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Abstract: The paper evaluates the usability of remote satellite-based and proximal ground-based
agrometeorological data sources for precision agriculture and crop production in Croatia. The com-
pared agrometeorological datasets stem from the open-access data sources Copernicus CDS and the
Agri4Cast portal, and commercial in situ agrometeorological stations (PinovaMeteo) which monitor
environmental parameters relevant to the physiological state of crops. The study compares relevant
parameters for 10 different locations in Croatia for three consecutive years (2019, 2020, and 2021)
to investigate whether model-based data from ERA5-Land and Agri4Cast are well-correlated with
ground measurements from independent in situ stations (PinovaMeteo) for specific agrometeoro-
logical parameters (air and soil temperature, and precipitation). Our results indicate the following:
both the ERA5-Land and Agri4Cast datasets show mostly strong positive correlations with ground
observations for air temperature, modest correlations for soil temperature, but modest or even low
correlations for precipitation. Analysis of the residuals indicates higher overall residual values,
especially in areas with complex topography and near large bodies of water or the sea, and deviations
of residuals that may limit the usability of satellite- and model-based data for decision-making
in agriculture.

Keywords: remote sensing; ground-based sensing; ERA5-Land; Agri4Cast; precision agriculture;
Pearson correlation; principal component analysis

1. Introduction

Precision agriculture (PA) is a data-driven approach to farming that uses a range of ICT
solutions—remote sensing, Internet of Things (IoT), artificial intelligence (AI)—to improve
and increase crop yields and the profitability of agricultural production, while reducing the
amount of resources needed for food production, such as the amount of water, fertilizers,
herbicides, and insecticides [1,2]. This blend of technologies allows accurate provision and
analysis of field data in (near) real time, thus automating production and decision-making
processes to maximize profits and increase crop productivity while promoting environmental
sustainability [3]. The major difference compared to the classical approach to agricultural
production is that PA allows decisions to be made quickly and at different levels of spatial
granularity, ranging from an entire field to a square meter of field, to account for the spatial
variability of crops. Such decisions are facilitated by monitoring both crops and fields through
different sensing technologies applied either in close proximity to the crops (proximal ground-
based sensing) or remotely from the air/sky (remote air- or space-borne sensing) [4].

Proximal ground-based sensing monitors environmental parameters and the sta-
tus of crops in fields at close range. Devices for proximal sensing may be (i) hand-held,
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(ii) mounted on tractors or farm machinery, or (iii) stationary [2]. Stationary devices are
usually in situ agrometeorological stations equipped with various sensors for monitoring
environmental parameters (air and soil temperature/humidity, precipitation levels, wind
speed, solar and global radiation, and evapotranspiration) and are among the most popular
ground-based solutions. They fall into the category of IoT solutions since agrometeorologi-
cal stations are connected to the Internet and back-end platforms to provide continuous
access to acquired sensor data in (near) real time [5]. Remote space-borne sensing involves
using satellites to collect data about crops and fields from space, while airborne sensing
utilizes unmanned aerial vehicles (UAVs) for mobile monitoring at much shorter distances.
Both UAVs and satellites typically use cameras (RGB, multispectral or hyperspectral) to
intermittently collect the images required to determine vegetation indices to assess the
physiological state of crops or the characteristics of soil [4]. The largest difference between
these three sensing options is in the effort required to deploy the sensors and to start
collecting data. More importantly, the employed sensors differ based on the spatial (size of
the pixel that represents an area on the ground), spectral (number of captured bands), and
temporal (interval between two consecutive measurements) resolution they provide [6].

Remote space-borne and in situ sensing is a mature technology which has led to the
creation of open datasets estimating a wide range of land surface parameters at high reso-
lution that are very useful for PA. Satellite data complemented by ground measurements
serve as the basis for the ERA5-Land reanalysis dataset that provides information on land
surface parameters [7]. The ERA5-Land dataset is produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) as part of the Copernicus Climate Change
Service (C3S) and has been offered openly since 2019. It provides hourly estimates of a wide
range of land surface parameters at a spatial resolution of 9 km. Estimates are produced
by combining historical observations with a numerical weather prediction (NWP) model.
The second comparable data source stemming primarily from in situ sensing is Agri4Cast
provided by the EU Joint Research Centre (JRC) [8], which focuses on crop monitoring and
yield forecasting at the European level. Agri4Cast is a specialized product for PA, which,
among other services, releases datasets for a variety of agrometeorological data, such as
air and soil temperature, precipitation, and evapotranspiration. In this work, we use the
Agri4Cast agrometeorological dataset, which contains meteorological observations from
weather stations interpolated on a 25 × 25 km grid as average daily values.

In this paper, we analyze and compare two open-access datasets that provide estimates
of land surface parameters based on remote space-borne and in situ sensing: ERA5-Land
and Agri4Cast. We evaluate how well their models match the observations obtained from
independent ground-based in situ agrometeorological stations (PinovaMeteo) deployed
in different farming regions of Croatia. Measurement data from 10 different locations in
Croatia for three consecutive years (2019, 2020, and 2021) are used in our study to investigate
the following environmental parameters: air and soil temperature, and precipitation. A
statistical analysis is performed to compare PinovaMeteo readings with the corresponding
ERA5-Land and Agri4Cast datasets to determine the statistical significance of the similarity
between model-based parameter estimates with a gridded resolution and actual in situ
observations from a micro-location.

