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Abstract: The Space-Air-Ground Information Network (SAGIN) provides extensive coverage, en-
abling global connectivity across a diverse array of sensors, devices, and objects. These devices
generate large amounts of data that require advanced analytics and decision making using artificial
intelligence techniques. However, traditional deep learning approaches encounter drawbacks, pri-
marily, the requirement to transmit substantial volumes of raw data to central servers, which raises
concerns about user privacy breaches during transmission. Federated learning (FL) has emerged
as a viable solution to these challenges, addressing both data volume and privacy issues effectively.
Nonetheless, the deployment of FL faces its own set of obstacles, notably the excessive delay and
energy consumption caused by the vast number of devices and fluctuating channel conditions. In this
paper, by considering the heterogeneity of devices and the instability of the network state, the delay
and energy consumption models of each round of federated training are established. Subsequently,
we introduce a strategic node selection approach aimed at minimizing training costs. Building
upon this, we propose an innovative, empirically driven Double Deep Q Network (DDQN)-based
algorithm called low-cost node selection in federated learning (LCNSFL). The LCNSFL algorithm can
assist edge servers in selecting the optimal set of devices to participate in federated training before
the start of each round, based on the collected system state information. This paper culminates with
a simulation-based comparison, showcasing the superior performance of LCNSFL against existing
algorithms, thus underscoring its efficacy in practical applications.

Keywords: Space-Air-Ground Information Network; federated learning; delay and energy model;
node selection strategy; low-cost node selection in federated learning

1. Introduction

The rapid advancement of Internet of Things (IoT) technology has catalyzed an un-
precedented surge in data generation. Recent projections indicate that the number of active
IoT devices may approach 30 billion by 2030 [1]. Despite extensive mobile network deploy-
ment, connectivity remains elusive in many remote areas, such as deserts or oceans. This
connectivity gap is underscored by research indicating that terrestrial wireless networks
cover merely 20% of the global land area and less than 6% of the Earth’s surface [2]. This
limited reach is attributed to challenging terrain, extended communication distances, and
various commercial and engineering complexities. In light of these limitations, there is a
consensus among academic and industrial experts on the necessity of Satellite Communica-
tion (SatCom) networks as an effective supplement to terrestrial infrastructures. SatCom
is deemed crucial for achieving comprehensive global coverage and facilitating seam-
less connectivity, particularly for critical computing applications like artificial intelligence
(AD) [3].
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Over the last five decades, the cellular network landscape has undergone a rapid
transformation, evolving from the First Generation to the cutting-edge Fifth Generation
Mobile Network. Currently, the technological frontier is shifting towards the exploration of
the Sixth Generation (6G) of communication technology, which is poised to play a pivotal
role in the Smart Information Society envisioned for 2030 [4]. Anticipated to outperform its
predecessor, 6G is expected to cater to a plethora of emerging services and applications,
marking a significant leap in communication technology [5,6]. The Sixth Generation is
expected to revolutionize network coverage and user mobility by optimizing infrastructures
in the air, in space, on the ground, and at sea. It aims to seamlessly integrate terrestrial and
non-terrestrial networks, thus offering comprehensive and unrestricted coverage [7,8].

Concurrently, the surge in data produced by ubiquitous IoT devices has necessitated
the application of Al techniques, such as deep learning, for the development of sophis-
ticated data models. These models are integral to smart IoT applications in healthcare,
transportation, and urban management [9]. Traditionally, Al processing has been central-
ized in cloud servers or data centers [10], a practice that faces significant challenges in
the era of IoT data proliferation. Centralized data collection and transmission are often
impractical or inefficient due to communication resource constraints and latency issues.
Moreover, the sensitivity of the massive data generated raises significant security concerns,
as highlighted by global regulatory frameworks like the General Data Protection Regulation
in Europe [11].

Federated learning (FL), a pioneering distributed machine learning framework, was
introduced by Google in 2016. As a technical paradigm, FL represents a distributed,
collaborative form of Al It enables multiple devices to coordinate with a central server for
data training purposes, without necessitating the sharing of the actual dataset [12]. FL is
distinguished by several key advantages, including improved communication efficiency
and enhanced data privacy. These benefits stem from its ability to transmit only model
parameters instead of raw data [13].

In the realm of next-generation wireless communications, particularly those encom-
passing the Space-Air-Ground Information Network (SAGIN) augmented by Al, FL has
garnered significant research interest. This interest is propelled by the expanding integra-
tion and prevalence of data-driven applications. However, the financial viability of SatCom,
when compared with that of terrestrial mobile networks, remains a concern. To facilitate
intelligent adaptive learning for extensive IoT networks and to mitigate the costs associated
with high-volume SatCom traffic, recent studies have explored the application of FL within
low-Earth-orbit SatCom networks [14].

Previous research has delved into enhancing wireless network efficiency, focusing
on Mobile Edge Computing (MEC) and federated learning (FL). In MEC, studies have
addressed energy-efficient task offloading challenges in Layer 2 Service Chaining services
across multi-Radio Access Technology networks, considering constraints like stringent
latency and residual battery energy [15,16]. For FL in wireless networks, a novel model has
been proposed to optimize base station resource allocation and user transmission power
allocation, jointly considering learning and wireless network metrics. This aims to reduce
packet error rates and enhance overall FL performance [17].

