 256
Eastern Africa,

South-East Asia

Automatic
thresholding with
manually selected

threshold and hybrid
manual–automatic

refinement.

CEMS
https:

//emergency.
copernicus.eu/

[194] S1 GRD IW Continuous
update global

Ensemble processing
with three

independent
automatic detection

algorithms.

Permanent water samples are derived from the JRC surface water dataset owing
to its high accuracy, whereas flooding data were retrieved from the Dartmouth Flood
Observatory [195]. More specifically, 11 flooding events were selected to be covered by both
Sentinel-1 and Sentinel-2 with a temporal separation up to 2 days. Notably, among these
events, five events had both SAR and MS images acquired on the same date, four events
had a temporal separation of within one day from each other, and the remaining two had
acquisitions within a two-day window. The whole dataset has been resampled to a spatial
resolution of 10 m and to a consistent coverage area. It encompasses dual-polarization
(VV + VH) S1 and 13-band S2 data. Data relevant to a single permanent water scene or
flood event were stacked in a single image, along with a reference flood map derived
from the S1 VH band using a dynamic Otsu’s thresholding, as it maximizes the separation
between the flooded and non-flooded classes [53,193]. A smoothing algorithm is applied
to VH images as a preliminary step to reduce speckle effects. Similarly, a thresholding
is applied to Normalized Difference Vegetation Index (NDVI) and Modified Normalized
Difference Water Index (MNDWI) indices images to derive the S2 reference maps. For
each event, the observation area is manually partitioned into non-overlapping 512 × 512
patches. Hand-labeling of S1 VH data is carried out by analysts with the support of two
false color S2 compositions that maximize water/non-water contrast and the reference
water map derived from S2 data. For accurate training, validation and testing purposes,
the hand-labeled patches are randomly selected in a 60-20-20 dataset.

https://github.com/cloudtostreet/Sen1Floods11
https://github.com/cloudtostreet/Sen1Floods11
https://github.com/cloudtostreet/Sen1Floods11
https://github.com/cloudtostreet/Sen1Floods11
https://zenodo.org/records/8314175
https://zenodo.org/records/8314175
https://zenodo.org/records/8314175
https://zenodo.org/records/8314175
https://zenodo.org/records/8314175
https://zenodo.org/records/8314175
https://clmrmb.github.io/SEN12-FLOOD
https://clmrmb.github.io/SEN12-FLOOD
https://clmrmb.github.io/SEN12-FLOOD
https://unosat.org/products
https://unosat.org/products
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
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The authors in [193] tailored their dataset to report degradation in flooding detection
accuracy when networks trained exclusively on permanent water bodies images were
applied to flood events. The Sen1Floods11 dataset has been exploited in [196] to test a
modified UNet architecture and to investigate the fusion of S1 and S2 data. However, it
is worth noting that Bereczky et al. [197] reported issues of this dataset related to spatial
autocorrelation of the samples.

5.2. S1S2-Water/Flood

The S1S2-Water is a global dataset conceived for the semantic classification of water
bodies in S1 and S2 imagery [186]. It comprises over 100,000 non-overlapping patches, each
sized 256 × 256, for each sensor. Each patch is complemented by a corresponding DEM tile
derived from the Copernicus DEM and quality-controlled binary water mask, as well as
other metadata. The data samples cover the entire globe and are available for download at
https://zenodo.org/records/8314175 (accessed on 21 January 2024) along with the code of
the method proposed in [186].

The S1S2-Water has been conceived to comply with the most recent guidelines for
constructing meaningful benchmarking datasets [198]. These guidelines include diversity
(in terms of appearance, size, shape and orientation), richness (in terms of image features)
and scalability (i.e., the capability of expanding and updating the dataset).