In particular, our original contribution includes the following:

• We use the Pearson correlation coefficient and significance test to assess the correlation
of the ERA5-Land and Agri4Cast datasets with the available ground measurements
for the listed agrometeorological parameters at 10 different locations in Croatia.

• We perform principal component analysis to evaluate the residuals between the
different data sources and deviations of remote sensing compared to actual ground-
based observations to detect potential systematic errors.

A number of studies have compared satellite-based agrometeorological data with
ground measurements from on-site stations, as we discuss in detail in Section 2. However,
it is increasingly important to validate the accuracy of remote sensing models against
ground measurements since satellite-based data are becoming important for monitoring
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and managing agricultural production. In our previous analysis [9], we compared a larger
number of agrometeorological parameters from the same three data sources for a single
location in Croatia using only the Pearson correlation coefficient. In this paper, we extend
the statistical analysis and compare a significantly larger dataset covering 10 locations in
Croatia with different topographical features and in different climatic regions for the period
from January 2019 to December 2021.

In a broader context, our aim is to determine the extent of usefulness and limitations
of remote sensing products compared to ground-based observations for PA. Although
remote sensing is limited in terms of spatial and temporal resolution compared to ground-
based sensing, it is widely used by various stakeholders in agribusiness due to its global
coverage and cost-effectiveness. Typical applications include crop yield prediction, water
management, and disaster risk assessment. However, micro-meteorological conditions
often affect farmer’s fields and require rapid data-driven decision making. In such cases, the
ground-based stations show unprecedented temporal resolution, however, with a strong
limitation in spatial context as they are bound to a specific micro-location. Recent advances
in computational tools, especially in the areas of IoT technologies and edge computing,
require the integration of multiple data sources to unify the model-based monitoring with
ground-based stations in a robust, scalable manner. For this effort to succeed, comparison
of data sources over different topological and geographic scenarios is needed. Our research
thus contributes to the first step in this integration, comparing time-series data from three
data-sources, aiming to capture their weaknesses and advantages for integration into the
cross-calibrated agrometeorological system for Agriculture 4.0.

The rest of the paper is organized as follows: Section 2 presents related work inves-
tigating existing studies which compare satellite-based agrometeorological datasets with
ground-based observations from in situ stations. The data sources in Croatia used for our
statistical analysis are described in Section 3, while the results of our statistical analysis and
comparison are presented in Section 4 for 10 chosen locations in different regions of the
country. Section 5 discusses the results of our study, while Section 6 concludes the paper.

2. Related Work

Remote sensing and the potential of satellite data to transform agricultural practices
towards eco-efficiency and higher productivity has been highlighted in a number of studies:
It can support decision making in an accessible and effective manner with a large spatial
coverage and relatively low cost [10]. The use of remote sensing technologies can be seen
in many PA applications today, e.g., crop monitoring, irrigation management, nutrient
application, disease and pest management, and yield prediction [2].

There are a number of studies comparing satellite agrometeorological data with ground
measurements from in situ stations focusing either on a specific land parameter [11,12] or
region [12–14]. A recent study that is the most relevant to our work compared the ERA5 and
ERA5-Land datasets with ground-based agrometeorological data from 66 automatic weather
stations in Italy [14]. The study explored the following parameters: solar radiation, air tem-
perature, relative humidity, wind speed, and reference evapotranspiration. The main findings
were the following: The air temperature estimates offered the most accurate reanalysis pre-
dictions, while reference evapotranspiration estimates were assessed as reliable. The authors
point out that the climatic conditions affected the accuracy of the reanalysis products. In
contrast to previous studies which have identified topographic features to affect the accuracy
of remote sensing products (e.g., [15]), this study did not confirm such a relationship.

The difficulties in accurately measuring and forecasting agrometeorological parameters
are particularly acute in the case of precipitation. This is because precipitation is inherently
heterogeneous in space and time. Therefore, the authors in [12] performed a study aimed at
a comparative analysis of satellite-based rainfall products (SRPs) and gauge data to ascertain
the reliability of using SRPs for daily rainfall measurements in Zambia. SRPs were compared
to rain gauge data from 35 meteorological, agrometeorological, and climatological stations in
Zambia for the period 1998–2015. Statistical analyses were conducted at different temporal
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scales (e.g., daily, monthly, seasonal, annual). The study showed that the use of carefully
validated SRPs was suitable as a substitute for daily rainfall measurements in Zambia. While
the results of the work are useful for Zambia, they cannot be generalized to other regions as
the behavior of SRPs differs from one region to the other [16].

Researchers have recently pointed out the challenges and limitations associated with
both remote and proximal sensing [4]. On the one hand, global coverage and cost-effectiveness
are identified as the main advantages of remote sensing, while it has limitations in terms of
spatial and temporal resolution. On the other hand, the low spatial distribution and high
cost of ground measuring stations limit their monitoring coverage for large agricultural areas,
while more accurate measurements and dense temporal resolution are their major strengths.
Recent works are, thus, exploring the complementary use of remote and proximal sensing to
provide more accurate agrometeorological data for PA practices through sensor fusion.

For example, in [17], the authors proposed simultaneous use of ground stations
and satellite data to improve and enhance agrometeorological products. They presented
examples of the use of meteorological products combining classical ground measurements
and data from meteorological radars and satellites, applied in an agrometeorological
service provided by the Institute of Meteorology and Water Management in Poland. It was
emphasized that further improvement in the methods for sharing agrometeorological data
and combining data from ground stations with increasingly better satellite products are
essential for modern agriculture in the conditions of progressive climate change. Another
example is a data fusion combining remote sensing, UAVs, and autonomous driving
machines to optimise vineyard cultivation and production [18].

