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Abstract: Monitoring soil organic carbon (SOC) typically assumes conducting a labor-intensive soil
sampling campaign, followed by laboratory testing, which is both expensive and impractical for
generating useful, spatially continuous data products. The present study leverages the power of
machine learning (ML) and, in particular, deep neural networks (DNNs) for segmentation, as well
as satellite imagery, to estimate the SOC remotely. We propose a new two-stage pipeline for remote
SOC estimation, which relies on using a DNN trained to classify land cover to perform feature
extraction, while the SOC estimation is performed by a different ML model. The first stage is an
image segmentation DNN with the U-Net architecture, which is trained to estimate the land cover
for an observed geographical region, based on multi-spectral images taken by the Sentinel-2 satellite
constellation. This estimator is subsequently used to extract the latent feature vector for each of
the output pixels, by rolling back from the output (dense) layer of the U-Net and accessing the last
available convolutional layer of the same dimension as our desired output. The second stage is
trained on a set of feature vectors extracted at the coordinates for which manual SOC measurements
exist. We tested a variety of ML models and report on their performance. Using the best extremely
randomized trees model, we generated a spatially continuous map of SOC estimations for the region
of Tuscany, in Italy, with a resolution of 10 m, to share with the researchers as a means of validating
the results and to demonstrate the efficiency of the proposed approach, which can can easily be scaled
to create a global continuous SOC map.

Keywords: deep neural networks; land use; image segmentation; U-Net; LUCAS; CHLSOC; CORINE;
environment; artificial intelligence

1. Introduction

Soil represents a complex mixture of organic and inorganic constituents with different
physical and chemical properties, which vary significantly between locations and even
within a single field [1]. It is a key component of terrestrial ecosystems, as it facilitates the
circulation of energy and materials between the atmosphere and the biosphere [2].

Soil health can be defined as the ability of the soil to function effectively as a component
in a thriving ecosystem [3]. In order to ensure effective monitoring and enable adequate
assessment of the condition of the soil, one needs to select appropriate indicators of its
condition. The indicators should meet certain criteria: they should be accepted by experts
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as valid; their measurement should be carried out routinely and on a large scale; they
need to be understood and accepted by the general population in order to achieve a
global impact [4].

Soil organic carbon (SOC) content is a widely accepted indicator of soil quality, as SOC
plays a central role in various soil functions [5]. SOC measurement is a common component
of soil property analysis. Furthermore, carbon as an element is well known and recognized
by the global population [6]. All of this makes SOC a valuable indicator for assessing and
monitoring changes in soil health.

The amount and quality of SOC are closely related to key soil functions, including
nutrient mineralization, aggregate stability, air and water permeability, water retention,
and flood control ability [5]. These soil functions are, in turn, related to a wide range of
ecosystem attributes. For example, high SOC levels in mineral soils tend to correlate with
high plant productivity, which has a positive effect on wildlife habitat, distribution, and
population size [7]. Through the protection and increase of stored SOC, one can protect or
increase soil fertility, reduce soil erosion, and reduce habitat conversions [8].

In addition to its importance for the soil, SOC has the potential to help neutralize the
negative effects of increasing concentrations of CO2 in the atmosphere (which significantly
contribute to global warming and climate change [9]) and help ensure food security around
the wold [10].

While SOC plays a key role in mitigating climate change by acting as a carbon sink,
the historical loss of carbon from this pool [11] has been significant, and the potential for
future accelerated loss under warming scenarios is a serious threat [12,13].

As a natural solution to fight climate change, strategies that involve conserving existing
SOC stocks (avoidance of losses) and replenishing stocks in carbon-depleted soils [14] can be
used as a means of achieving the United Nations Sustainable Development Goals (UNSDG),
the goals of the United Nations Framework Convention on Climate Change (UNFCCC),
and the United Nations Convention on Combating Desertification (UNCCD) [15].

Despite the scientific consensus about the potential and myriad benefits that can be
brought about by the development and application of soil organic carbon storage and
sequestration techniques, they remain limited in practice. A fundamental issue affecting
the adoption of such methodologies is the lack of accurate and cost-effective ways of
measuring SOC content in the top layer of the soil (as this is most affected by land use,
agricultural practices, etc.).

When it comes to measuring global SOC stocks, many estimates have been published
over the past decades, and most studies report a global SOC estimate of approximately
1500 Pg of carbon (Pg C), but there is considerable variation among estimates (ranging
from 504 to 3000 Pg C) [16].

The large variation in the estimates of global SOC stocks arises from differences
in the sampling period, the intensity and spatial resolution of soil profile databases, as
well as from differences in approaches to calculating the estimates themselves [17]. The
uneven distribution of georeferenced soil profiles around the world is another reason for
such a large variation in the estimates [18]. In addition, there is no consensus when it
comes to including inorganic carbon, different levels of rock content [19], and the effects of
natural or anthropogenic phenomena (such as flooding, erosion, fire, soil fertilization, and
plowing [20]) in carbon stock assessments.

If we are to move forward in understanding and managing SOC for the benefit of
humanity as a whole, effective and efficient methodologies for continuous monitoring of
SOC on a global scale are needed.

Unfortunately, traditional methodologies employed in monitoring SOC tend to be
labor-intensive, costly, and impractical [21]. These procedures entail comprehensive soil
sampling campaigns, subsequent laboratory testing, and extensive data processing [22] to
obtain what can truly be labeled as “ground truth” data.

In this study, we aimed to determine the soil organic content (SOC) of agricultural
fields using Sentinel-2 satellite imagery, which provides spatially continuous and cost-
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effective data about the state of the Earth’s surface. To achieve this, we used machine
learning techniques, which require a dataset of satellite images and corresponding SOC
measurements collected through field sampling, on which to train and validate our models.

2. Background and Related Work

In recent years, remote sensing has emerged as a particularly effective method for
tracking agricultural and environmental changes [23–26]. The technology relies on diverse
sensors and platforms, such as satellite constellations and Unmanned Aerial Systems (UAS)
to gather data, which are then typically processed using advanced algorithms, often in the
realm of machine learning (ML) and deep learning (DL) [27].