Observation areas are selected via a stratified random sampling procedure to ensure
data variety in terms of climate, season, atmospheric, land cover and topographic condi-
tions. The whole dataset consists of 65 patches spreading across 29 countries and covering
18 landcover types, from May 2018 to November 2020. The dataset is divided into training,
validation and test sub-collections in a fixed manner for reproducibility and transparency
purposes. Data format follows the Open Source standards. Each patch consists of a duplet
of S1 Ground Range Detected (GRD) Interferometric Wide (IW) swath data and S2 L1C
images, associated with the water annotation mask, elevation and slope layers as well as
other metadata. The sample covers an area of 100 km × 100 km at a spatial resolution
of 10 m. The temporal separation between S1 and S2 data is 1 day on average, with a
standard deviation of 4 days, to ensure consistency between the S1- and S2-based water
masks. In addition to the dataset, the authors also provide a Python package to further tile
the samples into smaller patches according to user needs, thus increasing the flexibility of
the dataset. As stated by the authors, a non-overlapping tiling in 256 × 256 patches results
in 75,000+ images for training, validation and testing.

The S1S2-Water dataset has some known limitations [186], namely the restricted
availability of samples acquired under challenging atmospheric conditions (e.g., dense
cloud cover, haze, or smoke) and with specific background classes (e.g., urban, bare soil,
snow/ice). Additionally, it covers only permanent water bodies, while flooding events are
specifically covered by S1S2-Flood [186]. This latter dataset might be used to train DL-based
algorithms on floods only or to train the network on the wider S1S2-Water dataset and,
then, test the detection accuracy on flooded areas, or any hybrid approach. The sensitivity
of the network detection performance against the type of surface water training dataset is
explored in recent works, e.g., [186,193].

The dataset covers 12 flooding events spread over the globe, occurring between
August 2016 and September 2019. A fixed (4, 6, 2) splitting of the events is applied for
training, testing and validation, respectively. Similarly to S1S2-Water, the S1S2-Flood
dataset comprises S1 GRD and S2 L1C images along with quality-checked water mask,
elevation, slope and other metadata. The temporal separation between SAR and MS
acquisitions is limited to one day as well. In addition, the annotation procedure is the
same one adopted in the S1S2-Water dataset and, notably, does not rely on the Copernicus
Emergency Management Service (CEMS). Indeed, CEMS-annotated products are derived
from very high-resolution SAR and MS data and, therefore, the direct adoption of the
binary water masks derived from such data in the dataset might have led to inconsistencies
between the SAR and MS data and the final labeled product due to the different remote

https://zenodo.org/records/8314175
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sensing sources. Additionally, CEMS is devoted to rapid mapping services and, therefore,
production time is typically of higher priority compared to annotation quality.

Both S1S2-Water and S1S2-Flood datasets are provided as Cloud Optimized GeoTIFF
that, as opposed to standard GeoTIFF, allows for downloading also independent image
subsets instead of the whole scene only. S1 images comprise both VV and VH polarization
channels, and geometric and radiometric calibration preprocessing is applied. From the
S2 images, only the blue (B), green (G), red (R), near infrared (NIR), shortwave infrared
I (SWIR1) and II (SWIR2) are extracted and used for flooding detection. The annotation
procedure starts by applying a semi-automated binary classification scheme based on
NDWI, followed by an extensive manual refinement step carried out by three remote
sensing experts, which corrects for minor discrepancies occurring in highly dynamic water
regimes, where also a time separation of a few hours between multiple satellite acquisitions
might lead to incompatible water masks.

5.3. Sen12-Flood

The Sen12-Flood [121,199] (https://clmrmb.github.io/SEN12-FLOOD (accessed on
21 January 2024)) is another dataset that provides S1 and S2 patches for different floods.
It has limited spatial and temporal coverage, with observation areas situated in Africa,
Iran and Australia. The acquisition time period spans from December 2018 to May 2019.
Sen12-Flood expands the MediaEval 2019 dataset [200], which only contains S2 images
(12 bands, 10 m spacing, Level 2A) acquired on the same areas, by including also S1 SAR
data (IW, dual-pol VV + VH, GRDH, 10 m spacing). Remarkably, the dataset comprises
over 400 time series with a number of S1 and S2 images ranging from 10 to 58 and from
4 to 20, respectively. On average, each time series consists of 14 SAR images and 9 MS
images [121]. It is worth noting that, owing to the availability of time series covering
a specific event, the Sen12-Flood dataset can be exploited for validation and testing of
multi-temporal detection approaches.