The authors of [19] used Landsat 8 satellite images together with a net of agrometeo-
rological stations data for acquiring the surface temperature in the northwestern side of
São Paulo state, Brazil. The authors performed a performance evaluation of the methods
suitable for acquiring surface temperature by using high-resolution satellite images without
a thermal band, having available spatially distributed weather data.

Satellite image time series (SITS), such as those obtained by Sentinel-2 (S2) satellites,
provide a large amount of information due to their combined temporal, spatial, and spectral
resolutions. The high revisit frequency and spatial resolution of S2 result in the availabil-
ity of detailed information for analyzing small objects and increase in the probability of
acquiring cloud-free images. These characteristics are of interest in precision agriculture
where temporally dense SITS can benefit the understanding of crop behaviors. Therefore,
the authors of [20] proposed a method suitable for the analysis of small crop fields in S2
dense SITS which could account for the S2 characteristics. The method fuses spatiotemporal
information, analyzes data spatiotemporal evolution, and extracts relevant spatiotemporal
information. The effectiveness of the proposed method was corroborated by experiments
carried out on S2-SITS acquired over an area located in Barrax, Spain.

3. Available Agrometeorological Data Sources in Croatia

Croatia consists of three main geographical regions [21]: the Pannonian and para-
Pannonian plains in the north and north-east, the central mountain belt in the west and
south, and the Croatian coastal area. The Pannonian plains are the most fertile agricultural
regions in Croatia, enriched by alluvial deposits from the Sava and Drava rivers. The central
mountain belt offers some arable, meadow, and pasture land, while the coastal region is
mostly barren and mountainous with little agricultural land.

Croatia has a moderately warm and rainy climate with monthly average temperatures
ranging from −3 °C (in January) to 18 °C (in July), depending on the season and region. The
warmest areas are found on the Adriatic coast and its immediate hinterland, characterized
by a Mediterranean climate. The coldest parts of the country are the mountainous central
regions, Lika and Gorski Kotar, where a snowy forest climate prevails at altitudes above
1200 m. The average annual precipitation ranges from 300 to 3500 mm, depending on
the geographical region and climate type. The prevailing winds are determined by the
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local conditions. The sunniest parts of the country are the outer southern islands, Hvar
and Korčula.

Our study includes a total of 10 sites with agrometeorological stations distributed
throughout Croatia, as shown in Figure 1. Four sites are in the Slavonia region (Suhopolje,
Skenderovci, Našice, Kamenac), one in Med̄imurje (Nedelišće), one in Istria (Funtane), one
in Lika (Otočac), and three in Dalmatia (Dugi Otok, Oklaj, Potomje).

Figure 1. Map of Croatia with stations highlighted by gray squares

3.1. Copernicus Climate Data Store and ERA5-Land Dataset

The Copernicus services mainly rely on data from the Sentinel satellites, which are
owned by the European Union and used primarily for Earth observation. The first satellite
was launched in 2014. Additionally, some of the data are obtained from ground-based
meteorological stations, ocean buoys, and air quality sensors [22]. These in situ measured
data are used to calibrate and verify the satellite data and to provide reliable and consistent
information.

The Copernicus climate data archive includes the ERA5 dataset, a fifth-generation
global atmospheric reanalysis from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Covering the period from January 1950 to the present, ERA5 serves
as a comprehensive resource of Earth observation. The dataset utilizes a more advanced
version of the ECMWF Integrated Forecast System model, offering increased temporal
output and higher horizontal and vertical resolutions [23].

The data used in the study are from the ERA5-Land dataset. Compared to ERA5
and the old ERA-Interim, the main advantage of ERA5-Land is the improved horizontal
resolution, which is 9 km compared to 31 km (ERA5) or 80 km (ERA-Interim), while the
temporal resolution is hourly, as in ERA5. ERA5-Land provides higher resolution data
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based on an additional examination of the land component of the ECMWF ERA5 climate
reanalysis [7,24]. This reanalysis method seamlessly integrates observations and models to
fill data gaps, contributing valuable insights about global weather and climate patterns.

The ERA5-Land dataset relies on atmospheric forcing derived from ERA5 near-surface
meteorology state and flux fields [7]. Parameters such as air temperature, specific humidity,
wind speed, surface pressure, and surface fluxes, including radiation and precipitation, are
crucial parameters of the ERA5-Land dataset. A careful interpolation process is applied
to transform these parameters from the ERA5 resolution to the ERA5-Land resolution,
with precision improved by a linear interpolation method based on a triangular mesh.
The hourly atmospheric forcing for ERA5-Land is maintained consistently over its en-
tire production period. This is achieved by assimilating conventional meteorological and
satellite observations using a four-dimensional variational assimilation system (4D-Var)
and simplified extended Kalman filter (SEKF) systems. The ECMWF land surface model,
specifically, the Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land
(CHTESSEL) forms the core of the ERA5-Land model. Further details about the model can
be explored in the Integrated Forecasting System (IFS) documentation [25].