Deep learning represents a specialized subset of machine learning that excels at learn-
ing from large, unstructured datasets using complex, layered neural networks. While
traditional ML algorithms work well with smaller, structured datasets and often require
manual feature selection, DL algorithms automatically extract features and patterns, es-
pecially from data like images and speech. This makes deep learning more powerful
for certain applications, but it requires more computational resources and is often less
interpretable than conventional machine learning techniques.

The ongoing advancements in remote sensing represent a promising alternative to
traditional SOC monitoring. Toth and Jóžków provide a fairly recent review of different
remote sensing platforms and sensors available today [28].

In the study presented here, the focus is on inferring SOC content from satellite data
only. Most studies focused on determining SOC, however, rely on data (spectrograms) col-
lected from hand-held sensors. While the accuracy achieved in this way is typically higher
than using satellite imagery, such approaches can hardly be scaled to enable continuous
monitoring of carbon stocks on a global level.

Gomez et al. [29] presented an early, albeit limited study (based on just 146 soil sam-
ples), which compared the results that can be achieved applying ML methods to in-the-field
Vis–NIR measurements vs. applying them to hyperspectral satellite imagery. The images
were obtained from the Hyperion sensor on the EO-1 satellite, which is, unfortunately, no
longer functional, and there is no longer an active hyperspectral satellite that captures im-
ages in the VNIR–SWIR region, making it hard to replicate their work. In addition to trying
to model the whole dataset used in the study, the authors tried focusing on specific land
cover classes (cropping soils, pasture soils) and opted for a partial least-squares regression
as their SOC predictor. Gomez et al. observed that the SOC in their cropping soils ranged
between 0.54% and 1% and was lower than in the pastures, where SOC was in the 1.08% to
5.1% range. They evaluated their methodology based on R2 and the Root-Mean-Squared
Error (RMSE). The models based on satellite imagery did not perform well for cropping
soils (R2 of 0.04 and RMSE of 0.11) and lagged significantly behind the hand-held-sensor-
based models in terms of R2 (R2 of 0.16 and RMSE of 0.1). However, when evaluated on
pastures and the whole dataset, the two approaches achieved comparable and much better
performance. The approach based solely on satellite data at their native resolution achieved
an R2 of 0.51, but the RMSE was quite high (0.73% SOC). Thus, the study showed that land
cover is very important, when it comes to modeling and estimating SOC remotely.

More recently, Wang et al. [30] tried to use ML techniques to estimate SOC stock in
the semi-arid rangelands of eastern Australia through the application of different machine
learning techniques, with a focus on evaluating the impact of considering seasonal fractional
cover on model performance. These features were used to extend other hand-crafted
features derived from satellite imagery, as well as other remotely sensed climate features
such as rainfall and temperature and data about lithology. They trained and evaluated their
models using a limited amount of soil samples (705). They used random forests (RF) [31],
Boosted Regression Trees (BRT) [32], and support vector machines (SVM) [33] to model
their data. The RF approach performed the best and achieved an R2 of 0.47 on their dataset.

Several studies tried to evaluate the effectiveness of hyperspectral data obtained from
airborne sensors and extended their findings to evaluate the expected performance of
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sensors expected to be deployed in the future [34,35]. While we focus on multispectral data
in the study presented here, it is worth noting that, albeit relying on a very limited set of
soil samples (81) obtained for a 7 km2 area in Luxembourg, 40% of which were used as a
test set, Steinberg et al. achieved a relatively high R2 (0.74) and an RMSE of 0.22% for SOC
using autoPSLR applied to hyperspectral data from an airborne sensor [35]. Once sufficient
hyperspectral data are available, the methodology we propose can easily be adapted to that
domain, leading to even better performance.

Over the last decade, deep learning has revolutionized the area of machine learning and
artificial intelligence and has become the dominant paradigm in the domain. The crucial ad-
vance over previously used methods is that the approach relies on end-to-end learning, which
allows the ML models to learn the features on which to make their decisions and estimated
directly from the raw input data, instead of relying on human-engineered features [36].

Yuan et al. provided an overview of the applications of both classical neural networks
and DL models to the monitoring of environmental parameters using remote sensing
data [37]. They showed that DL outperformed traditional ML models and has led to sig-
nificant improvements in many applications, including land cover mapping, vegetation
parameter, soil moisture, evapotranspiration, agricultural yield prediction, etc. The authors
correctly highlighted the limitation of the DL approaches, which is related to the relatively
limited amounts of training data available, as well as the potential to apply transfer learning
to circumvent this problem. They mentioned two types of transfer learning: region-based
and data-based. The first relates to pretraining on a geographical region for which ample
data are available and adjusting the model to a different region with limited data available.
In the ML community, this is usually referred to as fine-tuning. The latter is more in line
with what the meaning of transfer learning is in the ML domain and relates to transferring
the models trained on data obtained from a sensor or a group of sensors to other sensors. In
the study presented here, we use a third kind of transfer learning, common in the computer
vision community [38], where the initial model is trained on the same type of input data
(Sentinel-2), but for a different visual task (land cover classification), and is used as a feature
extractor for the final model (which performs SOC estimation in our case).

While the first application that Yuan et al. discussed was land cover, no approaches
to estimating SOC were mentioned in this study. In addition, while approaches based
on different DNN architectures were discussed (most relying on convolutional neural
networks), none were identified in the study that use the U-Net model.

Rakhlin et al., however, successfully applied U-Net with Lovász softmax loss for land
cover classification using RGB data made available as part of the DeepGlobe Challenge [39].

Yang et al. used a CNN to try to infer SOC for a central location based on input data that
covered the surrounding region [40]. The input of their model was environmental variables
combined with MODIS MCD12Q2 phenology variables. They trained and evaluated their
approach on a limited set of 733 samples, collected in Anhui Province of China. This limited
the complexity of the CNN they could use, since no transfer learning was used in the study,
but the CNN fared better than a random forest model, achieving a modest R2 of 0.26.

