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Abstract: Ship-radiated noise is the main basis for ship detection in underwater acoustic environments.
Due to the increasing human activity in the ocean, the captured ship noise is usually mixed with
or covered by other signals or noise. On the other hand, due to the softening effect of bubbles in
the water generated by ships, ship noise undergoes non-negligible nonlinear distortion. To mitigate
the nonlinear distortion and separate the target ship noise, blind source separation (BSS) becomes a
promising solution. However, underwater acoustic nonlinear models are seldom used in research
for nonlinear BSS. This paper is based on the hypothesis that the recovery and separation accuracy
can be improved by considering this nonlinear effect in the underwater environment. The purpose
of this research is to explore and discover a method with the above advantages. In this paper, a
model is used in underwater BSS to describe the nonlinear impact of the softening effect of bubbles
on ship noise. To separate the target ship-radiated noise from the nonlinear mixtures, an end-to-end
network combining an attention mechanism and bidirectional long short-term memory (Bi-LSTM)
recurrent neural network is proposed. Ship noise from the database ShipsEar and line spectrum
signals are used in the simulation. The simulation results show that, compared with several recent
neural networks used for linear and nonlinear BSS, the proposed scheme has an advantage in terms
of the mean square error, correlation coefficient and signal-to-distortion ratio.

Keywords: nonlinear blind source separation; ship-radiated noise; underwater acoustic nonlinear
propagation; attention mechanism; recurrent neural networks

1. Introduction

Acoustic signals are the main carriers of information and the best means of communication
in underwater environments. Acoustic signal processing is the most popular means for the
detection of human underwater activities. However, in an underwater acoustic environment,
the target signal undergoes non-negligible distortion and is usually mixed with heavy noise
or interference, which makes it difficult to detect [1–4]. As a result, signal recovery is crucial
in many underwater applications, such as communication, detection and localization [5–10].
For active target detection, the design of a detection waveform is crucial and, to a great extent,
determines the detection accuracy [11–13]. Similarly, waveform recovery plays a crucial role
in passive scenes, and reliable detection cannot be achieved without the precise separation of
the target signal from the received mixture. The application of multiple receivers can greatly
improve the quality of the receiving signals and can even be used in imaging and array signal
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processing in synthetic aperture sonar (SAS) [14,15]. In this situation, blind source separation
(BSS) based on multiple receivers becomes one of the candidates to solve this problem. BSS is
effective in recovering the original signals from the mixture, and it was first introduced to solve
the Cocktail Party Problem [16]. Nowadays, BSS is widely used and performs well with the
assumption of a linear mixing procedure [17–21], in which nonlinear components are neglected.
However, in fact, the nonlinear effect is non-negligible in underwater acoustic channels, such as
nonlinear distortion caused by hydrodynamics and the adiabatic relation between pressure and
density [22], nonlinearity in devices like power amplifiers [23–26], the nonlinear interaction of
collimated plane waves [27], the thermal current and nonlinear fluids such as relaxing fluids,
bubbly liquids and fluids in saturated porous solids [28–31]. Linear methods cannot separate
the signals with nonlinear components to a high degree of accuracy.

Many scholars have published methods and validations in the field of underwater
acoustic BSS. For conventional algorithms, such as in [32], the researchers build an im-
proved non-negative matrix factorization (NMF)-based BSS algorithm on a fast independent
component analysis (FastICA) machine learning backbone to obtain a better signal-to-noise
reduction and separation accuracy. Furthermore, a low-complexity method based on
Probabilistic Stone’s Blind Source Separation (PS-BSS) is proposed in [33] to be used in
multi-input multi-output (MIMO) orthogonal frequency division modulation (OFDM) in
the Internet of Underwater Things (IoUT). Artificial neural networks are also frequently
used in similar situations. The method of time–frequency domain source separation is
utilized in [34], by using deep bidirectional long short-term memory (Bi-LSTM) recurrent
neural networks (RNN) to estimate the ideal amplitude mask target. In addition, [35] uses
a Bi-LSTM approach to explore the features of a time–frequency (T-F) mask and applies
it for signal separation. The detection and recognition of underwater creatures can also
adopt a BSS approach. The researchers in [36] apply ICA to separate the snapping shrimp
sound from mixed underwater sound for passive acoustic monitoring (PAM). Moreover,
the ICA based method is also utilized in [37] to separate spiny lobster noise from mixed
underwater acoustic sound in a PAM application. However, the studies above fail to take
the nonlinear characteristics of underwater acoustic channels into consideration.