The Climate Data Store (CDS) is the core of the Copernicus Climate Change Service,
also known as C3S [26]. The CDS provides free access to information about past, present,
and future climate observations, and serves as a one-stop site for users to explore climate
data. It provides a variety of quality-controlled climate data that are made available to
users in a consistent and dependable manner. The Copernicus site [27] emphasizes that the
environmental data processed by Copernicus services are derived from Earth observation
satellites and ’in situ’ sensors. These sensors, whether ground-based, in the ocean, or in the
air, offer precise measurements at specific sites. Notably, for CDS, satellite observations
are integrated into the calculations, enhancing both the accuracy and spatial resolution of
the model for ERA5-Land parameters explored by this study. CDS API is a service that
provides programmatic access to CDS data in Python (using the CDS API client).

Table 1 lists the selected parameters from the ERA5-Land dataset which we used in this
study. The dataset also contains other data types that were not explored in this study (For a
more extensive list of comparable parameters from the three data sources, please refer to [9]);
however, those mentioned were selected since they are informative for PA and were adequate
for the subsequent statistical analysis. The data are retrieved through the CDS API, which is
accessed via a Python script. To properly download the data, users must first register and
then generate a .cdsapirc file.

Table 1. ERA5-Land parameters selected for the statistical analysis.

Name Unit Description

2 m temperature K air temperature at 2 m above the surface of land, sea, or inland waters
soil temperature level 1 K temperature of the soil in layer 1 (0–7 cm) of the ECMWF Integrated Forecasting System

total precipitation m accumulated liquid and frozen water, including rain and snow

3.2. Agri4Cast Portal

The Agri4Cast data collection, developed by the Joint Research Centre (JRC) and
its Monitoring Agricultural ResourceS (MARS) unit, has been an important resource of
agrometeorological information to EU member states since 1975. This comprehensive dataset
contains daily weather data from a network of at least 4200 weather stations, characterised
by an irregular distribution and density. In addition, the dataset contains data from six
weather forecast products, five of which come from ECMWF and one from the Copernicus
programme. These forecast products exhibit variations in forecast depth and have a different
number of possible realisations, referred to as “members”. The ECMWF weather products,
including the ERA model, contribute valuable forecast data to the Agri4Cast collection.
Given the non-uniform distribution of weather stations and the varying distances between
them, both the observed weather data and the forecast products are then interpolated onto a
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fixed 25 × 25 km grid that matches the grid used by ERA and E-OBS [28]. The grid-based
data acquisition assumes homogeneity within the 25 × 25 km grid cells. To achieve this,
two different interpolation methods are used. Precipitation is interpolated using regression
kriging, while the Crop Growth Monitoring System (CGMS) is used for the interpolation of
all other meteorological elements [29].

In contrast to ERA5-Land, this dataset in not based on satellite observations, but rather
on the following two components:

• daily weather information from a large synoptic weather station network, and
• six different weather forecast products, which provide a comprehensive and versatile

resource for agrometeorological analyses.

Through the Agri4Cast portal, users can submit requests and download agrometeoro-
logical data for Europe. The desired data are filtered by country and then by region within
each country before downloading. For the Republic of Croatia, data are provided for the
continental and Adriatic regions, as well as for each county within these regions. When
submitting a request, a user can specify one or more datasets to download and the desired
time period. The data are available from 1 January 1979. The portal is updated once a year,
and the previous year’s data are usually made available in January. The Agri4Cast data
are usually available 15 min after selecting the appropriate parameters and submitting the
request, after which the user is notified via an e-mail address used during registration on
the site. The generated data are provided as a CSV file.

The parameters from the Agri4Cast dataset used in our analysis are listed in Table 2.

Table 2. Agri4Cast parameters selected for the statistical analysis.

Description Unit

average daily temperature °C
sum of precipitation per day mm

3.3. PinovaMeteo

PinovaMeteo is an in situ agrometeorological station developed by the company
Pinova from Čakovec, Croatia. It is used in orchards, vineyards, vegetable gardens, plant
nurseries and farms, and allows users to check current and historical measurements via
mobile and web applications. The PinovaMeteo station is fully automated and connected
to the Internet, so users do not need to visit it to collect data. The station is powered by a
solar panel during the day and operates at night with a battery that is charged during the
day. The PinovaMeteo station continuously collects data every 10 min and submits data
to a backend server every half an hour or hour (more or less frequently depending on the
user’s needs and battery state).

The parameters measured by the PinovaMeteo agrometeorological stations which are
used in our study are listed in Table 3.

Table 3. PinovaMeteo parameters used in the statistical analysis.

Description Unit

air temperature °C
soil temperature °C

rainfall mm

4. Comparison of Available Datasets for Locations in Croatia

To assess and compare the open access data sources, the Copernicus CDS and Agri4Cast
portal, we compared the selected data types with those collected by the PinovaMeteo agrom-
eteorological station for the listed locations in Croatia and the same time frame (January
2019 to December 2021). The data from the ERA5-Land and Agri4Cast datasets were
compared with the readings obtained from the PinovaMeteo stations.
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The dependence between pairs of time series is usually quantified by the Pearson
correlation. In this work, we have used it to estimate the relationship between the above
datasets. The Pearson correlation coefficient is a measure of overall similarity that reduces
the relationship between two signals to a single value. In other words, it is defined as a
measure of the linear relationship between two characteristics that expresses the ratio of
the product of the covariances of x and y and their standard deviations. Given a pair of
random variables, the formula is:

r =
Cov(x, y)
(σxσy)

(1)

where:

r is a Pearson correlation coefficient,

Cov(x, y) is covariance of variables x and y,

σx is standard deviation of x,

σy is standard deviation of y.