S1 patches are pre-processed with radiometric calibration and terrain correction using
SRTM DEM. Since the observed scenes may or may not refer to a flood event, each image is
accompanied by a binary flood/non-flood information derived from CEMS. Accordingly,
no pixel-level annotated maps on flooded areas are available in this dataset. The rate of
occurrence of flooding events within the time series is 40% and 47% in S2 and S1 imagery,
respectively [121].

5.4. UNOSAT

UNOSAT [105] is a fully open source dataset of S1 images (IW, VV, L1 GRD, 10 m
spatial spacing) acquired over flooded areas in eight countries of Eastern Africa and South-
East Asia and covering the time period from August 2015 to January 2020. The dataset
consists of 15 images with corresponding quality-checked flooding annotation maps. Due
to the large image size, a tiling procedure is applied, and a total of over 58 000 patches, each
sized 256× 256, is obtained. Radiometric calibration, speckle filtering and orthorectification
are applied in this order to the S1 images as preprocessing steps.

Flood labeling is carried out by a thresholding method, where multiple manually
selected thresholds are applied. In order to reduce false alarms due to speckle noise and
increase detection accuracy, the obtained annotation maps undergo additional refinement
steps consisting of both manual refinement by experts and automatic processing with
Majority Filtering and Focal Statistics methods. Among the multiple final maps, the most
accurate one is selected by an analyst with the support of external ground-truth and pre-
flood information on the location of permanent water bodies, which are finally filtered
out from the flood map. Such a detection workflow strictly relies on human experience
and expertise and, therefore, potential human bias must be considered when using the
dataset, especially in challenging areas, such as areas with strong geometrical distortions
(i.e., shadowing, layover) and strong topography (hilly and mountainous areas); dense
urban areas and low-backscattering areas (e.g., roads, dry soil) might impair detection

https://clmrmb.github.io/SEN12-FLOOD
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accuracy as well. Notwithstanding, the analyses carried out in [105] suggested a 5%
lower bound on the variability of the labeled data. The UNOSAT dataset is available at
https://unosat.org/products (accessed on 21 January 2024).

5.5. CEMS

CEMS (https://emergency.copernicus.eu/ (accessed on 21 January 2024)) is a service
based on remote sensing data and the data cube paradigm provided within the EU’s Coper-
nicus Programme for supporting fast emergency response and disaster risk management
worldwide [194]. It aims at filling the gap of providing continuous and global mapping
of natural and man-made disasters. To this end, a number of disaster-related products
and information derived from satellite imagery acquired by the Sentinel constellation is
delivered, among which are delineation maps of flooding events through the Global Flood
Monitoring (GFM). To enable a rapid mapping of flooded areas in near-real time and at a
global scale, the remote sensing data acquired by S1 are analyzed and processed seamlessly
to detect potential flooded regions and provide corresponding delineation maps. As an
additional service, on-demand mapping of ongoing disasters based on users’ requests is
provided as well.

The adoption of the data cube paradigm enables relevant benefits for users and
researchers, such as the possibility to access historical disaster data and S1 time series
in the observation area that can support calibration/validation activities, as well as the
discrimination between permanent water and flooded areas.

The flood extent maps are derived via an ensemble processing based on three in-
dependent and well-assessed flood detection algorithms working on SAR time series,
namely [19,61,201], which have been specifically optimized to process S1 data. The final
flood map is derived through a pixel-based majority voting system: the pixel under test
is classified as flooded if at least two algorithms classify it so. The ensemble approach
should ensure adequate robustness and accuracy of the service. In addition to conven-
tional delineation maps, the ensemble procedure implemented in CEMS offers a pixel-level
likelihood estimation of the flood area extent as well as an exclusion mask indicating the
regions where the detection is prevented due to hampering factors, e.g., strong geometric
distortions, urban areas, vegetation. An analysis of different ensemble approaches for
likelihood estimation in CEMS products is carried out in [202].