To overcome challenges in the Metaverse’s channel state and computing resources,
a soft actor—critic-based solution has been developed for an efficient FL. scheme with
dynamic user selection, gradient quantization, and resource allocation [18]. Recognizing the
limitations of asynchronous federated learning and semi-asynchronous federated learning
methods, a new approach named FedSEA has been introduced as a semi-asynchronous FL
framework tailored for extremely heterogeneous devices [19]. Additionally, in vehicular
networking scenarios, studies have applied fuzzy logic for client selection, considering
parameters such as the number and freshness of local samples, computational capability,
and available network throughput [20].

Nevertheless, most of the existing works rely on an unrealistic assumption that edge
devices participating in federated training have stable network connections [21,22]. In
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practice, the network quality may change due to the movement of devices or the change in
environmental factors. Unpredictable network quality increases the difficulty of designing
FL algorithms. Meanwhile, mobile industrial devices using battery power [23] in this
scenario usually have limited computational and communication resources. This also puts
a higher demand on the time and energy consumption of joint training. Some existing
solutions employ a Deep Deterministic Policy Gradient (DDPG) to address latency and
energy consumption issues when selecting FL participants among IoT device nodes [24,25].

In this paper, we model the delay and energy consumption for each round of federated
training. Under the condition of independent and identically distributed data distribution,
the Low-Cost Node Selection in Federated Learning (LCNSFL) algorithm, based on the
Double Deep Q Network (DDQN), is proposed to minimize the time and energy consump-
tion of each round of federation training. This algorithm aims to minimize the time and
energy consumption associated with each training round. LCNSFL assists the edge server
in selecting the most efficient device set for participation in federated training, leveraging
the system state information collected. Through comparative experimental analysis, we
demonstrate that LCNSFL significantly reduces both time and energy consumption in
federated training while ensuring high convergence accuracy of the global model.

The rest of the paper is organized as follows: Section 2 models the latency and energy
consumption of the federated training process. In Section 3, we design the node selection
algorithm for minimizing training consumption in DDQN-based FL. Section 4 evaluates the
algorithm, and Section 5 concludes the paper. All acronyms used throughout this survey
paper are given in Table 1.

Table 1. List of abbreviations.

Abbreviation Definition
6G Sixth Generation
Al Artificial intelligence
Bnq Best network quality device selection strategy
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q Network
DRL Distributed Reinforcement Learning
ES Edge server
FL Federated learning
IoT Internet of Things
LCNSFL Low-Cost Node Selection in Federated Learning
MDP Markov Decision Process
MEC Mobile Edge Computing
RLI Reinforcement Learning Intelligence
SAGIN Space-Air-Ground Information Network
SatCom Satellite Communication
UAV Unmanned Aerial Vehicle

2. System Model and Problem Definition

In the paper, we investigate the time and energy consumption of FL with various
IoT devices and time-varying channel state information. First, the time and energy con-
sumption are defined. Then, the nodes are selected to minimize the consumption in
each federated training step. Finally, a DDQN-based algorithm is proposed to solve the
formulated problem.

As depicted in Figure 1, the architecture of the Distributed Reinforcement Learning
(DRL)-enhanced FL system is presented for implementation in the SAGIN. The SAGIN
encompasses satellites, Unmanned Aerial Vehicles (UAVs), and ground base stations. The
IoT devices refer to cameras and robotic arms, etc., which establish connections to the
edge cloud server. To achieve the federated averaging scheme, these devices first transmit
the local model parameters to the edge cloud server, and then the edge cloud server
aggregates those parameters. These aggregated algorithms are employed to update the
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global federation model. It should be noted that this process in a server can be augmented
with a Reinforcement Learning Intelligence (RLI) component. The RLI aids the FL system
by strategically selecting a subset of devices to partake in the federation training.

global “‘"ddv
— a{s'{ﬁﬁ,uuan

Figure 1. Simple diagram of FL implementation in IoT scenarios through the SAGIN.

Prior to the initiation of each round of federated training, the edge cloud server
carefully selects a subset of IoT devices to actively participate in the training process,
delivering to them the latest iteration of the global model. The designated IoT devices
leverage locally available data for model training and subsequently transmit the refined
model parameters back to the edge cloud server. Following this, the edge cloud server
undertakes the essential task of parameter aggregation, systematically iterating through the
aforementioned steps until the accuracy of the global model reaches the predefined target.

The time and energy requirements for each round of federated training can be cat-
egorized into three components: computational time for local model training, duration
of data transmission, and idle waiting periods for devices. Similarly, IoT device energy
consumption during training includes computational energy, energy required for parameter
transmission, and energy consumed during idle waiting.

Due to the superior communication resources available to the edge cloud server, whose
downstream bandwidth significantly exceeds that of the upstream bandwidth of industrial
IoT devices, the time and energy requirements for devices to download the global model in
each training round may be reasonably overlooked.