Correlation coefficients are calculated for comparable data types in the available data
sources for each month of 2019, 2020, and 2021. The daily mean is used as input for
the monthly calculation of the correlation coefficient for comparison of the PinovaMeteo
readings with the Agri4Cast dataset that offers daily values, and the hourly mean to
calculate the correlation between ERA5-Land and the PinovaMeteo data.

4.1. Comparing ERA5-Land with PinovaMeteo

The first analysis (ERA5-Land vs. PinovaMeteo) includes the following parameters: air
temperature, precipitation, and soil temperature. Table 4 displays the calculated correlation
values for air temperature at the nine specified locations. These values reveal the existence
of dependable seasonal temperature trends, supported by the enduringly robust positive
correlations observed across most months and stations during the three-year duration. To
deduce these consistent seasonal temperature patterns from the correlation data, we analyze
the strength, consistency, and uniformity of temperature trends among diverse months
and stations throughout this extended timeframe. Positive correlations, particularly when
conforming to seasonal cycles, signify that temperature variations reliably synchronize
with the changing seasons. This indicates a strong agreement between the PinovaMeteo
and ERA5-Land air temperature data in these periods. The observed dynamic correlation
patterns, which vary from month to month, may reflect underlying temperature patterns,
with lower correlations observed particularly in winter months at the beginning and end
of each year. While there is no clear pattern for the months as a whole, it can be observed
that some stations consistently have lower correlation values than others, namely Funtane,
Potomje, and Otočac. The first two (Funtane and Potomje) are located close to the sea, while
Otočac is in a valley surrounded by high mountains. It is important to consider the year-
specific variations, as certain months in certain years show relatively weaker correlations.
For example, January has lower correlations at certain stations in both 2019 and 2020,
which could be attributed to unique weather events or local variations in these periods. In
summary, these results confirm the reliability of both the PinovaMeteo and ERA5-Land
datasets for monitoring temperature changes in the studied regions.

The correlation values for precipitation presented in Table 4 show that the correlation
between the PinovaMeteo and ERA5-Land datasets for precipitation is consistently weak
(mostly below 0.5) across different months and years, and never exceeds the threshold
of 0.7. These results suggest possible discrepancies or variations in precipitation data be-
tween the two sources. There are also differences in the correlation strength between the
different stations. For example, while we cannot identify a station with consistently higher
correlation compared to others, stations such as Kamenac and Funtane even show negative
correlations. This could indicate differences in data quality between stations. It should also
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be noted that ERA5-Land covers a larger area (9 × 9 km), while Pinova measures precipi-
tation at specific locations, which may lead to such low correlation values. The presence
of negative correlations in some cases, particularly in the summer months of 2019 and
2020, raises questions about the alignment of the PinovaMeteo and ERA5-Land datasets
for precipitation data during these periods. This uncertainty raises concerns about the
reliability of these datasets for monitoring precipitation changes in specific scenarios.

Table 4. Correlations between PinovaMeteo and ERA5-Land data. Correlations below the correlation
threshold value of r = 0.7 are marked in bold. The month with the strongest correlation value for each
location within one year is highlighted in orange and the weakest in blue.

Parameter Year Month Stations
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e
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će
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to
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c

O
kl

aj

Po
to

m
je

Su
ho

po
lj

e

K
am

en
ac

Sk
en

de
ro

vc
i

Fu
nt

an
e

January 0.863 0.913 0.752 0.885 0.768 0.920 0.914 0.826 0.796
February 0.936 0.949 0.821 0.897 0.725 0.923 0.915 0.838 0.827

March 0.932 0.959 0.900 0.910 0.779 0.928 0.941 0.894 0.889
April 0.932 0.933 0.834 0.912 0.848 0.923 0.892 0.883 0.876
May 0.944 0.942 0.873 0.908 0.860 0.954 0.946 0.918 0.901
June 0.926 0.906 0.820 0.915 0.847 0.926 0.932 0.881 0.865

2019 July 0.883 0.857 0.815 0.862 0.815 0.861 0.884 0.859 0.800
August 0.943 0.923 0.792 0.908 0.855 0.935 0.933 0.901 0.865

September 0.925 0.923 0.805 0.882 0.800 0.900 0.933 0.895 0.854
October 0.945 0.923 0.724 0.917 0.839 0.907 0.919 0.842 0.864

November 0.908 0.901 0.812 0.888 0.822 0.909 0.932 0.849 0.865
December 0.813 0.951 0.819 0.933 0.825 0.873 0.892 0.828 0.892

January 0.805 0.792 0.670 0.861 0.669 0.722 0.749 0.830 0.872
February 0.913 0.924 0.900 0.905 0.791 0.940 0.939 0.914 0.858

March 0.954 0.960 0.908 0.931 0.758 0.958 0.952 0.910 0.843
April 0.941 0.921 0.816 0.896 0.817 0.933 0.925 0.908 0.897
May 0.923 0.923 0.821 0.896 0.862 0.934 0.914 0.907 0.823
June 0.910 0.916 0.844 0.902 0.848 0.916 0.914 0.890 0.792

Te
m

pe
ra

tu
re

2020 July 0.923 0.928 0.828 0.906 0.864 0.920 0.945 0.890 0.817
August 0.909 0.925 0.776 0.874 0.831 0.904 0.895 0.877 0.724

September 0.934 0.936 0.831 0.912 0.828 0.919 0.931 0.916 0.759
October 0.940 0.934 0.826 0.924 0.841 0.942 0.908 0.898 0.766