5.6. Other Datasets

Many other relevant dataset and services based on SAR imagery have been developed
for classification applications, even though not specifically oriented to flooding detection.
The binary water masks provided, if any, might be fruitfully exploited as ground-truth data
for calibration/validation activities. Some of these resources are briefly discussed below.

• SEN12MS [203] consists of over 180,000 256 × 256 labeled patch triplets (Sentinel-
1 dual-pol SAR, Sentinel-2 MS, MODIS land cover) covering all the continents and
seasons. However, SEN12MS suffers from some issues when applied to flood detection
applications. First, variability of water class is not specifically accounted for. Indeed,
it is primarily designed for image fusion and landcover mapping applications and
includes also some permanent water data, but they represent a negligible quote,
and no flood events are present. Additionally, annotated maps are derived from
an independent source w.r.t. the remote sensing one and at a much coarser spatial
resolution, up to 500 m. This prevents an adequate exploitation of the dataset for
high-resolution mapping. A picture of the global and seasonal distribution of the
dataset can be found in ([203], Figure 3). The patches are stored as multi-channel
GeoTiff images and require about 420 GByte of storage. The SEN12MS dataset is
shared under the open access license CC-BY and is available for download at https:
//mediatum.ub.tum.de/1474000 (accessed on 21 January 2024).

• The WorldFloods dataset comprises bundles of S2 images with corresponding pixel-
level water extent area maps covering 119 flood events distributed over the entire

https://unosat.org/products
https://emergency.copernicus.eu/
https://mediatum.ub.tum.de/1474000
https://mediatum.ub.tum.de/1474000
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globe and occurring between November 2015 and March 2019 (https://gitlab.com/
frontierdevelopmentlab/disaster-prevention/cubesatfloods (accessed on 21 January
2024)) [204]. It contains over 400 flood delineation maps at 10 m resolution gathered
from three independent sources, namely CEMS, UNOSAT and the Global Flood Inun-
dation Map Repository (https://sdml.ua.edu/glofimr/ (accessed on 21 January 2024)).
They were generated using either active (mostly) or passive remote sensing satellites
and by either a semi-automatic procedure or manually by photo-interpretation tech-
niques. Even though this dataset cannot be directly adopted for training neural
networks based on SAR imagery, the large amount of available water masks could be
used for cal/val operations. However, it should be emphasized here that the maps
have not been validated through ground measurements and that the manual inter-
vention as well as potential temporal misalignments between the acquisition of the
original remote sensing image and the S2 one might lead to inaccuracies.

• The European Commission Joint Research Centre (JRC) surface water dataset pro-
vides observations of surface water on a monthly basis and at 30 m resolution using
MS Landsat imagery [205]. It offers highly accurate labeled data for permanent
water, with commission and omission error rate <1%, while the accuracy on all
other water classes, including flooding events, is much lower [205] due to cloud
coverage sensitivity and the limited temporal extent of floods. Here, permanent
water refers to samples classified as water in the whole time period of the dataset
(1984–2018). Even though this dataset is not specifically designed for flood mapping,
the availability of permanent water maps can be exploited in support of permanent
water/flood discrimination.

6. Discussion

Flood mapping is one of the first and main Earth observation applications of SAR sen-
sors, which are particularly well suited due to their ability to acquire images independently
of weather and illumination conditions. The literature on the topic is very rich and covers
different approaches, ranging from traditional image processing [18,19,72] to contemporary
ML [116,122] and DL solutions [103,105], with the latter becoming more and more popular
due to the increasing availability of computational power and training datasets [186,193].
In contrast with other approaches, the probabilistic one requires additional information
about the a priori flooding/non-flooding probabilities, which can have a major impact
on the reliability of the algorithm, even though the maximum uncertain scenario, i.e.,
equal prior terms, has been demonstrated to lead acceptable performance in heterogeneous
scenarios and is therefore a reasonable default condition, especially in near-real-time oper-
ating conditions where adequate a priori knowledge of the environmental conditions is
hardly available [20].