We can integrate energy consumption sensors on each IoT device node to monitor
real-time power consumption. With the data collected from these sensors, we can quantify
the energy consumption of each node under various tasks. However, it is not feasible
for the server to obtain the local training time and energy consumption of all devices in
advance before the start of a federated training round. Therefore, designing a node selection
strategy to avoid high-energy-consuming devices and those with poor channel quality
from participating in the federated training process will help reduce the time and energy
consumption of the federated training process. This is crucial for resource-constrained
IoT devices.

This paper focuses on FL algorithm design for node selection without considering the
optimization of the DDQN network architecture. Key symbols in this study are listed in
Table 2.
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Table 2. Main symbolic representations.

Variable Definition

ci The number of cycles required for device i to train a single sample
d; The number of samples that device i has

fi CPU frequency of device i

T Number of local iterations

No Noise power

k Communication round number
Bix The bandwidth allocated to device i in the k-th communication round.
Pik The transmission power of device i
i The channel gain of device i

b;‘ The data transmission rate of device 7 in the k-th communication round
wf‘ The local model of device i

o The effective capacitance coefficient related to the computing chipset

The FL system consists of an edge server (ES) and N IoT devices. The devices are
denoted by anindexi:i € S, S =11, 2, ..., N}. The dataset of device i is represented as D;,
and its size is denoted as di. (x;, y;) represents a data sample from D;, where x; denotes the
sample data and y; represents the sample label. During local model training, x; is used as
the input to the model, and y; is used as the expected output. The cross-entropy between
y; and the model’s predicted output y;” is calculated as the local model’s loss function.

Figure 2 illustrates the scheduling process of federated synchronous learning. Prior to
the commencement of each FL round, the ES selects n devices to participate in the training
process. The set of selected devices is represented as S, where S, = {1, 2, ..., n}. The ES
distributes the global model to each selected device, which then performs T iterations to
update the model using its local dataset D;. After completing local model training, each
device uploads its local model’s weight parameters to the ES. The ES performs the model
aggregation algorithm to obtain the latest global model and then proceeds to the next round

of federated training.
5 (8
O
Y

/

I
/ |
The Next round of
Federated Learning

Figure 2. Illustration of federated synchronous learning scheduling process.

Assuming that device i requires ¢; CPU cycles to train a single sample and operates at
a frequency of f;, the computation time required for device i to execute local model training
in the k-th round of federated training is given by

cal T'Ci'di
ik — f
i

After completing the local model updates, device i uploads the trained model’s weight
parameters wf to the ES. The transmission time of the model is calculated using the
following formula:

@

com

Ly = )
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where | wi‘ | represents the size of the model weights, b* represents the data transmission
rate of device 7 in the k-th round of federated training, and bf.‘ is calculated using the
following equation:

No- (df)"

The transmission signal of the UAV system in the SAGIN is affected by various fading
effects in the ground-to-space channel, including large-scale path fading, shadow fading,
and small-scale fading. To address this, a generalized CE2R channel model is introduced.
In this model, A is a constant and is the path loss index. It is a general form of the path loss
model, and parameter adjustments are required on a case-by-case basis [26].

According to the above equation, the data transmission rate of device i is influenced by
the allocated bandwidth to device (bf-‘), the transmission power of device i (pi.‘), the channel
gain (gf-‘), and the noise power (Ny). Changes in environmental conditions can affect the
data transmission rate and introduce uncertainty in transmission delays. The training
time of device 7 in the k-th round of federated training is the sum of the computation time
for local model updates and the model transmission time. Therefore, the training time of
device i can be obtained using the following equation:

b¥ = B;ilog, (1 + ). ?3)

potal = yeal 4 poom, (4)

In the federated synchronous model, the next round of federated training begins only
when the ES receives the local model parameters from all devices and creates a new global
model. Therefore, the learning time of the k-th round of federated training is determined
by the slowest device, and it can be represented by the following formula:

_ total
T, = z‘renssz{t"k } (5)
According to the energy model proposed in reference [27], the energy consumed by
device i during local model training in the k-th round of federated training can be calculated

using the following equation:
E;"C = o-T-cjd; f2 (6)

where o represents the effective capacitance coefficient, which is related to the properties of
the chip itself.

During model transmission, device i performs the model transmission with a power
of pi-‘ . Therefore, the energy consumption of device 7 for transmission is calculated as

Kt K
Et = iy pi- )

The device that completes local model training and model transmission first needs
to wait for other devices that have not finished. Fast devices may experience idle waiting
time, and the energy consumed during this idle waiting period is referred to as idle energy
consumption. Therefore, the idle energy consumption of device i is equal to the product of
idle waiting time and the energy consumption per unit time in the idle state. The calculation
formula is as follows: '

Ei'c,zdle _ (Tk o tf%al)'Efs (8)

where Ef ° represents the energy consumption per unit time of device i during the idle
waiting period. Therefore, the total energy consumed by device i during the k-th round of
federated training can be calculated as follows:
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Therefore, the total energy consumed during the k-th round of federated training can

be calculated as follows: .