Emadi et al. [41] focused on Northern Iran and used a large number of input
features (105). Most were human-crafted indices extracted from Landsat-8 and MODIS
satellite imagery, but their input also included topology-related parameters, such as cur-
vature, slope, etc. Using a dataset of 1879 composite soil samples and relying on 10-fold
cross-validation, they compared the performance of several traditional ML algorithms
(support vector machines, multi-layer-perceptron, regression decision trees, random forests,
and extreme gradient boosting) with a DL model when predicting SOC. The DL model
that showed the best results in the study was a fairly simple fully connected neural net,
with seven hidden layers and 50 neurons in each of them, but it still outperformed the
other methods tested. The authors reported a comparatively large R2 value of 0.65, with an
RMSE of 0.75% SOC.

In a recent study, Castaldi et al. [42] evaluated the capability of Sentinel-2 time series
to estimate soil organic carbon and clay content at local scale in croplands. The pipeline
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they proposed relies heavily on human engineering, both in terms of the features they
derived from Sentinel-2 imagery (NDVI, NB R2, BSI, S2WI), as well as in terms of how
they were used to create the input to their machine learning models. In terms of modeling,
they did not opt for deep neural networks, but the Quantile Regression Forest (QRF)
algorithm, QRF with added longitude and latitude as covariates, and a hybrid approach,
the Linear Mixed-Effect Model (LMEM), which included the spatial autocorrelation of
the soil properties. While the latter takes spatial information into account up to a point,
their approach is essentially pixel based, which differs from the one proposed here. In
addition, the authors of the study aimed to assess the capability of their approach in a very
limited scenario, by creating and evaluating models for each of their test sites separately.
No attempt was made to create a single model that could be applied globally, or at least for
a large part of the Earth’s surface. Thus, the results they achieved could be viewed as a sort
of “blue-sky-performance”, which could be reached by a global model using Sentinel-2
images as the input. The R2 of the best of Castaldi et al.’s models ranged from 0.26 to an
impressive 0.96 for different locations, with an average R2 of 0.67. The RMSE (in % SOC)
ranged from 0.09 to 0.22 and was 0.152 on average.

3. Materials and Methods

While satellite imagery is readily available (in the case of Sentinel-2 since 2015), open
datasets containing SOC information are scarce. In this study, we focused on two such
datasets with the largest amount of SOC information within the time frame of Sentinel-2’s
operation: The Land Use/Cover Area Frame Statistical Survey (LUCAS) dataset and the
Chilean Soil Organic Carbon Database (CHLSOC).

These datasets contain tens or thousands of samples, but they are still of limited use
when it comes to training DNNs end-to-end. To circumvent the problem, we propose
to use a DNN trained on a visual task for which ample data are available (land cover
classification) as a rich feature extractor for our SOC estimator, similar to the approach
Girschick et al. used in their seminal paper [38]. Our feature extractor, however, was trained
on multispectral Sentinel-2 imagery and is based on an image segmentation architecture.

To train the feature extractor, we require a dataset providing maps of land cover
classes. We opted for a publicly available dataset of land cover (LC) data for the central
region of Slovenia. The LC data are available for the year 2019, and we paired them with
corresponding data from Sentinel-2 for the same year. The data cover a comparatively
small area of 15 km × 15 km, but since the resolution is 10 m per pixel, that corresponds to
1500 × 1500 (2.25 million) values for training and validating our feature extractor. This is
two orders of magnitude more than the number of data samples we have for SOC in our
datasets, and the LC data are in the native resolution of the Sentinel-2 sensor, while the
SOC data available are scattered over vast areas.

Since determining SOC does not make sense for some types of land cover (e.g., water
or artificial surfaces), to make the the process of generating SOC maps more efficient and
accurate, we also need a land cover dataset that that has much larger coverage than the one
used to train the feature extractor, even if the resolution is not as high.

Fortunately, Europe is the continent with the widest range of supra-national LC maps.
Plenty of detailed, high-quality datasets are now available, providing LC information for
the European continent, such as: HILDA, CORINE, PELCOM, Urban Atlas, etc. Of all the
European LC datasets, Coordination of Information on the Environment (CORINE) Land
Cover (CLC) is one of the best-known, oldest, and most-used [43]. The CLC project can be
considered the most-relevant European LUC database for several reasons, but primarily
because of its history, comprehensive coverage, method of production, and degree of
detail [43–45]. We, therefore, used CLC to post-process the maps generated by our pipeline,
making sure that the estimates are available only for land cover classes the model is trained
to handle.

Since the training data have a profound effect on the quality of our models, we provide
a brief overview of salient points for each of them.
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3.1. The Land Use/Cover Area Frame Statistical Survey

Since 2006, LUCAS has been carried out every 3 years in order to collect data on land
use and land cover across the European Union. The survey is unique in that it provides
in situ information, which means that the data are collected directly from the land itself.
The LUCAS surveys generate three types of information: (i) micro-data containing the
statistical information collected at every sample point, (ii) point and landscape photos, and
(iii) statistical tables with results aggregated by land cover and land use at a geographical
level. The micro-data collected, among other things, serve to produce, verify, and validate
the CORINE Land Cover data.

The survey consists of a two-phase area sample. In the first phase, a frame of around
1,100,000 georeferenced points (the so-called Master sample or first phase sample) is sys-
tematically selected from a 2 km2 grid covering the EU-28 territory. This frame is then
stratified according to land cover classes. The land cover for these points is classified by
photo interpretation of aerial photos or satellite images taken in 2004 and 2005. From
the Master sample, a second phase sample is then selected aiming to provide statistically
meaningful coverage for each region, but taking into account the accessibility of points for
sampling [46], e.g., LUCAS does not provide any data for points above 1500 m. Figure 1A,B
show the spatial distribution of the LUCAS 2015 and 2018 data. In the figures different
colors were used to mark sampled points for each dataset. Green for LUCAS 2015 dataset,
blue for LUCAS 2018 dataset and orange for CHLSOC dataset.