The literature review revealed that the landscape is dominated by spaceborne applica-
tions. Indeed, the exploitation of airborne sensors or unmanned aerial vehicles (UAVs) is
rare. This is due to the risks connected with flights in adverse weather conditions, typical
of flood events, unsuitable response times and, in the case of UAVs, the power equipment
necessary to produce the SAR pulse, which is reserved for custom configurations. For
these reasons, only few papers utilizing these platforms have been produced. The inter-
ested reader can refer to [148,206,207] for airborne SAR applications and to [208,209] for
UAV SAR ones. The joint exploitation of UAV SAR data and spaceborne ones has been
discussed in [210,211].

As a general comment, the maturity of the literature is testified by the availability
of several commercial services inspired by the scientific community. As an example, the
HASARD algorithm implemented in the ESA Hydrology thematic exploitation platform
is based on the solution proposed by Chini et al. [61]. The WASDI platform exploits
the FloodSENS solution [212], which is based on a UNet architecture. ML methods are
extensively exploited by Iceye company for mapping floods at a global scale [213]. The
interest of the industry and governments is a driver for the development of new algorithms

https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods
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and techniques that, inevitably, contribute to the increase of the knowledge in the field.
However, as argued by Schumann [214], there are issues related to the accountability
of the products, since validation and uncertainty assessments are not always conducted
thoroughly. Indeed, as discussed in [215], while there are several good reasons to overlook
uncertainty analysis, the provisioning of information about the accuracy of the products is
fundamental, as they could be used by decision makers in emergency response [216].

In this regard, two further aspects seem to be crucial, i.e., the real time and the
interoperability between different sensors. Indeed, these aspects are strictly connected. The
current wide availability of platforms allows for acquiring multiple images of flooded areas
in a very short time after the event, thus enabling its continuous monitoring. However,
this will be possible only with the exploitation of images acquired at different frequencies.
This introduces significant pre-processing challenges concerning geometric co-registration,
due to reduced data cross-correlation, and images cross-calibration [217]. Some studies
have been proposed in the literature concerning the exploitation of multi-modal datasets
for flood mapping [218,219], but more research is needed to deploy robust methodologies
suitable to be transferred into operational environments.

The problem of dataset validation is also crucial in the framework of DL architectures,
which typically require a significant amount of labeled data for network training. It is
worth mentioning that most flood-related products of the CEMS are obtained from SAR
imagery, which is a well-established technology for rapid mapping of floods. However,
such products are derived with a semi-automated procedure, where the role, relevance and
impact of human operators are neither clear nor quantitatively assessed [186]. Additionally,
it should be considered that CEMS is primarily conceived for near-real-time operations
to support an efficient and quick response by local authorities. Accordingly, timeliness of
the availability of the damaged area map is crucial and of higher priority with respect to
detection accuracy. This point should be carefully kept in mind when using CEMS products
for calibration, validation and testing purposes.

Additionally, a proper validation procedure should be built directly into the product
generation cycle and provided to the end user so to allow for a meaningful usage of flooding
detection algorithms and outputs. Even though validation through ground surveys might
be expensive and likely difficult on large scales, there is a number of alternative approaches
to derive delineation maps to be used as reference data with high reliability level, such as
inter-comparison of independent multi-sensor flooding products. As a matter of fact, a
large amount of remote sensing datasets with associated annotated flood delineation maps
are now available and offer an unprecedented support to comprehensive validation, testing
and sensitivity analyses.

In addition to an accurate validation phase, the selection of the operating frequency
is a further key aspect to be carefully addressed depending on the features of the flooded
region. Indeed, phenomenological aspects of SAR imaging of floods are mostly related
to smooth surfaces scattering, thus causing inundated areas to appear as dark areas over
the SAR image. However, the contrast between water surfaces and soils is roughness-
dependent and is a function of the wavelength and of the incidence angle. According to
the Rayleigh criterion [220], this makes some configurations more suitable than others to
this application.