EX =Y Ek (10)
i=1

Equations (11)—(17) describe the device selection problem under the independent
and identically distributed data distribution. It can be formulated as selecting a group of
devices in each round of federated training to minimize the training time consumption and
energy consumption cost. To reduce the idle waiting time of fast devices and minimize
unnecessary idle energy consumption, the selected devices must have similar training time
costs. This problem can be formulated as the minimization of Ty. The formulation of the

optimization problem is as follows:

N
min(Ti + A-Y_ af-EF) (11)
i=1
fmin S fi S fmax (12)
N
0<Y adbvfb<B (13)
i=1
N
1< Za;‘ <N (14)
i=1
Ef < Emax (15)
1<i<N (16)
1<k<K (17)

Due to different requirements of different FL tasks for the latency and energy con-
sumption in each training round, a trade-off between time cost and energy cost can be
achieved by using the hyperparameter A. In Equation (11), A represents the preference for
the optimization objective. If A takes a relatively large value, it indicates that the optimiza-
tion model focuses more on reducing energy consumption during training. If A takes a
relatively small value, the optimization model pays more attention to reducing training
time cost. af-‘ represents the decision variable, where ai-‘ =1 indicates that device i is selected
to participate in federated training in the k-th communication round, and ai»‘ = 0 indicates
that device i does not participate in the federated training process. Equation (12) represents
the constraint on device operating frequency. Devices with excessively high or low fre-
quencies will not be selected, ensuring that the computational latency and computational
energy consumption are not too large. Equation (13) represents the constraint that the total
bandwidth of the selected devices should not exceed the server’s bandwidth. Equation (14)
represents the constraint that at least one device should be selected to participate in feder-
ated training in a communication round, and the maximum number of selected devices
does not exceed the total number of devices. Equation (15) is the constraint on the energy
consumption of device i, which should not exceed a specified upper limit.

3. Design of Node Selection Algorithm for Minimum Training Cost in FL Based
on DDQN

Due to the nonlinearity of the constraints and the unpredictable changes in the network
states of each device, solving the optimization problem described in Equation (11) is
extremely challenging. In order to find the optimal set of devices for each round of
federated training and achieve a dynamic trade-off between time cost and energy cost, the
DDOQN algorithm is considered for solving the node selection problem. This node selection
scheme is named LCNSFL.
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To solve the node selection problem in FL using the DRL approach, it is first necessary
to abstract the problem as a Markov Decision Process (MDP). An MDP consists of a system
state 5(t), an action space A(t), a policy 7, a reward function r, and neighboring states
S(t + 1). The detailed parameter description is as follows.

(a) System state: This chapter considers a practical scenario with dynamic network
bandwidth. However, it is assumed that the network state remains relatively stable
within a short time slot and does not undergo drastic changes within a few tens of
seconds. The state space S(t) for DRL is defined as the combination of the device’s
data transmission rate f(t), operating frequency {(t), signal transmission power Tj(t),
and the number of samples owned by the device I(t). Thus, at time slot ¢, the system
state can be represented by the following equation:

S(t) = {B(t),Z(6), 1(t), Tp(t)}- (18)

It is worth noting that due to the heterogeneity of devices and the instability of network
conditions, the data transmission rate and operating frequency of each device may vary
at different time slots t. Therefore, before each round of federated training, it is necessary
to sample the data transmission rate, operating frequency, and other information of each
device multiple times and take the average as the current state variables. On the other
hand, the number of samples owned by each device and the signal transmission power
are relatively stable, so the sampled values at time slot ¢ can be used as the system’s
state variables.

(b) The action space, denoted as A(%), is a vector consisting of discrete variables (0 or 1).
at € A(t) represents the selection status of device i at time slot t. a! = 1indicates that de-
vice i is selected to participate in federated training at time slot t, while a! = 0 indicates
that device i does not participate in federated training at time slot ¢.

(c) The policy 7 represents the mapping from the state space S(t) to the action space A(t),
ie., A(t) = t(5(t)). The goal of DRL is to learn an optimal policy 7t that maximizes the
expected reward based on the current state.

(d) The reward function r is aligned with the optimization objective, which is to minimize
the weighted sum of time cost and energy cost. Therefore, the reward function r can
be expressed as follows:

N
r= —(Tk—l—/\E afEl’?)
i=1

N .
= (Ai; ak (Eflc +EM 4 Ef."“”f) + max {tgjj + tom })

(19)

N K
- ()\‘21 ak (0’~T'Ci~di'fi2 + %pi,k + (tfj{l + 53" — Tk) Efs>
1= 1
T-Ci-d,' ﬁ
+irgsasuxb 7ot o }
(e) The adjacent state S(t + 1) is determined based on the current state S() and the policy
7t. The specific expression is as follows:

S(t+1) = S(t) + m(S(H)). (20)