To better recover the nonlinear component in blind mixtures, many nonlinear BSS
methods have been invented. The authors in [38] extend the standard NMF and propose
a BSS/BMI approach so as to jointly handle LQ mixtures and arbitrary source intraclass
variability. Moreover, the work in [39] theoretically validates that a cascade of linear princi-
pal component analysis (PCA) and ICA can solve a nonlinear BSS problem when mixtures
are generated via nonlinear mappings with sufficient dimensions. By using information
theoretic learning methods, scholars have explored the use of the Epanechnikov kernel
in kernel density estimators (KDE) applied to equalization and nonlinear blind source
separation problems [40]. Furthermore, the useful signals from the complex nonlinear
mixtures are separated by applying a three-layer deep recurrent neural network to achieve
single-channel BSS in [41]. Additionally, nonlinearity can be fairly approximated using a
Taylor series and an end-to-end RNN that learns a nonlinear BSS system [42]. Even so, the
performance can still be further improved for nonlinear BSS.

As a powerful candidate in artificial neural network methods, the Transformer is
utilized in many fields [43]. In particular, the Transformer is widely used in BSS for mixing
signals. For example, [44] proposes a three-way architecture that incorporates a pre-trained
dual-path recurrent neural network and Transformer. A Transformer network-based plane-
wave domain masking approach is utilized to retrieve the reverberant ambisonic signals
from a multichannel recording in [45]. The researchers in [46] propose a deep stripe
feature learning method for music source separation with a Transformer-based architecture.
Similarly, the work in [47] designs a reasonable densely connected U-Net combining multi-
head attention and a dual-path Transformer to capture the long-term characteristics in
music signal mixtures and separate sources. A slot-centric generative model for blind
source separation in the audio domain is built by using a Transformer architecture-based
encoder network in [48]. Ref. [49] extends the Transformer module and exploits the
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use of several efficient self-attention mechanisms to reduce the memory requirements
significantly in speech separation. However, most of these Transformer-based BSS studies
do not explicitly explore the nonlinearity widely existing in real situations like underwater
acoustic channels, which is discussed in this paper.

Ship recognition is vital in underwater acoustic signal processing and it is based on its
radiated noise, which is mainly caused by propeller blades. When the propellers generate
noise, the blades generate bubbles due to cavitation, which also causes erosion [50,51].
The softening effect by bubbles has a nonlinear impact on acoustic signals. This type of
nonlinearity is investigated in this paper. To better separate and recover the original ship-
radiated noise before distortion and mixing, an end-to-end nonlinear BSS network based on
an attention mechanism is proposed in this paper. Due to the fact that the Transformer has
a shortcoming in capturing local self-dependency and performs well in learning long-term
or global dependencies, while convolutional neural networks (CNN) and RNN behave
in the opposite way [52–56], an end-to-end network is utilized combining an RNN and
multi-head self-attention, i.e., recurrent attention neural networks (RANN). The recurrent
attention mechanism is used in image aesthetics, target detection, flow forecasting and
time series forecasting [57–61], but it has not been used in nonlinear BSS yet. In order to
simulate real ship noise as much as possible, the ShipsEar database is used and two classes
of ship-radiated noise are selected to act as original ship noise [62]. Based on this noise and
nonlinear model, a dataset is generated and used in the neural network training, validation
and testing. The simulation results indicate that the proposed network performs better
in terms of separation accuracy than networks purely based on RNNs [42], the classical
Transformer [43] or a recently published end-to-end BSS U-net [47]. The advantages of the
proposed scheme are its lower mean square error (MSE), higher correlation coefficient and
higher signal-to-distortion ratio (SDR).

The rest of this paper is organized as follows. Section 2 describes the nonlinear model
of the underwater acoustic channel and nonlinear BSS, as well as the proposed recurrent
attention neural networks. Section 3 displays the simulation configuration, while the results
and discussion are given in Section 4. The paper is concluded in Section 5.