According to the Rayleigh criterion, surfaces can be considered smooth if h < λ/8 cos θ,
where h is the standard deviation of the surface height, θ the incidence angle and λ the
wavelength [220]. A surface with the same roughness appears rougher (thus exhibiting a
higher backscattering) at short wavelengths than at long ones [221]. This means that soils
tend to appear brighter using short wavelengths, thus maximizing the contrast against
the standing water surface, which is usually much smoother than the soil one. Such an
effect depends on the roughness of the terrain and of the water, which can vary due to
wind intensity. This situation is depicted in Figure 6. The graphs represent, for different
wavelengths and for HH polarization, the evolution of the ratio R in dB between the
backscattering of the soil over the backscattering of the water against the incidence angle θ.
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In particular, the different graphs have been obtained using the Small Perturbation Method
(SPM) EM scattering model, fixing the roughness of the terrain and varying that of the
water, from gently rough to very rough. A fractal fractional Brownian motion (fBm) model
has been used for roughness description [22,222]. The detail of the simulation parameters
is reported in Table 3.

Table 3. Parameters used for roughness and dielectric characterization of terrain and water.

Simulation Parameter Terrain Water

ε/ε0 4 40
σ [S/m] 0.001 0.1

H 0.7 0.75
0.01, Figure 6a

s 0.05 0.02, Figure 6b
0.03, Figure 6c

(a) (b) (c)

Figure 6. Evolution of the ratio R in dB between the backscattering of the soil over the backscattering
of the water at different wavelengths against the incidence angle θ. For all the graphs, the surface
roughness of the soil is fixed while the one of the water varies from (a) gently rough to (b) moderately
rough and (c) very rough.

From the graphs, it arises that the backscattering ratio decreases as the roughness of
the water increases. On the other side, the reduction of the wavelength is beneficial, as the
contrast using the X-band is higher than that obtainable by exploiting larger wavelengths.
This is testified by the literature, in which the usage of short wavelengths, basically cor-
responding to the X-band and the C-band, is dominant [13]. According to Figure 6, in
bare soil conditions, the worst situation is given by the exploitation of L-band sensors, for
which the backscattering ratio is about 30% lower than the one obtainable using higher
frequencies yet at moderate surface water roughness within the most common incidence
angle range, i.e., between 20 and 30 degrees.

However, as noted in Section 3.7.1, the situation is reversed whenever the detection
of floodings beneath vegetation cover is of interest: in this case, the higher degree of
penetration of L-band signals is, in general, a significant advantage. However, in this,
as well as in other challenging situations, the flood detection should be appropriately
supported by the use of multi-dimensional systems (e.g., interferometric, polarimetric)
and, whenever possible, of ancillary information. Indeed, as it has been discussed in
this work and is well recognized, presence of vegetation might drastically impair the
detection of an underlying flooded area in SAR imagery. Indeed, most of the backscattered
power for a vegetated area at X-band is due to the upper tree layer, whereas in C-band
is due to foliage volume scattering and at L- and P-band is due to the trunks and to
the underlying surface [223]. However, except for the fraction of power backscattered
after a double-bounce mechanism, the water plays a small role in the received power
due to the specular reflection. Such considerations suggest that the exploitation of SAR
multi-frequency data encompassing imagery at lower frequency (P-, S-, L-band), possibly
supported by multi-component microwave scattering models, could be a valid solution for
a reliable detection and extraction of the extent of surface water beneath vegetation. Even
though the availability of multi-frequency and low-frequency SAR data is still limited to



Remote Sens. 2024, 16, 656 29 of 39

few missions, see, e.g., SIR-C/X, AIRSAR, it is expected to increase in the near future with
availability of data acquired by the L-band missions Tandem-L and SAOCOM and of the
multi-frequency S/L-band NASA-ISRO NISAR mission.

7. Conclusions

This paper presents a reasoned review of flood detection using SAR imagery. Main
detection approaches, including thresholding and ML-based methods, have been discussed
along with the common performance metrics adopted for assessing the reliability of the
delineation maps. Publicly available SAR datasets with corresponding reference labeled
data that can be used for performance assessment as well as for training ML algorithms
have been presented. Situations in which SAR-based flood detection is still challenging,
such as in the presence of vegetation, topography and urban areas, have been discussed.
We conclude this review with some future perspectives on the topic.