It is important to note that the reward defined in Equation (19) is an immediate reward,
i.e., the instantaneous reward feedback, denoted as r;, received from the environment after
the agent takes action a(t) based on policy 7t at time ¢. The goal of DRL is to maximize the
sum of immediate rewards and discounted future rewards. Based on the Bellman equation
and temporal difference algorithm, to obtain the optimal policy using the value function
approach in DRL, it is necessary to estimate the action-value function for future time steps
and discount the action-value function for future time steps using a discount factor, y. The
temporal difference target is defined as r¢ + 7y - Q(s;.+1, a¢+1), where Q(s;, a¢) is the estimated
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action-value function at time t. Since r; is the true reward obtained at time ¢, it is considered
more reliable than the estimate Q(s;, a;). Therefore, the goal is to approximate the action-
value function estimated at time ¢ to r¢ + v - Q(S¢+1,4+1)- The temporal difference error,
re 4+ v - Q(s¢11,a141) — Q(st, ar), is optimized using loss functions such as mean square
error to improve the accuracy of the neural network’s estimation of the state value.

The FL node selection problem is addressed by employing the DDQN reinforcement
learning model on edge cloud servers, achieving a dynamic trade-off between energy
consumption and training time. The DDQN algorithm, which is capable of processing
continuous states and generating discrete actions through neural networks, is particularly
well suited for addressing the node selection challenge in FL within IoT scenarios. In
comparison with alternative algorithms such as DDPG, Trust Region Policy Optimiza-
tion, and others, the DDQN strikes a favorable balance concerning algorithmic simplicity,
sample complexity, and parameter tuning flexibility and mitigates the issue of Q-value
overestimation observed in the standard Deep Q Network algorithm.

As shown in Figure 3, edge cloud servers are usually deployed at edge locations close
to production or sensing devices, such as factories or production lines, and are connected
to IoT devices through base stations. Such a deployment can optimize the efficiency of data
processing and decision making, reduce data transmission delays, and improve the real
time and responsiveness of the system.

Edge Cloud Server WSRO e

environment state

Interactive

state 1 Data
— X fE Sampling

intelligent
agent

a actions affecting the
environment

Global
Model Smart Factory

Global Model ofe o®e —— ofe
o — 8 — 8 =15 J
distribution % CX.,’ % C;O S O‘,D

- &

—_ e
- - [
= o
and device status 0000000,

upload local model

Base Station

Figure 3. Edge cloud server deployment and overview of the DDQN algorithm.

The DDQN algorithm consists of a Q network and a target Q network. For conve-
nience’s sake, the target Q network is denoted as “target Q”. In order to compress the
action space, during the training phase, the index corresponding to the maximum Q value
output by the Q network at time ¢ is selected as the device number for local model updates.
This approach reduces the action space from 2N to N, where N is the total number of IoT
devices. The Q network outputs the action a; based on the current state s;, which interacts
with the FL environment. Subsequently, the state of the FL environment transitions from s;
to s;,7, and a scalar is returned to the agent as an immediate reward, ;. A boolean variable
“done” is defined as the termination flag for federated training. When the communication
rounds of federated training reach the upper limit, “done” is set to true, and the training
process is terminated. The tuple < sy, ay, 1, S¢.1, done > is stored in the experience replay
buffer as a record of the interaction between the agent and the environment. When the
interaction data in the experience replay buffer reach a certain quantity, the Q network
trains on the data from the buffer, updating the node selection strategy.
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The Q network is updated using a temporal difference algorithm. The state s; and
action g; are inputted into the Q network, yielding the action value at time ¢, denoted as
Q(st, ar). Then, the next state s;.7 is inputted into the Q network to obtain the q values
for different actions, and the action corresponding to the maximum q value, denoted
as Amaxq, is selected. Next, s;,; is inputted into the target Q network to find the q value
corresponding to the action a,sx4, denoted as Qtrget(s,, 1, Amaxq)- Finally, Q(st, at) is used as
the predicted value of the network, and ; + YQIT8 (54,1, Amaxq) is used as the actual value
of the network. Mean square error is used as the loss function to perform backpropagation
on ry + Q8 (5,1, Apaxg) — Q(st, ar). To ensure the stability of the training process, in
practice, only the parameters of the Q network are updated, while the weight parameters
of the target Q network are fixed. The detailed training flow of the LCNSFL node selection
algorithm is as follows (Algoritm 1):

Algorithm 1. The training process of the FL node selection algorithm based on LCNSFL.

Input: Q network, target Q network Qy,,, target network update frequency fi4, greedy factor e,
greedy factor decay factor 8, minimum sample size of the experience pool mBatch, maximum
communication rounds of FL T, total number of devices N.

Output: The trained Q network Q and the trained target Q network Q.

1: Initialize the local models of the devices, initialize the Q network as Q, initialize the target Q
network as Qy,r, and set the step counter as step = 0.

2:fort=1to T do

3: Collect the state s(t)

4 done = False

5 Generate a random number rd

6: if rd > epsilon then

7: a(t) = random(0,N)

8 else

9 a(t) = argmaxQ(s(t), a(t))
a(t)eA

10: end if

11: The edge server selects a device based on the action a(t), performs local model training on
the selected device, and updates the global model.