2. Materials and Methods

To model the nonlinear effect in an underwater channel, the nonlinear model based
on the softening effect of bubbles in water is utilized, which is derived in [30,63]. The
post-nonlinear (PNL) model is used as a generic framework in nonlinear BSS. To achieve the
recovery and separation of ship-radiated noise, a RANN combining an RNN and attention
mechanism is designed and proposed in this paper, and it is first utilized in nonlinear BSS.
The design of the network structure is also introduced in this section.

2.1. Nonlinear Underwater Acoustic Channel Model

It has been proven in [30,63] that bubbles in water have a softening effect on sound
pressure, and a model of varying sound pressure was derived. The same model is therefore
used in this paper. To simplify the discussion, only one-dimensional space is considered.
Usually, it is assumed that bubbles have the same radius and are uniformly distributed in
seawater. The model of the nonlinear distortion caused by the softening effect is derived
from the wave equation and Rayleigh–Plesset equation:

∂2 p(x, t)
∂x2 − 1

c2
0l

∂2 p(x, t)
∂t2 = −ρ0l Ng

∂2v(x, t)
∂t2 (1)

∂2v(x, t)
∂t2 + δω0g

∂v(x, t)
∂t

+ ω2
0gv(x, t) + ηp(x, t)

= av(x, t)2 + b

(
2v(x, t)

∂2v(x, t)
∂t2 +

(
∂v(x, t)

∂t

)2
) (2)
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In the equations above, p(x, t) is the sound pressure, which varies with the coordinates
and time, similar to the volume variation of bubbles v(x, t) = V(x, t) − v0g, with the
present volume V(x, t) and the initial one v0g, v0g = 4πR3

0g/3, with the initial radius R0g

of bubbles. c0l and ρ0l are, respectively, the sound speed in sea water and the density of the
medium. Ng is the number of bubbles per unit volume. δ denotes the viscous damping
coefficient in sea water and ω0g represents the resonance angular frequency of bubbles.
a = (γg + 1)ω2

0g/(2v0g), b = 1/(6v0g) and η = 4πR0g/ρ0l are nonlinear coefficients
defined to be convenient, in which γg is the specific heat ratio. Using i and j as space
and time indices, the first-order and second-order partial derivatives relative to time and
coordinates can be converted into a discrete format and expressed as

∂2 pi
∂x2 =

pi+1 − 2pi + pi−1

h2 (3)

in which pi represents p(x = i, t). Similarly, pj represents p(x, t = j) and the in time domain

∂2 pj

∂t2 =
pj+1 − 2pj + pj−1

τ2

∂2vj

∂t2 =
vj+1 − 2vj + vj−1

τ2

∂pj

∂t
=

pj − pj−1

τ
∂vj

∂t
=

vj − vj−1

τ

(4)

in which h and τ are the space and time interval, respectively.
Finally, sound pressure in any coordinates and at any time can be derived as

pi,j+1 =

[
τ2 pi+1,j + τ2 pi−1,j + 2

(
h2

c2
0l
− τ2

)
pi,j −

h2

c2
0l

pi,j−1

−2ρ0l Ngh2vi,j + ρ0l Ngh2vi,j−1 + ρ0l Ngh2vi,j+1

]
/(h2/c2

0l)

(5)

where the volume of bubbles at the same point is

vi,j+1 =
[
(1 − δω0gτ − bvi,j−1)vi,j−1 + ητ2 pi,j + (−aτ2 + 3b)v2

i,j

+(−2 + δω0gτ + ω2
0gτ2)vi,j

]
/(2bvi,j − 1)

(6)

2.2. Nonlinear Mixing Model in BSS

In the BSS problem, the generic and instantaneous nonlinear mixing model can be
defined as

X = φ(S) (7)

where X = [x1(n)x2(n) . . . xM(n)]T and S = [s1(n)s2(n) . . . sN(n)]T are M mixtures and N
sources. φ(.) is a generic nonlinear mixing function. The purpose of nonlinear BSS is to find
a nonlinear unmixing function ψ(.) = φ−1(.), which is the inverse of the mixing function,
to recover the sources as precisely as possible by applying Y = ψ(X).