November 0.936 0.920 0.747 0.880 0.764 0.941 0.912 0.922 0.807
December 0.938 0.865 0.780 0.900 0.814 0.928 0.920 0.835 0.838

January 0.922 0.952 0.909 0.938 0.868 0.925 0.937 0.900 0.893
February 0.956 0.948 0.895 0.935 0.885 0.948 0.948 0.907 0.872

March 0.940 0.957 0.887 0.909 0.773 0.947 0.939 0.894 0.896
April 0.937 0.938 0.845 0.918 0.842 0.941 0.939 0.900 0.838
May 0.921 0.935 0.815 0.899 0.836 0.926 0.928 0.896 0.827
June 0.932 0.937 0.842 0.907 0.866 0.927 0.948 0.803 0.810

2021 July 0.923 0.914 0.826 0.878 0.815 0.915 0.944 0.892 0.755
August 0.931 0.937 0.799 0.901 0.836 0.922 0.942 0.881 0.777

September 0.931 0.887 0.796 0.918 0.835 0.902 0.952 0.874 0.757
October 0.947 0.939 0.848 0.864 0.698 0.922 0.943 0.887 0.837

November 0.895 0.914 0.692 0.860 0.720 0.882 0.908 0.842 0.762
December 0.944 0.912 0.823 0.899 0.804 0.951 0.953 0.911 0.748
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Table 4. Cont.

Parameter Year Month Stations
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January 0.159 0.395 0.143 0.494 0.419 0.423 0.241 0.197 0.321
February 0.330 0.322 0.391 0.154 0.289 0.292 0.311 0.274 0.768

March 0.242 0.452 0.524 0.059 0.143 0.122 0.225 0.469 0.164
April 0.417 0.314 0.388 0.344 0.313 0.383 0.277 0.199 0.266
May 0.354 0.456 0.435 0.145 0.609 0.417 0.330 0.272 0.190
June 0.091 0.107 0.416 0.101 −0.002 0.103 0.188 0.053 0.118

2019 July 0.116 0.155 0.105 0.297 0.011 0.174 0.102 0.042 0.411
August 0.204 0.534 0.178 0.102 0.054 0.309 0.095 0.189 0.248

September 0.289 0.251 0.242 0.094 0.115 0.397 0.257 0.054 0.027
October 0.442 0.498 0.282 0.234 0.246 0.465 0.401 0.199 0.026

November 0.183 0.195 0.271 0.150 0.127 0.282 0.205 0.191 0.123
December 0.252 0.467 0.396 0.358 0.356 0.273 0.198 0.286 0.255

January 0.397 0.059 0.105 0.274 0.429 0.360 −0.006 0.400 0.215
February 0.309 0.631 0.233 0.469 0.274 0.327 0.254 0.260 0.265

March 0.060 0.257 0.202 0.311 0.181 0.261 0.417 0.072 0.501
April 0.278 0.348 0.208 0.437 0.335 0.298 0.251 0.281 0.245
May 0.164 0.176 0.096 0.188 0.082 0.124 0.381 0.213 0.007
June 0.015 0.092 0.127 0.097 0.257 0.020 −0.046 0.125 0.171

Pr
ec

ip
it

at
io

n

2020 July 0.226 0.300 0.139 0.240 0.044 0.232 −0.025 0.041 0.043
August 0.098 0.189 0.148 0.306 0.344 0.067 −0.016 0.046

September 0.239 0.402 0.353 0.311 0.146 0.537 0.093 0.146
October 0.311 0.352 0.399 0.162 0.285 0.312 0.362 0.319

November 0.478 0.516 0.027 0.479 0.194 0.251 0.226 0.383 −0.015
December 0.446 0.457 0.136 0.287 0.471 0.577 0.383 0.469 −0.037

January 0.310 0.341 0.191 0.318 0.436 0.432 0.293 −0.040
February 0.134 0.150 0.580 0.227 0.336 0.226 0.164 −0.024

March 0.600 0.328 0.074 0.297 0.662 0.588 0.634 −0.029
April 0.299 0.309 0.299 0.284 0.383 0.359 0.300
May 0.450 0.309 0.338 0.050 0.152 0.357 0.326 −0.009
June 0.064 0.206 0.697 0.135 0.004 0.236 0.110 0.123

2021 July 0.331 0.139 0.016 0.140 0.149 0.106 0.268 0.388
August 0.143 0.341 0.037 0.229 0.193 −0.007 0.258 0.035

September 0.284 0.319 0.375 0.256 0.308 0.247 0.047
October 0.562 0.581 0.521 0.257 0.379 0.439 0.445 0.306

November 0.153 0.186 0.244 0.149 0.268 0.140 0.118 0.473
December 0.319 0.500 0.380 0.334 0.441 0.278 0.396

The following analysis is reported for five locations for which valid soil temperature
readings were available. The correlation values presented in Table 5, showing the comparison
of soil temperature between the PinovaMeteo and ERA5-Land datasets for the period from
2019 to 2021 at different stations, contain several noteworthy findings. They highlight the
presence of seasonal variations in ground temperature patterns, with higher correlations
observed in winter months, such as November and December, while the correlations are
generally lower in summer months. A more distinct perspective on this trend is offered
by examining the final column in Table 5, which illustrates the calculated monthly means
for ground temperature correlations. The station-specific trends highlight the influence of
local factors on the soil temperature data, with certain stations consistently showing stronger
correlations than others. Overall, while the data suggest some degree of consistency in soil
temperature patterns over the entire period studied, they also underscore the importance of
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considering both seasonal variations and year-to-year influences in comprehensive analyses.
For example, the Našice station has higher correlation values in 2021 than in 2020 and 2019.