12:  Compute the instantaneous reward r(f) based on Formula (19) and update the state from s(t)
to s(t+1).

13: if t=T then

14: done = False

15: end if

16: Store the tuple information <s(t), a(t), r(t), s(t+1), done> in the experience pool.

17: if the number of samples in the experience pool > mBatch then

18: Randomly sample mBatch number of samples from the experience pool

19: Use the Q network to estimate the q value Q(s(t), a(t)) at time ¢.

20: Use the Q network to estimate the q value Q(s(t+1), a(t+1)) at time t+1 and obtain the
action @pgy, corresponding to the maximum q value.

21: Use the target Q network to estimate the action value Qyr(s(t+1), maxg) at time ¢ + 1.
22: Optimize the Q network based on the stochastic gradient descent (SGD) method using
Formula (23).

23: Update the greedy factore = ¢ - e~F.

24: if step%fiar = 0 then

25: Update the parameters of the target Q network (Qysr) using the parameters of the Q
network.

26: end if

27: step =step + 1

28: end if

29: end for

30: return the trained Q network Q and the trained target Q network Qqg;.
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The DDQN algorithm separates action selection and value estimation. Specifically, it
selects the action corresponding to the maximum q value at state s;,; from the Q network,
denoted as a*. The value of action a* at state s;,1 is estimated using the target Q network.
The calculation of the TD target in the DDQN is expressed as follows:

ylarget — p 4 yQtarset <st+1,argr§1a§ Q(St+1,ﬂ,;0);9). (21)
a e

During the training process, the parameters 6~ of the target Q network are frozen,
meaning that the target Q network is not updated. The parameters of the Q network,
denoted as 6, are copied to 60 every fr, iteration. The loss function of the Q network is
defined as follows:

)(6) = (Y“”gef — Q(s,3;6))>. (22)

The update process of minimizing the loss function (0) through gradient descent is as
follows for 0:
Ori1 = O + (Y8 — Q(st,a1;6:)) Vo, Q(st, ar; 0¢) (23)

The symbol « represents the step size or learning rate for the update.

4. Performance Evaluation

The training process of FL assisted by the LCNSFL node selection algorithm during
the testing phase is as shown in Figure 4.

Create 50 devices Time delay analysis of
FL system FL
Energy consumption Select the devices
analysis of FL system corresponding to the
Top-k g-values
Determine the
optimization objective and

the node selection model

The node selection model - -
X . Train the reinforcement
is transformed into an Collect system status 1 .
MDP earning agent

Figure 4. Training process of FL assisted by LCNSFL algorithm.

In the testing phase, the node selection strategy differs from that in the training phase.
During the training phase, only the devices with the highest q values are selected to
participate in the FL training process. However, in the testing and application phases, the
top n devices are chosen based on the descending order of their q values to participate in
local training and global model updates.

4.1. Experimental Environment Configuration
4.1.1. Dataset and Data Allocation Method

In order to show the application of the classification task, the MNIST dataset is selected
as the local dataset source, and a two-layer MLP model is used as the training model for FL.
The samples of each category were randomly sampled from the training set, and 50 samples
of each category are randomly sampled. A total of 500 samples are selected to form a local
dataset, and the constructed dataset is assigned to each IoT device.

4.1.2. Simulation Parameter Settings

To reflect the differentiated computing and communication capabilities of IoT devices,
different working frequencies and channel bandwidths are assigned to them. In the
simulation of the communication scenario of a smart factory in the suburbs of the city, the
path loss index 7 is generally between 2 and 4, and the constant A is generally between
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50 and 150. The device attribute information in this section’s experiment is referenced
from [28], and the specific settings can be found in Table 3.

Table 3. Simulation parameter setting.

Parameter Type Parametric Description Setting
Number of local iterations 3
Local dataset size 500
Local model and Number of fully connected layers 3
model parameters Activation function Relu
Learning rate 0.01
Optimizer SGD
Training steps 500
Reward discount factor 0.9
Q Network learning rate 0.001
Greedy factor 1
Greedy factor decay factor 0.01
DDQN parameters Minimun}i sample sizg (mBatch) 64
Q Network linear layer count 2
Q Network hidden layer dimension 128
Target Q Network update frequency (freq) 20
Weighting factor (A) 0.6
Number of devices 50
Path Loss Index (77) 3
A 100
Model size 10 MB
Node bandwidth 6~8 Mbps
Device attributes Slow node bandwidth 0.1~0.3 Mbps
Server bandwidth 100 Mbps
Transmission power 0.2~04w
Working frequency 500 MHz~900 MHz
Energy consumption per bit for training 0.02~0.04 ]
Cycle required for training a unit of bit data 6000~7000

For the convenience of experimental comparison, 10 devices are selected to participate
in the federated training process in each round.

4.1.3. Comparative Algorithms

Random selection strategy: in each round of federated training, random selection is
used to choose 1 devices to participate in federated training, and the federated averaging
algorithm is used to aggregate the global model.