Many types of nonlinear mixing models are used in BSS, such as the linear quadratic,
bi-linear and post-nonlinear (PNL) models [64,65]. The PNL model is utilized in this paper
and its structure is shown in Figure 1. In the mixing system, the sources are multiplied by
an M-by-N mixing matrix to be linearly mixed based on transmitting attenuation before
undergoing nonlinear distortion by softening effect. In the separating part, the observed
signals are first nonlinearly recovered, which is the inverse of nonlinear distortion, and
then linearly unmixed by an N-by-M matrix.
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Figure 1. The sketch of the PNL model used in this paper.

2.3. Recurrent Attention Neural Networks

Due to the advantages of RNNs in capturing local information and the Transformer’s
excellent performance in acquiring global dependencies, a recurrent attention neural net-
work (RANN) is designed in this paper, which is first utilized in nonlinear BSS. To achieve
the recovery and separation of ship-radiated noise, the design of the network structure is
as shown in Figure 2 and introduced as follows.

Multi-head Attention

Layer Normalization

Bi-LSTM

LSTM

Input

Multi-head Attention

Layer Normalization

Bi-LSTM

Output

Drop out

Drop out

An 

RANN 

Layer

Figure 2. The model of the proposed recurrent attention neural network, containing two layers of
recurrent attention neural network and an LSTM layer.

The multi-head attention mechanism shows the best performance in processing one-
dimensional temporal signals and it has been applied in many fields. A multi-head attention
layer is first used to process the input signals, which is followed by a residual connection
and layer normalization. However, the attention mechanism performs weakly in acquiring
the local information. Bi-LSTM has been proven to have excellent performance in nonlinear
BSS [42] and it is successful in extracting the local information but weak in acquiring global
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information; thus, it could work well to complement the attention mechanism. As a result,
a Bi-LSTM layer is then utilized in the network, which is followed by a drop-out layer to
avoid overfitting. Then, the layer of the RANN is completed.

The recurrent attention process is repeated once to improve the performance, as it will
be worse without the repetition. However, more repetitions are not necessary because this
may heavily increase the number of parameters used but only slightly improve the perfor-
mance, with more details shown in Section 4. An LSTM layer is finally used to obtain the
separated results.

The whole procedure of signal processing is described as follows. The mixture signal is
denoted as X ∈ RM×L, where M is the number of mixtures and L is the length of the signal
in the time domain. Then, X is segmented into parts with length Ns and, for convenience
in training, the size of batch bs is set. Thus, X is converted to D ∈ Rbn×bs×M×Ns with a
permutation operation and bn is the number of batches. The total bn batches are divided
into training, validation and testing sets in a proportion of 7:1:2 and used as inputs of the
network for various purposes. In the simulation below, L is set to 500 and Ns is set to 40 to
simplify the calculation. There are 1000 samples of mixture data used in total and they are
divided into various datasets with the proportion of 7:1:2.

Take the training progress as an example. The training batch D1 ∈ Rbs×M×Ns is
extended to h channels as features, D2 ∈ Rbs×h×Ns, before the attention mechanism, where
h is the number of hidden elements in the attention and RNN layers. The shape of the
feature tensors will not change until the LSTM layer, whose output is Dn ∈ Rbs×N×Ns,
and N is the number of expected separated signals. Lastly, the outputs of the network are
concatenated and recovered to Y ∈ RN×L. The progress is similar in the validation and
testing stages.

3. Simulation Configuration
3.1. Original Signals, Distortion and Mixtures

To simplify the discussion, the smallest number of signals is selected, i.e., m = n = 2
in Figure 1. To better validate the separation accuracy of the proposed network, the real
recorded ship-radiated noise from the database ShipsEar [62] is used. Entries with index
6 and 22 are used as original signals, where the types of ships are passengers and ocean
liners, respectively.