(A) Lucas 2015 (B) Lucas 2018 (C) CHLSOC

Figure 1. Spatial distribution of sampled SOC ground truth values for each of the datasets.

3.2. Chilean Soil Organic Carbon Database

The Chilean Soil Organic Carbon Database (CHLSOC) is the largest and most-
comprehensive repository of soil organic carbon (SOC) data in Chile. Created through a
collaborative effort involving 39 public and private institutions, CHLSOC represents an
unprecedented national initiative.

Constructed between May 2018 and April 2019, CHLSOC incorporates diverse data
sources, including soil surveys, publications, and unpublished research data. The database
comprises 13,612 data points, 89% of which were previously unpublished or inaccessible to
the scientific community.

CHLSOC provides valuable insights into the temporal distribution of soil data in
Chile. The date of the sample collection are available for more than 90% of the included
data, allowing researchers to explore changes in SOC over time and investigate temporal
patterns and trends. The majority of points were sampled between 2006 and 2018, with
some data dating back to 1959. There are 6900 points relevant to our study in the dataset, as
they have been collected in the time frame in which the Sentinel-2 mission was operational.

In Chile, the distribution of soil and SOC data is highly concentrated in regions that
have intensive agricultural and forestry activities, encompassing approximately 25% of



Remote Sens. 2024, 16, 655 7 of 21

the country’s territory [47]. These areas, characterized by high-quality soils and available
water resources, have experienced significant land use conversions for agriculture, forestry,
and urban development. However, beyond these regions, there is a notable scarcity of soil
data, particularly in areas with limited agricultural and forestry activities. Figure 1C shows
the spatial distribution of the CHLSOC dataset.

To facilitate research, land management, and policy-related endeavors, CHLSOC is freely
accessible for registered users to download under the Creative Commons Attribution 4.0
International Public License.

3.3. The CORINE Land Cover

Coordination of Information on the Environment (CORINE) is a database of the
European Environment Agency (EEA) and its member countries in the framework of the
European Network for Information and Observation (EIONET). Currently, the CLC datasets
are part of the European Copernicus program and EEA coordinate landscape monitoring
services for the PAN-European region. Briefly, CORINE was specified to standardize
data collection on land in Europe to support environmental development. The number
of participating countries has increase over time—currently including 33 EEA member
countries and 6 cooperating countries (EEA39) with a total area of over 5.8 km2 [48].

The first development of CORINE began in 1986 and lasted until 1998, and the first
reference year was 1990 (CLC1990). New versions are released every six years. So far, five
versions have been implemented, CLC1990, CLC2000, CLC2006, CLC2012, and CLC2018,
respectively [48,49]. CORINE maps have been traditionally obtained in vector format
through photointerpretation of satellite imagery at 1:100,000 scale. Furthermore, CORINE
mapping rules remain the same: a Minimum Mapping Unit (MMU) of 25 ha and a Minimum
Mapping Width (MMW) of 100 m (Table 1) [44].

Table 1. Evolution of CORINE.

CLC1990 CLC2000 CLC2006 CLC2012 CLC2018

Source images Landsat 4/5 Landsat 7 SPOT 4/5, IRS P6 IRS P6, RapidEye Sentinel-2,
Landsat 8

Date of satellite
image acquisition 1986–1998 2000 (+/−1 year) 2006 (+/−1 year) 2011–2012 2017–2018

Geometric accuracy ≤50 m ≤25 m ≤25 m ≤25 m ≤10 m (Sentinel-2)

CLC MMU 25 ha 25 ha 25 ha 25 ha 25 ha

CLC MMW 100 m 100 m 100 m 100 m 100 m

Location accuracy 100 m >100 m >100 m >100 m >100 m

Thematic accuracy ≥85% ≥85% ≥85% ≥85% ≥85%

Duration (years) 13 5 4 3 1.5

Number of
participating
countries

22 32 38 39 39

CLC has a detailed hierarchical nomenclature on three levels. The most-detailed level
is level 3, with a maximum of 44 categories. Level 2 and level 1 have a maximum of,
respectively, 15 and 5 categories (see Table 2). The three levels are connected to each other
since the level 1 nomenclature is a hierarchical stepwise aggregation of the level 2 and
level 3 categories [48,50].
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Table 2. Land use/land cover classification.

LULCID Name Representation (%)

1 Cultivated land 21.6

2 Forest 38.2

3 Grassland 24.8

4 Shrubland 1.9

5 Water 0.6

6 Wetlands 0.01

7 Artificial surface 12.29

Unfortunately, the thematic accuracy of CORINE (85%) is not high enough to enable its
use for training a machine learning algorithm that would reliably detect LC. We, therefore,
opted for a smaller, but more-accurate LC dataset when it comes to training the first stage
of our pipeline.

3.4. The EO-Learn Land Cover

To train the first stage of our pipeline, we used ground truth LC data that are accessible
for the territory of Slovenia and can be accessed here [51]. The entire territory of Slovenia is
divided into 940 tiles, each sized at 500 × 500 px, with each pixel corresponding to an area
of 10 × 10 m2 (Figure 2). The core of the dataset consists of satellite imagery collected by
the Sentinel-2 satellites. The country-wide reference for land use/land cover is provided. It
is available in the form of a geopackage, which contains polygons and their corresponding
labels. The labels represent the following 7 classes:

Although the classes here represented are important for the training of the LULC
stage of the model, they were not actually used as the results in our pipeline. It is also
worth noting that not all classes have the same representation in the training dataset, which
is especially evident if the geography of the region (Slovenia) is taken into account (i.e.,
mostly mountainous region, with not very many wetlands). It is, therefore, expected that
the performance of the segmentation model itself will not be balanced with regard to
the reported classes. However, we are only interested in the “knowledge” of the model
that gets encapsulated in the latent feature vectors, and do not care too much about the
actual classes.