The best network quality device selection strategy (Bnq): Wang et al., pointed out that
communication latency, which is influenced by factors such as network uncertainty and
bandwidth limitations, has been proven to be a bottleneck affecting the performance of
FL [29]. Therefore, selecting devices with good channel quality to participate in federated
training can reduce time costs and improve the training efficiency of FL. Based on this,
in each round of federated training, the n devices with the best channel quality, i.e., the
highest data transmission rate, are selected from all devices to participate in federated
training. The model aggregation is performed using the federated averaging algorithm.

4.2. DDQN Model Training and Effect Analysis

Figure 5 shows the plot of the change in the reward value obtained by the LCNSFL
algorithm in the training phase with the number of iteration rounds. It can be seen from the
figure that in the initial stage of training, the DRL agent learns a poor device selection policy
due to the lack of interaction information with the environment and thus obtains a small
reward value. With the increase in iteration rounds, the DRL agent constantly updates
its node selection strategy, making the optimization objective expressed in Equation (11)
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smaller and smaller, so that the reward value obtained by the DRL agent becomes higher
and higher, and converges after 300 iterations. A higher reward value obtained by the
DRL agent indicates a better device selection policy learned by the DRL agent. Here, MA

is the Moving Average (MA), and the orange dotted line is the result of smoothing the
return curve.

- l 0 e
_l ;
o
5
H
R 20
=25
—— Reward
---- MA Reward
_30 4
0 100 200 300 400 500

Episodes
Figure 5. Training return curve of the LCNSFL algorithm.

Figure 6 shows the change plot of the loss function of LCNSFL in the training phase
with the number of training rounds, where the blue curve represents the loss function of
each training round and the orange dotted line is the result after smoothing the loss curve.
Corresponding to Figure 5, in the early stage of training, due to the lack of interaction
information between the DRL agent and the FL environment, the loss function represented
by Equations (23) is large. With the increase in the number of interactions between the
Q network and the environment, the Q network and target Q network update their own
parameters by using the interaction data and Equation (24) so that the training loss decreases
rapidly. After 200 iterations, the training loss reaches a low level and tends to be stable.
This indicates that the node selection scheme based on the DDQN proposed in this chapter

can converge, and the DRL agent can better complete the device selection task in the
FL environment.

120 1
—— Loss
100 4 MA Loss
80 A
2
]
z 604
&
a
(]
40_
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0 0 100 150 200 250 300 350
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Figure 6. Loss function change curve during the training phase.
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The variation curves of training time cost and energy cost for the LCNSFL algorithm-
assisted training phase are displayed in Figures 7 and 8. The horizontal axis represents the
communication rounds of FL, and the vertical axis represents the training cost of FL. In
the early exploration stage, the intelligent agent adopts a more random strategy for device
selection to obtain richer interaction data. As a result, the training time cost and energy
cost of FL show significant fluctuations. As the number of training iterations increases,
the DRL agent learns more optimal device selection strategies, resulting in a decrease in
the optimization objective represented by Equation (11). Therefore, in the later stages of
training, the time cost and energy cost of each round of federated training tend to stabilize
and decrease.

200 - —— Time Delay

-=-= MA Time Delay
175 A

150 1

125

Time Delay(s)

75 1

50 \

25 A

0 100 200 300 400 500
Episodes
Figure 7. The curve depicting the variation in time cost during the training phase.

160 A

— Energy Cost

140 1 --== MA Energy Cost
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=
I

100 -+
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0 100 200 300 400 500

Episodes
Figure 8. The curve illustrating the variation in energy cost during the training phase.
4.3. Comparison of Training Costs for Different Equipment Selection Strategies

To validate the performance of the LCNSFL node selection algorithm, this experimental
section will consider the time cost, energy cost, weighted training cost, and global model
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accuracy required for each round of federated training as measures of the node selection
algorithm’s performance. To demonstrate the algorithm’s robustness, five devices with
poor channel quality will be randomly selected.

To demonstrate the effectiveness of the LCNSFL algorithm, in Figure 9, we firstly
present the time cost of FL in each round of federated training under the assistance of
three node selection strategies, LCNSFL, random selection, and Bnq selection, in a dynamic
network scenario. From the graph, it can be observed that FL assisted by the random
selection algorithm tends to select devices with weaker computing capabilities or poorer
channel quality. Bnq selection, guided by the algorithm, selects the best n (n = 10) devices
in terms of channel quality for each round of training, thus being less affected by changes
in channel conditions. However, devices with good channel quality do not necessarily
possess strong computing capabilities. The Bnq selection algorithm may select devices with
good channel quality but weak computing capabilities, resulting in higher time costs due
to more time being consumed for local model training. The LCNSFL algorithm considers
the computing resources and channel bandwidth of devices comprehensively, achieving
minimization of both computation and transmission time. It avoids selecting devices with
poor channel quality or weak computing capabilities. Therefore, FL assisted by the LCNSFL
algorithm exhibits lower time costs compared with the above two algorithms. The time
cost fluctuations between different training rounds are smaller, allowing it to better adapt
to the FL environment and exhibit robustness.