The first point concerns the development of new SAR missions in support of flood
detection. Indeed, the recent wide availability of data is boosting the design of new
detection techniques, thus contributing significantly to the development of the topic. In
this regard, the launch of the platform Sentinel-1 in 2014 marked a breakthrough, as it was
the first spaceborne SAR mission to make data available systematically and free of charge
to all users. Consequently, since then, the literature was strongly polarized towards the
exploitation of such data. However, the recent introduction of small satellites, providing
high-resolution data at relatively low cost, is feeding a fruitful literature, exploiting images
acquired by sensors like HISEA-1 [224], X-2 [213,225] and Cnn [226], in which the detailed
mapping and/or the low revisit times are crucial aspects.

Secondly, as previously discussed, validation and uncertainty assessment of devel-
oped techniques is not addressed properly in the literature. To this end, it is crucial to
develop tools allowing for fair comparison and comprehensive validation of the techniques
proposed in the literature, i.e., benchmarking frameworks in which, for the different sce-
narios, the performance of the diverse methodologies can be measured against the same
reference data and metrics. In this regard, some works have been proposed [157,227] as
a result of isolated initiatives. However, the relevance of the topic would deserve a more
organic work and a joint effort of space agencies and the scientific community with the
purpose to provide the interested stakeholders with independent and unbiased metrics
for the selection of the more suitable solutions to be implemented in specific operational
environments. As a matter of fact, standard procedures, metrics and data as well as bench-
marking frameworks for assessing the performance of flood high-level products are still
lacking and, as mentioned above, should represent an urgent research activity to be carried
out in the near future.

The design and implementation of shared validation strategies might also support the
reproducibility of results and the assessment of the model/algorithm accuracy through fair
comparisons with competing approaches. Indeed, this is a key issue in scientific activities
and might be carefully addressed when developing new techniques. To this end, some good
practices might be followed, which are reported below for the specific case of SAR-based
flood detection:

• Making developed codes and data freely available to the scientific community through
personal websites or sharing platforms, e.g., IEEE DataPort, Remote Sensing Code
Library of IEEE Geoscience and Remote Sensing Society, Papers With Code, GitHub.
Codes should be documented at best in order to ease usage from other scientists.

• Fix and apply a random seed to all the workflow components involving randomness,
e.g., data shuffling, data augmentation, model weight initialization.

• Enforcing deterministic GPU floating point calculations, as conducted, e.g., in [186].

A last comment can be made on the exploitation of other remote sensing technologies
in support of SAR-based flood detection, especially in challenging scenarios. Indeed, in
order to detect flooded areas beneath vegetation, a valid aid might come from Global
Navigation Satellite System-Reflectometry (GNSS-R), which implements a passive bistatic
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radar observation system using GNSS signals of opportunity [228]. In the last two decades,
GNSS-R is gaining increasing interest in the remote sensing community owing to the global
coverage achieved with low-cost and low-power receive-only platforms. More recently, it
began to be systematically investigated in the frame of emergency response to floodings,
where it offers relevant advantages with respect to SAR, including its appealing revisit
times, L-band operating frequency and multi-static acquisition geometry. As a matter of
fact, it provides means to monitor the events from a complementary perspective compared
to SAR, especially in areas characterized by significant vegetation cover, which negligibly
impacts L-band GNSS-R signals. Indeed, as opposed to conventional monostatic SAR,
GNSS-R operates in a specular reflection geometry, where the power scattered by the
underlying water represents the main signal source. Therefore, L-band GNSS-R observ-
ables exhibit high sensitivity to flooded areas, even if they are obscured by forest canopy,
bringing additional and complementary information about the illuminated surface with
respect to monostatic SAR. For all such reasons, GNSS-R is a good candidate to fruitfully
support inland water detection and extraction from single- and multi-channel SAR imagery.
Additionally, the circular polarization of GNSS signals is inherently suited to advanced
imaging modalities, such as compact polarimetry. Within this context, the complementarity
of GNSS-R and SAR technologies might be fruitfully exploited in challenging flooding
situations, such as urban and highly vegetated areas, by means of synergic data processing,
e.g., data integration/fusion. First insights in this direction are discussed in [229].
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