Figure 2. The division of Slovenia into tiles.
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For each tile, general, static, and dynamic data are available. General data include
the tile dimensions, geographical coordinates, and timestamps for when the satellite im-
ages were captured. Static data encompass information on land cover, categorized into
11 possible classes (cultivated land, forest, grassland, shrubland, water, wetlands, and
artificial surface). It is assumed that the land cover either remains stable or changes very
little over the one-year interval for which the data were acquired. Dynamic data consist
of satellite imagery. Depending on the tile, there were approximately between 50 and
100 satellite images collected during the year 2019. In our training, we used a single image
per its corresponding area, selecting those that correspond to the time frame of the existing
ground truth LULC map. This time frame is the entire year of 2019; however, we selected
the month of July, because it had the least amount of cloud coverage.

3.5. Traversing the Terrain: A Machine Learning Pipeline for Soil Organic Carbon Estimation

Our machine learning model for SOC estimation consists of two stages, each of which
performs a specific function in order to produce the final estimates. The first stage involves
training a standard segmentation deep neural network (DNN) with the U-Net architecture.
This DNN is trained to estimate the land cover (LC) of an observed region based on multi-
spectral images from the Sentinel-2 satellite and a ground truth segmentation map. The
trained ANN generates an LC estimation for a region of interest (ROI). This estimation is
then used to extract the latent feature vector for each output pixel by rolling back from the
output layer of the U-Net and accessing the last available convolutional layer of the same
dimension as the output.

The second stage uses the feature vectors extracted at the coordinates for which ground
truth SOC measurements exist. Since we are primarily interested in agricultural land and
in order for the LUCAS and CHLSOC data to have roughly the same distribution in terms
of the type of plots they were sampled at, we retained from the two LUCAS datasets the
values for which the observed LC was cropland and grassland.

The pairs of feature vectors and SOC measurements were used to train an independent
ML model, which performs the actual SOC estimation. At inference time, the two stages
generate a spatially continuous dataset of SOC estimations for patches processed by U-Net.
These estimations for different patches are then stitched together to create a map of SOC
estimations for an arbitrary geographical region.

In this study, we generated and shared a sample map for the region of Tuscany, Central
Italy, with a resolution of 10 m, which is consistent with the highest available resolution of
the Sentinel-2 satellite. Tuscany covers about 22,990 km2, encompassing a diverse range of
terrains including mountains, hills, and coastal plains. Tuscany is world-renowned for its
agricultural production. Tuscany’s agricultural sector is celebrated globally for its quality
and diversity, from its wine production in Chianti to its olive groves spanning the rolling
hills. The region’s fertile soils support a broad range of other crops as well, including
grains, legumes, and vegetables, making it a cornerstone of Italy’s food and wine industry.
Given the vital role of soil organic carbon (SOC) in maintaining soil fertility and promoting
sustainable agricultural practices, Tuscany seemed a good choice to test our model on and
provide added value from our research.

3.6. Stage 1—Segmentation DNN for LC Estimation

The focus of our study is the creation of an approach able to generate a map of SOC
estimates of the same resolution as that provided by Sentinel-2 imagery, restricted to
agricultural applications. However, the amount of training data available for this task is
limited, which can hinder the performance of state-of-the-art machine learning models. In
addition, the available data sources such as the LUCAS and CHLSOC datasets are sparse,
making it impossible to use them for direct end-to-end training of machine learning models
for segmentation tasks, which are the basic technology that needs to be used to efficiently
address the problem of continuous SOC estimation.
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To overcome these limitations, we propose to use transfer learning. We first trained
a segmentation network, in our case a U-Net, to accurately predict the LC of a certain
geographical location based on Sentinel-2 imagery. Similar to Girschcik et al. [38], we then
extracted the latent features learned by the network to serve as the input to a second-stage
ML model to estimate SOC. Since the segmentation network used in the first stage preserves
the spatial relations existing in the image, this allowed us to generate spatially continuous
predictions of SOC levels for a given region of interest (ROI), taking these relations into
account and improving the accuracy of our estimates. A block diagram of the proposed
approach is shown in Figure 3.

Figure 3. Proposed approach.

To evaluate the performance of the whole pipeline, we used a combination of the
CHLSOC and LUCAS 2015 and 2018 datasets and standard metrics: the Mean Absolute
Error (MAE), Mean-Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and
the coefficient of determination (R2). The latter two provide insight into how large the error
is relative to the ground truth value and how much of the variance of the data is explained
by the model.

The U-Net Architecture

U-Net is a convolutional neural network (CNN) architecture that was developed by
Olaf Ronneberger et al. in 2015 at the University of Freiburg in Germany for biomedical
image segmentation [52]. The U-Net architecture is an improvement over the Fully Con-
volutional Network (FCN) architecture that was developed by Jonathan Long et al. in
2014 [53]. The architecture is shown in Figure 4.

Figure 4. U-Net architecture.
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The U-Net architecture is composed of two main parts: an encoder and a decoder.
The encoder, also known as the contracting path, reduces the spatial dimensions of the
input image and increases the number of filters (feature channels) at each of its blocks. This
process extracts increasingly abstract and high-level features from the input image. The
decoder network, also known as the expansive path, takes the high-level features from the
encoder network and uses them to reconstruct a segmentation map of the same size as the
input image.

Each encoder block consists of two 3 × 3 px convolutional layers. The activation
function of these layers is a Rectified Linear Unit (ReLU), introducing nonlinearity. The
output of the ReLU activation function is then passed to the corresponding decoder block
using skip connections. This allows the network to retain detailed spatial information in
the encoder path and use it to produce more-accurate segmentation maps.