—e— Random selection
B selection

250 e LCMSFL
200

W

I

>

3]

w

o 150 A

L)

£

[i=
100 - \I 4 1! k {_

50 WMW

Figure 9. Comparison of time cost.

The energy cost of FL in each round of federated training under the assistance of three
node selection strategies is compared in Figure 10. It is evident from the graph that FL
assisted by LCNSFL has lower energy costs. The fluctuations in energy costs between
different training rounds are also minimized. This is attributed to the reinforcement
learning agent’s ability to intelligently select the optimal subset of devices based on the
collected system states, achieving a dynamic trade-off between energy cost and time cost.

Finally, in Figure 11, we compare the weighted cost of federation learning assisted by
three node selection strategies in each round of federation training, where the weighted
cost of one round of federation training consists of 50% time cost and 50% energy cost.

The LCNSFL algorithm takes both time and energy costs into account when perform-
ing node selection and minimizes the weighted sum of time and energy costs for each
round of federation training in the DRL approach. It is obvious that the weighted cost
consumed by the LCNSFL algorithm in each communication round is significantly smaller
than that consumed in the other two node selection strategies, indicating that the LCNSFL
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algorithm can optimize the training cost of FL in dynamic network scenarios by node
selection in IoT scenarios.
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Figure 10. Comparison of energy cost.
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Figure 11. Comparison of weighted training.

Table 4 provides a statistical summary of the time cost, energy cost, and weighted cost

incurred during the first 50 rounds of federated training under the assistance of the three
node selection strategies.

Table 4. Cost comparison for the first 50 rounds of federated training.

Algorithm Name Time Cost (s) Energy Cost (J) Weighted Cost
LCNSFL 2821.1 22,816.5 12,818.0
Random Selection 7769.0 30,449.0 19,109.1
Bnq Selection 4879.0 26,587.8 15,733.4

In terms of time cost, the LCNSFL algorithm reduces this by 63.7% compared with
the random selection strategy and 42.2% compared with the Bnq selection strategy. In
terms of energy cost, the LCNSFL algorithm reduces this by 25.1% compared with the
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random selection strategy and 14.2% compared with the Bnq selection strategy. In terms
of weighted cost, the LCNSFL algorithm reduces this 32.9% compared with the random
selection strategy and 18.5% compared with the Bnq selection strategy. This proves that
the overall performance of the LCNSFL algorithm is better than that of the other two
traditional algorithms.

In Figure 12, the accuracy performances of the global models trained under the
assistance of the three node selection algorithms on the test dataset are given. From the
graph, it can be observed that all three node selection strategies converge quickly and
achieve relatively high accuracy for the global model. The randomness in device selection
allows the federated model to learn more diverse data features, which contributes to
the convergence and improvement in the global model’s accuracy. Due to the inherent
randomness of environmental changes, both the LCNSFL and Bnq selection algorithms
exhibit a certain level of randomness in device selection based on the sampled information.
As a result, all three algorithms assist in achieving high convergence accuracy for the global
federated model.
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Figure 12. Comparison of accuracy.

From the experimental results, it can be observed that the LCNSFL algorithm, without
compromising the accuracy of the global model, effectively reduces the time cost and
energy cost of each round of federated training in dynamic network scenarios through
precise node selection. This algorithm exhibits good robustness and resilience.

5. Conclusions

The application of FL in SAGIN facilitates collaborative modeling among devices while
ensuring the protection of endpoint device data privacy, providing a data-driven solution.
However, challenges such as heterogeneous computational resources, fluctuating data
transmission rates due to environmental factors, and limited energy resources significantly
impact device selection during the federated training process.

In this study, we established models for time delay and energy consumption in the
federated training process. Subsequently, we introduced the LCNSFL algorithm based
on DDQN to minimize the time and energy costs in each round of federated training.
The LCNSFL algorithm adaptively selects the optimal device subset by considering the
collected device status information, achieving a dynamic trade-off between time cost and
energy cost in federated training.

In our simulation experiments, we observed that the LCNSFL algorithm gradually
increases rewards during the training phase and tends to converge after 400 rounds of
iterations. The training loss also decreases gradually, reaching a relatively low level and
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stabilizing after 400 iterations, indicating effective convergence. Once the reward values
converge, the DRL agent performs well in device selection tasks in the federated learning
environment, and the time and energy costs of each round of federated training also tend
to stabilize.

To further confirm the superiority of the LCNSFL algorithm, we compared it with
traditional node selection strategies, namely, the random selection and Bnq selection
approaches. The results indicate that the random selection algorithm tends to select devices
with weaker computing capabilities, poorer channel quality, or higher energy consumption
in federated learning. While Bnq selection performs better than random selection in these
aspects, the LCNSFL algorithm outperforms both strategies overall. Therefore, the LCNSFL
algorithm, without compromising the global model’s accuracy, effectively reduces the time
and energy costs per round of federated training in dynamic network scenarios through
precise node selection, demonstrating robustness.

Overall, the LCNSFL algorithm offers a promising solution for addressing challenges
in federated learning within the SAGIN framework, showcasing its effectiveness and
robustness in dynamic network environments.
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