In order to maintain generality, various propagation distances are applied to the
original signals, with 10 km for source s1 and 12 km for s2. Due to the fact that the propa-
gation distance will influence the nonlinear distortion, as shown in Equations (5) and (6),
nonlinear distorting functions will be different for various linear mixing signals u(n)
in Figure 1. For linear mixing matrix A, the coefficients are randomly selected and A must
be fully ranked. When A equals [0.45, 0.13; 0.21, 0.43] and white Gaussian noise with 15 dB
is added, the spectra of the original and mixed ship noise signals are as shown in Figure 3.
It can be concluded from Figure 3 that the characteristics of the original ship noise are
severely hidden in the mixture spectra. Only frequencies below 2 kHz are displayed as the
ship-radiated noise is mainly distributed in this low-frequency region. This is used as the
first dataset.

Due to the fact that ship-radiated noise consists of strong line spectra and weak
continuous ones, and the former is the main basis of ship recognition [66,67], signals
with line spectra are also generated as originals of the second dataset. Usually, a line
spectrum consists of a fundamental frequency and resonance frequencies, with a strong
relationship with the propeller shaft frequency and blade frequency. In this set of data,
the fundamental frequencies are selected as 100 Hz and 120 Hz for both sources, and the
amplitude attenuates as the frequency increases. Parameters used for the environment are
the same as in the set of real ship noise discussed above. The spectra of the original and
mixed signals are shown in Figure 4. A similar conclusion is obtained that the line spectra
characteristics are heavily distorted in the mixtures.
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(a) Ship noise 1. (b) Ship noise 2.

(c) Mixed signal 1. (d) Mixed signal 2.

Figure 3. Spectra of original and mixed ship noise, with characteristics severely hidden in the
mixture spectra.

(a) Line spectrum signal 1. (b) Line spectrum signal 2.

(c) Mixed signal 1. (d) Mixed signal 2.

Figure 4. Spectra of original and mixed line spectrum signals, with line spectra characteristics heavily
distorted in mixtures.
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3.2. Configuration and Referred Networks

In the proposed network, the output size of each recurrent unit is 256, as well as the
number of hidden elements in the attention mechanism. The number of heads in attention is
8 and a 50% dropping rate is used in each drop-out layer. The learning rate is set as 10−4 at
the beginning and multiplies by 0.8 after every 10 epochs, with a total of 100 epochs used in
the training process. The Adam optimizer is also used to reduce the impact of the learning
rate [68]. The mean square error (MSE) is used as the loss function and is displayed in
Equation (8). The simulations are conducted on a Windows deep-learning server with
2 Intel(R) E5−2603 1.7 GHz CPUs (Santa Clara, CA, USA), 8 Samsung DDR4 16 GB RAM
(Suwon, Republic of Korea) and 4 Nvidia GTX 1080Ti GPUs (Santa Clara, CA, USA).

The referred networks should be representative of different types. The candidate
in [42], combining Bi-LSTM, LSTM and a drop-out layer, shows good performance in
end-to-end nonlinear blind source separation, denoted as RNN in the description hereafter.
The classical Transformer network [43] is another good candidate to test the performance
and is denoted as Transformer. A recently published end-to-end U-net combining a CNN
and multi-head attention, but used in linear BSS for music separation, is also selected as a
referred network [47] and denoted as U-net. The total numbers of parameters used in the
different networks are calculated by the Python package fvcore and shown in Table 1.

Table 1. Number of parameters used in different networks.

Network Parameters

RNN 0.3 M
Transformer 24 K

U-net 3.4 M
RANN (1 layer) 1.1 M

Proposed RANN (2 layers) 2.1 M
RANN (3 layers) 3.2 M
RANN (4 layers) 4.2 M

The metrics of the separation accuracy consist of the MSE, the correlation coefficient ρ
used in [69] and the signal-to-distortion ratio (SDR). The lower the MSE or the greater the
ρ and SDR, the better the performance. The metrics are calculated as follows and s and y
represent the original signals and separated ones with length L:

MSE =
1
L

L

∑
i=1

(si − yi)
2 (8)

ρ =
∑L

i=1(si · yi)

∑L
i=1(|si| · |yi|)

(9)

SDR = 10 log10
∑L

i=1(si − yi)
2

∑L
i=1 s2

i
(10)

4. Results and Discussion
4.1. Metrics of Results

The metrics of the separation results are shown in Tables 2 and 3. U-net performs
the worst because it is designed for linear BSS and the nonlinear channel is not taken into
account. The proposed network performs better than the RNN and Transformer because
the RNN is successful in capturing local dependencies and the Transformer performs well
in acquiring global ones. The RNN performs much better than the Transformer and slightly
worse than the proposed network because the local dependencies are much stronger
than the global relation in the considered underwater acoustic channels, as expressed
in Equations (5) and (6). For the RANN with different layers of recurrent attention, the
network with two layers is the best candidate because it performs much better than those
with one layer, especially in line spectrum signal separation, and fewer parameters are
used than in those with more layers.