The decoder consists of a sequence of decoder blocks, each of which starts with a
2 × 2 transpose convolutional layer that increases the spatial dimensions of the feature
maps. The output of the transpose convolution is then concatenated with the corresponding
output of an encoder block passed via the skip connection. This concatenated feature map
is then passed through two 3 × 3 convolutional layers with ReLU activation. To produce
the final segmentation mask, the output of the last decoder block is passed through a
1 × 1 convolutional layer with sigmoid activation.

To create our LC classifier, we used a U-Net architecture with an input of 64 × 64 px.
This provided us with 1436 ground truth LC values across a single dimension of the patch,
i.e., more than 2 million training points per patch. The whole EO-learn dataset used for the
training and validation of our contains 235 million samples (i.e., Sentinel-2 pixels with LC
ground truth labels).

3.7. Stage 2—The SOC Estimator

Once the LC-classifier is trained, one can use the output of any of its layers as features
for any transfer learning task related to LC classification. We opted to use the output of the
last layer of the network that has the same dimensions as the output of the network, i.e.,
the first deconvolutional layer of the network (bottleneck), located some 16 layers before
the output in our model. Its output is the latent high-level features for each pixel, and we
hypothesized that these are relevant for SOC estimation. Each pixel is represented by a
vector of 194 values. For a patch, we, therefore, have 794,624 (64 px × 64 px × 194) values.

We, thus, constructed an encoder-only U-Net, which, at inference time, provides us
the features for all pixels in the ROI in a single pass.

To create the datasets used to train and evaluate our SOC estimators, Sentinel-2
imagery was downloaded for the the geographical locations for which the SOC ground
truth is available. The images downloaded were taken as close as possible to the date of
sampling, with the condition that cloud cover was less than 10%. A 64 × 64 px patch is
then extracted from these images, centered on each of the locations with the known SOC
values and fed into our feature extractor, providing us with a 194-feature vector for each
SOC measurement.

This dataset was then used to train and evaluate a number of different machine
learning models and approaches listed in Table 3.

All 13 spectral bands of Sentinel-2 were used in our pipeline. At inference time,
the model processes each input image and produces an output of the same 64 × 64 px
size. However, to account for the model’s decreasing capacity to maintain context as it
approaches the borders of the input image, we discarded a frame 8 px-wide on all sides,
resulting in an effective output image size of 48 × 48 px.

To form the final continuous SOC map, we employed a sliding window technique.
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Table 3. Result of 10-fold cross-validation with all 3 datasets.

Algorithm MAE MSE R2

Linear Regression 2.007 13.4461 0.22

Ridge 2.007 13.4461 0.22

ElasticNet 2.0179 13.7324 0.2038

K-Nearest Neighbors 1.904 13.5501 0.2122

Extremely Randomized Trees 1.1291 6.4353 0.6279

Support Vector Machine 1.8269 14.5798 0.1555

Decision Tree 1.3719 11.1106 0.3442

Random Forest 1.1894 6.7416 0.6098

Gradient Boosting 1.511 9.4497 0.4549

Multi-Layer Perceptron 1.9467 12.7394 0.2557

4. Experiments and Results

A two-step evaluation procedure was used to account for the specific composition of
our pipeline. The first stage of our pipeline was evaluated on the LC classification task,
to make sure that the latent features were relevant for the SOC estimation task. Once the
performance of the LC classifier was deemed satisfactory, we proceeded with the extraction
of latent features for all the relevant samples in the LUCAS and CHLSOC datasets. These
then served to evaluate the performance of the whole pipeline.

4.1. LC Classification Performance

The confusion matrix for our U-Net-based LC classifier is shown in Figure 5. Seventy
percent of the EO-learn dataset was used for training and the rest for validation. The
learning rate used was 0.001, and the batch contained 32 input patches. The model was
trained for 100 epochs.

Figure 5. LC classification performance: a confusion matrix analysis.
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As the confusion matrix, the model was sufficiently accurate for a number of LC
classes. The performance was best for forests, which were detected with 97.7% accuracy.
Of particular importance for our task were the cultivated land and grassland classes, for
which the performance of the model was still good (they were detected with 75.5% and
80.8% accuracy). It is worth noting that, even when the classification for these two classes
was wrong, the model tended to confuse these two classes. The only other class that was
confused with these two was the artificial surfaces, but these were likely to be an artifact of
our training dataset, which contained a portion of artificial surfaces (mainly roads), which
were of dimensions smaller than the resolution of Sentinel-2 and could not be reliably
identified in the imagery.

The most challenging for the model were the shrubland and wetlands classes. This can
be attributed to the relative scarcity of training data pertaining to these surfaces in the
dataset. They represented just 0.6% of our dataset.

Since the model was successful in separating the cultivated and grassland classes from
the rest of the dataset, we concluded that the latent features extracted will be sufficiently
relevant to our ultimate goal.

4.2. SOC Estimates

Using the feature vectors derived from the U-Net encoder, datasets containing the
latent features and ground truth SOC values for all samples in CHLSOC and a subset of
samples in the LUCAS 2015 and 2018 datasets relevant to our study (i.e., those for which
the LC class was cropland and grassland) were constructed. For each entry in the dataset,
the geographical coordinates were kept. In addition, we evaluated the impact of adding
elevation above sea level to the features, to account for the fact that LUCAS is restricted to
lower altitudes and to provide additional information to the model.

Based on these, we evaluated 10 different machine learning algorithms available
within the scikit-learn library [54], aiming to identify the algorithm that exhibited the
optimal balance between accuracy and generalization. The candidates included: linear
regression, ridge regression, ElasticNet regression, K-Nearest Neighbors regression, ex-
tremely randomized trees regression, support vector regression, decision tree regression,
random forest regression, gradient boosting regression, and neural network regression.

The models were evaluated using 10-fold cross–validation. The results of these experi-
ments are shown in Tables 3 and 4. As the data in the tables show, adding elevation led
to a modest improvement for nearly all of the algorithms tested, except for the MLP, the
performance of which deteriorated significantly when elevation was added. Among the
algorithms evaluated, extremely randomized trees performed best. We, therefore, decided
to conduct further evaluation based on this methodology alone.