Table 5. Correlations for soil temperature between PinovaMeteo and ERA5-Land data. Correlations
below the threshold value of r = 0.7 are marked in bold. The month with the strongest correlation
value for each location is highlighted in orange, the weakest in blue.

Month 2019 2020 2021
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January 0.748 0.861 0.718 0.853 0.620 0.397 0.594 0.541 0.584 0.236 0.895 0.633 0.918 0.730 0.664
February 0.724 0.730 0.445 0.812 0.386 0.731 0.637 0.496 0.775 0.457 0.893 0.767 0.803 0.760 0.683

March 0.674 0.804 0.427 0.798 0.287 0.690 0.544 0.437 0.701 0.423 0.825 0.659 0.480 0.443 0.599
April 0.676 0.682 0.520 0.639 0.445 0.691 0.580 0.524 0.599 0.535 0.778 0.557 0.677 0.488 0.602
May 0.796 0.714 0.648 0.572 0.627 0.481 0.245 0.637 0.626 0.203 0.701 0.170 0.607 0.211 0.544
June 0.754 0.494 0.592 0.790 0.478 0.614 0.373 0.324 0.655 0.311 0.844 0.536 0.527 0.620 0.583
July 0.599 0.335 0.480 0.450 0.201 0.681 0.161 0.520 0.673 0.173 0.778 0.095 0.235 0.265 0.414

August 0.669 0.390 0.572 0.571 0.251 0.571 0.286 0.633 0.638 0.192 0.811 0.429 0.367 0.444 0.506
September 0.732 0.590 0.659 0.740 0.514 0.682 0.409 0.715 0.725 0.304 0.802 0.152 0.403 0.410 0.591

October 0.646 0.345 0.563 0.476 0.303 0.841 0.594 0.809 0.760 0.674 0.891 0.703 0.703 0.669 0.650
November 0.723 0.766 0.864 0.803 0.575 0.912 0.801 0.764 0.811 0.853 0.856 0.633 0.594 0.096 0.725
December 0.711 0.692 0.915 0.797 0.500 0.886 0.656 0.718 0.770 0.701 0.909 0.782 0.822 0.046 0.730

4.2. Comparing Agri4Cast with PinovaMeteo

The second analysis (Agri4Cast vs. PinovaMeteo) includes the following parameters:
air temperature and precipitation. Note that in this analysis, we use the data for 10 locations;
one additional location (Dugi Otok) is added compared to the previous analysis since it is
covered by the Agri4Cast dataset.

The correlation values presented in Table 6 compare air temperature data from the
PinovaMeteo and Agri4Cast datasets and highlight several important observations:

• Overall Reliability: The data underscore a strong and consistently positive correlation
between the two datasets, confirming their reliability for temperature monitoring.

• Seasonal Variations: While the overall correlation is robust, there is a slight decrease in
correlation values during the winter months.

• Inter-Station Differences: Across most stations, the correlation values remain high.
However, exceptions are observed at stations Potomje and Funtane, where the Pino-
vaMeteo sensor records lower temperature values compared to Agri4Cast. This causes
the temperature correlation values at these stations to fall below the threshold of 0.7 for
several months.

The correlation values between the PinovaMeteo and Agri4Cast precipitation data
reveal a varying relationship characterized by seasonal fluctuations and station-specific dif-
ferences. Generally positive, the correlations are stronger during wetter months (e.g., May
and June) and weaker during drier periods (e.g., November and December). Some stations
exhibit stronger agreements (e.g., Našice and Otočac), while others show weaker corre-
lations (e.g., Potomje and Suhopolje). Notably, negative correlations in certain instances,
such as September 2020 at the Potomje station, indicate potential data discrepancies related
to specific events. The lower correlation for some months may also be due to the fact that
Agri4Cast provides data for a larger area (25 × 25 km), while in the event of localized or
heavy rain, the amount of rainfall may vary across the segment.
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Table 6. Correlations between PinovaMeteo and Agri4Cast data. Correlations below the threshold
value of r = 0.7 are marked in bold. The month with the strongest correlation value for each location
is highlighted in orange, the weakest in blue.

Parameter Year Month Stations
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January 0.842 0.954 0.938 0.906 0.970 0.918 0.946 0.846 0.716 0.859
February 0.946 0.962 0.946 0.891 0.973 0.883 0.917 0.723 0.761 0.892

March 0.928 0.908 0.939 0.913 0.959 0.873 0.927 0.827 0.660 0.786
April 0.956 0.922 0.949 0.943 0.979 0.954 0.975 0.937 0.904 0.941
May 0.969 0.965 0.977 0.984 0.983 0.958 0.922 0.842 0.922 0.896
June 0.963 0.969 0.942 0.936 0.928 0.964 0.983 0.913 0.949 0.925

2019 July 0.940 0.905 0.901 0.932 0.929 0.940 0.952 0.790 0.911 0.858
August 0.946 0.902 0.898 0.934 0.908 0.940 0.973 0.792 0.911 0.868

September 0.968 0.937 0.980 0.949 0.975 0.962 0.971 0.840 0.963 0.912
October 0.985 0.971 0.963 0.930 0.955 0.821 0.907 0.525 0.932 0.907