Remote Sens. 2024, 16, 653 9 of 14

Table 2. Separation results of different networks for ship-radiated noise.

Network MSE ρ SDR (dB)

RNN 0.007 0.817 4.495
Transformer 0.037 0.001 −2.947

U-net 0.053 0.006 −4.453
RANN (1 layer) 0.007 0.830 4.492

Proposed RANN (2 layers) 0.006 0.840 4.651
RANN (3 layers) 0.006 0.842 4.674
RANN (4 layers) 0.006 0.843 4.684

Table 3. Separation results of different networks for line spectrum signals.

Network MSE ρ SDR (dB)

RNN 0.035 0.929 8.621
Transformer 0.311 0.015 −0.842

U-net 0.504 −0.002 −2.939
RANN (1 layer) 0.020 0.967 11.003

Proposed RANN (2 layers) 0.014 0.981 12.699
RANN (3 layers) 0.013 0.987 12.850
RANN (4 layers) 0.012 0.992 12.922

4.2. Separated Waveforms

The waveforms of the signals separated by different networks are displayed. By
randomly selecting time segments, the original and separated ship-radiated noise from
various networks is as shown in Figures 5 and 6. In Figure 5, it can be seen that the
waveform separated by the proposed network (in pink line) is slightly nearer the original
waveform (in red line) than in those by the RNN (in blue line) and it performs much better
than any other candidates. Conclusions can be made that, for ship noise, the proposed
network separates them in with slightly higher accuracy than the RNN and is better than all
others. For the line spectrum signals in Figure 6, the waveform separated by the proposed
network (in pink line) shows the best performance with the least distortion from the original
waveform (in red line) and it performs much better than any other method, including the
RNN. In conclusion, the proposed network apparently works better than other candidates.

(a) Ship-radiated signal 1. (b) Ship-radiated signal 2.

(c) Line spectrum signal 1. (d) Line spectrum signal 2.

Figure 5. Fragment 1 of original and separated waveform, with the proposed network performing
the best.
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(a) Ship-radiated signal 1. (b) Ship-radiated signal 2.

(c) Line spectrum signal 1. (d) Line spectrum signal 2.

Figure 6. Fragment 2 of original and separated waveform, with the proposed network performing
the best.

5. Conclusions

In this paper, the softening effect of bubbles in water is considered in underwater
nonlinear blind ship-radiated noise separation, and an end-to-end recurrent attention neural
network is proposed combining the advantages of the RNN and Transformer. According
to the simulation results, high accuracy of separation is obtained by the proposal in terms
of the MSE, correlation coefficient and SDR, compared with other networks including the
RNN, Transformer and U-net, which are effective in other BSS scenes. It is found that the
proposed scheme performs better than other candidates obviously in line spectrum signal
separation and has a slight advantage over the RNN in separating the real ship noise. In
the future, networks with greater compatibility with the underwater acoustic channel can
be explored to obtain higher separation accuracy.
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Abbreviations
The following abbreviations are used in this paper:

SAS Synthetic Aperture Sonar
BSS Blind Source Separation
NMF Non-Negative Matrix Factorization
FastICA Fast Independent Component Analysis
MIMO Multi-Input Multi-Output
OFDM Orthogonal Frequency Division Modulation
IoUT Internet of Underwater Things
CNN Convolutional Neural Network
RNN Recurrent Neural Network
RANN Recurrent Attention Neural Network
Bi-LSTM Bidirectional Long Short-Term Memory
PAM Passive Acoustic Monitoring
BMI Blind Mixture Identification
PCA Principal Component Analysis
PNL Post-Nonlinear
MSE Mean Square Error
SDR Signal-to-Distortion Ratio
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