Table 4. Result of 10-fold cross-validation with all 3 datasets with elevation.

Algorithm MAE MSE R2

Linear Regression 2.0078 13.4416 0.2202

Ridge 2.0078 13.4416 0.2202

ElasticNet 2.019 13.7272 0.2041

K-Nearest Neighbors 1.8316 13.2385 0.2289

Extremely Randomized Trees 1.1018 6.2549 0.6384

Support Vector Machine 1.8117 14.5302 0.1586

Decision Tree 1.3366 10.28 0.3954

Random Forest 1.1619 6.6169 0.6173

Gradient Boosting 1.4796 9.303 0.4635

Multi-Layer Perceptron 3.1267 452.4427 −23.4217
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4.3. Additional Assessment of Extremely Randomized Trees for SOC Estimation

Having settled on extremely randomized trees (ERTs), we attempted to evaluate if
the models based on ERTs can generalize across the globe (i.e., CHLSOC and LUCAS
datasets). To do so, each fold in our 10-fold cross-validation procedure was created using
100% of two datasets, as well as 90% of the third dataset. The remaining 10% of the
third dataset was used for evaluation. Once again, in Tables 5 and 6, we present results
with and without elevation. Additionally, in Figure 6 are represented regression lines for
each dataset.

Table 5. Evaluation results for different datasets.

Evaluation Dataset MAE MSE R2 MAPE (%)

CHLSOC 1.5579 5.5441 0.7331 54.3845
Lucas 2015 0.9504 6.609 0.516 51.9833
Lucas 2018 0.9043 5.297 0.5927 40.7923

Table 6. Evaluation results for different datasets with elevation.

Evaluation Dataset MAE MSE R2 MAPE (%)

CHLSOC 1.5262 5.4357 0.7388 55.5355
Lucas 2015 0.9371 6.4395 0.5233 51.0905
Lucas 2018 0.8723 5.0655 0.6074 39.0369

(A) Lucas 2015 (B) CHLSOC (C) Lucas 2018

(D) Lucas 2015 with Elevation (E) CHLSOC with Elevation (F) Lucas 2018 with Elevation

Figure 6. Regression lines for each dataset.

Following the cross-validation, we employed grid search to systematically explore
a range of hyper-parameter combinations for the extremely randomized trees algorithm.
The objective was to identify the optimal set of hyper-parameters that maximized the R2

score, indicating the goodness-of-fit of the model. The search spanned various values for
key parameters, including the number of trees in the forest (n estimators), the maximum
number of features considered for splitting a node (max features), the minimum number of
samples required to be at a leaf node (min samples leaf), the minimum number of samples
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required to split an internal node (min samples split), and the seed for the random number
generator (random state).

The parameter ranges are defined as follows: n estimators ranged from 100 to 200 in
increments of 25; max features ranged from 91 to 130 in increments of 10; min samples leaf
ranged from 1 to 9 in increments of 2; min samples split ranged from 2 to 8 in increments of
2; the random state ranged from 0 to 4 in increments of 2.

After the grid search, the optimal combination of the hyper-parameters for the ex-
tremely randomized trees model was identified as follows: “n estimators” set to 100, “max
features” set to 121, “min samples leaf” set to 1, “min samples split” set to 2, and “random
state” set to 4.

Once the map was generated, we used the CORINE dataset to create a validity mask
for our SOC map.

4.4. Constructing the SOC Map: Application of the Model and Mosaicking Approach

In the final stage of our pipeline, we used our mosaicking approach to produce a
continuous, high-resolution SOC map.

Each input image fed to the first stage of our pipeline was 64 × 64 px, with each pixel
representing a 10 × 10 m area on the ground. All 13 spectral bands of Sentinel-2 were used.
The model processes each input image and produces an output of the same 64 × 64 px size.
However, each output image is padded by 8 px on all sides, resulting in an valid output
image size of 48 × 48 px. This padding strategy was employed to account for the model’s
decreasing capacity to maintain context as it approaches the borders of the input image.

To form the final continuous SOC map, we employed a sliding window technique.
This technique ensures that the 48 × 48 px output images (tiles) are perfectly adjacent to
each other, resulting in a seamless, continuous map, shown in Figure 7. The application of
this technique requires careful consideration of the input image dimensions, output image
dimensions, and padding to ensure accurate alignment and continuity of the final SOC
map. By employing this methodology, we were able to leverage the predictive power of
our model across the landscape, generating an accurate, high-resolution, and continuous
representation of SOC content across Tuscany.

Figure 7. Sample input patches taken for the region of Tuscany.
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Once the map was generated, we used the CORINE dataset to create a validity mask
for our SOC map.

In particular, CLC2018 was used, the publicly available and up-to-date version of
CORINE. The CLC2018 data were used in their native raster format, to eliminate SOC
estimates for land cover classes that our model was not trained for. We restricted our
estimates to categories 2 and 3, as shown in Table 7 (Agricultural areas and Forest and
semi-natural areas), as regions of interest within the study area, while everything else
was considered as an area with invalid data. The result is a raster layer of data that
clearly separates cultivated areas and areas under vegetation from built-up areas and areas
under water.

Table 7. CORINE classes.

CLC Level 1 CLC Level 2

1. Artificial surface 1.1. Urban fabric
1.2. Industrial, commercial, and transport units
1.3. Mine, dump, and construction sites
1.4. Artificial non-agricultural vegetated areas

2. Agricultural areas 2.1. Arable land
2.2. Permanent crops
2.3. Pastures
2.4. Heterogeneous agricultural areas

3. Forest and semi-natural areas 3.1. Forests
3.2. Shrub and/or herbaceous vegetation association
3.3. Open spaces with little or no vegetation

4. Wetlands 4.1. Inland wetlands
4.2. Coastal wetlands

5. Water bodies 5.1. Inland waters
5.2. Marine waters

Product Generation and Availability

In the execution of our methodology, we successfully generated a high-resolution,
continuous soil organic carbon (SOC) map for the region of Tuscany.

The SOC map, alongside the CORINE-based validity mask, provides a valuable
resource for understanding SOC distribution relative to different land use and land cover
classes. These products, formatted as GeoTIFF files, can be easily integrated into further
spatial analyses.

To facilitate the use of these data products, we provide Python examples demonstrating
how to interact with these files in our GitHub repositories. These repositories contain
not only the data, but also detailed guidance for engaging with the data using popular
geospatial Python libraries.

To visually grasp the SOC distribution across Tuscany, please refer to Figure 8. This
figure, entitled “Grayscale representation of SOC values with validity overlay”, illustrates
SOC content across the region with an overlay of the validity mask.

The tools and data we generated promise to support future research endeavors and
inform sustainable management practices in Tuscany’s rich agricultural landscapes. For this
purpose, we share our code at https://github.com/iai-rs/soc (accessed on 4 January 2024).

https://github.com/iai-rs/soc
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Figure 8. Grayscale representation of SOC values with validity overlay.

5. Discussion
5.1. Comparison and Validation of Results

While remote sensing is the most-promising methodology in terms of achieving
affordable and global SOC monitoring, the studies focusing solely on satellite imagery have
been limited in scope (i.e., the number of soil samples used to develop and validate the
models and the area covered).

Table 8 shows the comparison between our results and other relevant approaches
published in the literature. It should be noted that the highest R² was obtained by Steinberg
et al., but it relies on hyperspectral data and is limited to just 81 ground truth sample
taken over an area just 7 km2, making it very hard to judge how general this measure of
performance is.

Similarly, the recent approach proposed by Castaldi et al. limits the models to specific
areas, ranging between 2.2 and 425 ha, so the question of how their approach could be
scaled to global- or continent-level SOC monitoring remains unanswered.

The proposed approach, however, nearly matches the performance of Steinberg et al.
on CHLSOC, which covers an area more than 100,000-times larger in size and contains
85-times more data than were used by Steinberg et al., making the evaluation performed in
the study presented here much more extensive. Of the previous studies, the closest in size
in terms of the number of samples is that of Emadi et al., but their dataset is still several
orders of magnitude smaller and the study was restricted to Northern Iran. However, when
evaluated on our entire dataset comprised on CHLSOC, LUCAS 2015, and LUCAS 2018, we
were very near the performance achieved by Emadi et al. in terms of the variance explained
by our model (R2). A valid comparison in terms of the RMSE is virtually impossible to
achieve, since the range of SOC in different studies varies drastically.
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Table 8. Comparison with published work.

Approach Number of Samples RMSE R2

Gomez et al. [29] 146 0.73 0.51
Wang et al. [30] 705 N/A 0.47
Steinberg et al. [35] 81 0.21 0.74
Yang et al. [40] 733 N/A 0.26
Emadi et al. [41] 1879 0.75 0.65
Castaldi et al. [42] 53–131 0.152 0.67
Proposed on CHLSOC 6900 2.33 0.7388
Proposed on LUCAS 2015 11,061 2.5376 0.5233
Proposed on LUCAS 2018 11,275 2.2506 0.6074
Proposed overall x 2.5001 0.6384

In Table 6, we show the MAPE as a measure of the performance of our approach as
well. This allowed us to conclude that, on average, our model missed the SOC value by
48.6%. While this certainly is a large margin of error, it is also a significant improvement
when one takes into account that the current global estimates of SOC vary between 504 and
3000 Pg C [16].

5.2. Research Limitations

While this study has produced meaningful results, it is important to acknowledge
its limitations.

The main limitation is that we restricted our training data to a subset of land cover
classes available in LUCAS. While we did not perform any filtering on the dataset, our
model best performed on CHLSOC, and it is also restricted to a subset of land covers
by design. The majority of data points were concentrated in specific regions, such as
deciduous forests, broad-leaved forests, sclerophyllous forests, and thorny forests. These
areas, characterized by high-quality soil and available water, have experienced significant
land use conversion, making them of particular interest to our study. On the other hand,
certain regions, such as the high Andes, the Atacama Desert, and western Patagonia,
are underrepresented in terms of soil data. The lack of comprehensive data in these
ecologically significant regions restricts our understanding of soil organic carbon dynamics
and ecosystem processes in these areas, as well as the applicability of our model.

This is why we chose to use CORINE to filter our predictions of our model that
cannot reasonably be expected to be valid. But, to create an approach able to monitor
the SOC across all ecosystems, further data need to be collected and integrated into the
proposed approach.

An additional limitation of our approach is that we did not consider the temporal
dynamics of SOC and that the model predicts the value based on a single satellite image.
This is a limitation that we aim to address in the near future.

6. Conclusions

Monitoring soil organic carbon (SOC) typically assumes conducting a labor-intensive
soil sampling campaign, followed by laboratory testing, which is both expensive and
impractical for generating useful, spatially continuous data products.

In the study presented, we proposed a hybrid approach to estimate SOC remotely
from Sentinel-2 satellite imagery. The approach relies on a novel two-stage pipeline, using
a DNN (U-Net) trained to classify land cover to perform feature extraction and a different
ML model to perform the SOC estimation.

The proposed approach was evaluated on the largest dataset publicly available today,
constructed of CHILSOC and LUCAS, and achieved results comparable to previous studies
evaluated on several datasets that are orders of magnitude smaller and geographical
regions, making it the first approach with the potential to scale to global SOC estimation
and monitoring.
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To demonstrate the usability of the proposed approach, we generated and shared
a high-resolution map of SOC for the Italian region of Tuscany, in an effort to enable
external validation of the methodology, as well as to stimulate the development of possible
applications based on approaches such as the one presented in this paper.

The work serves as a significant step toward implementing efficient, cost-effective, and
remote SOC monitoring on a global scale. The demonstrated integration of satellite imagery
and machine learning in SOC estimation opens a promising avenue for further research
and practical applications, particularly in environmental science and land management.
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