November 0.949 0.962 0.945 0.864 0.974 0.907 0.884 0.796 0.876 0.859
December 0.938 0.980 0.967 0.830 0.982 0.941 0.968 0.879 0.883 0.944

January 0.907 0.953 0.935 0.738 0.924 0.830 0.798 0.531 0.695 0.840
February 0.840 0.920 0.901 0.830 0.886 0.916 0.896 0.739 0.792 0.857

March 0.970 0.966 0.981 0.970 0.983 0.976 0.957 0.693 0.906 0.954
April 0.954 0.970 0.978 0.985 0.986 0.945 0.943 0.862 0.877 0.888
May 0.847 0.907 0.915 0.919 0.923 0.873 0.926 0.921 0.898 0.842
June 0.917 0.937 0.943 0.962 0.952 0.929 0.942 0.831 0.919 0.927
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2020 July 0.940 0.923 0.943 0.969 0.913 0.963 0.929 0.860 0.806 0.797
August 0.941 0.867 0.943 0.919 0.929 0.930 0.942 0.681 0.906 0.796

September 0.974 0.939 0.974 0.932 0.973 0.961 0.984 0.889 0.944 0.967
October 0.979 0.974 0.961 0.837 0.981 0.922 0.959 0.860 0.880 0.934

November 0.981 0.989 0.976 0.962 0.981 0.876 0.886 0.728 0.894 0.951
December 0.979 0.990 0.968 0.864 0.978 0.907 0.858 0.656 0.868 0.858

January 0.946 0.987 0.967 0.961 0.985 0.958 0.963 0.931 0.905 0.945
February 0.978 0.982 0.984 0.961 0.976 0.972 0.982 0.907 0.902 0.968

March 0.944 0.929 0.957 0.918 0.950 0.909 0.897 0.663 0.850 0.907
April 0.974 0.971 0.976 0.975 0.983 0.946 0.959 0.901 0.871 0.922
May 0.901 0.899 0.932 0.940 0.901 0.853 0.944 0.875 0.601 0.877
June 0.896 0.879 0.920 0.948 0.921 0.800 0.923 0.851 0.597 0.853

2021 July 0.920 0.930 0.956 0.952 0.952 0.961 0.864 0.626 0.764 0.751
August 0.984 0.974 0.987 0.978 0.966 0.967 0.987 0.850 0.903 0.936

September 0.967 0.938 0.973 0.958 0.935 0.933 0.955 0.901 0.793 0.847
October 0.976 0.977 0.978 0.945 0.972 0.952 0.955 0.687 0.871 0.941

November 0.897 0.917 0.924 0.873 0.948 0.747 0.883 0.780 0.752 0.904
December 0.942 0.977 0.947 0.902 0.918 0.889 0.922 0.910 0.599 0.856
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Table 6. Cont.

Parameter Year Month Stations
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January 0.232 0.283 0.400 0.222 0.652 0.565 0.897 0.771 0.592 0.939
February 0.820 0.897 0.746 0.905 0.399 0.215 0.715 0.821 0.990 0.516

March 0.559 0.168 0.420 0.389 0.903 0.420 0.402 0.461 0.786 0.914
April 0.674 0.821 0.724 0.439 0.676 0.488 0.410 0.813 0.268 0.194
May 0.892 0.616 0.934 0.518 0.855 0.836 0.573 0.962 0.059 0.753
June 0.519 0.753 0.686 0.525 0.838 0.840 0.574 0.931 0.913 0.669

2019 July 0.650 0.537 0.740 0.328 0.670 0.841 0.880 0.473 0.646 0.732
August 0.190 0.637 0.273 0.085 0.753 0.611 0.766 0.128 0.596 0.978

September 0.371 0.559 0.670 −0.070 0.728 0.813 0.124 0.382 −0.045 0.850
October 0.856 0.957 0.784 0.282 0.905 0.861 0.980 0.975 0.169 0.815

November 0.432 0.392 0.715 0.543 0.646 0.317 0.403 0.749 0.160 0.507
December 0.759 0.779 0.682 0.784 0.852 0.948 0.745 0.566 0.846 0.839

January 0.967 0.958 0.982 0.974 0.995 0.947 0.567 0.961 0.788 0.853
February 0.852 0.661 0.899 0.868 0.976 0.386 0.742 0.500 −0.028 0.398

March 0.223 0.376 0.473 0.134 0.693 0.310 0.897 0.609 0.914 0.903
April 0.789 0.701 0.627 0.866 0.816 0.544 0.809 0.868 0.303 0.636
May 0.444 0.184 0.197 0.628 0.143 0.383 0.297 0.117 0.119 0.414
June 0.297 0.372 0.473 0.580 0.206 0.604 0.612 0.655 0.587 0.753
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2020 July 0.642 −0.099 0.613 0.059 0.809 0.534 0.089 0.142 0.045 0.994
August 0.955 0.957 0.531 0.430 0.683 0.873 0.542 0.999 0.392

September 0.828 0.615 0.883 0.798 0.476 0.856 0.879 0.619 0.764
October 0.672 0.691 0.565 0.570 0.811 0.879 0.631 0.141 0.756

November 0.475 0.704 0.302 0.565 0.964 −0.048 0.774 0.412 −0.103 0.933
December 0.743 0.699 0.902 0.670 0.854 0.537 0.819 0.888 −0.159 0.619

January 0.708 0.898 0.900 0.762 0.846 0.481 0.890 −0.233 0.582
February 0.650 0.876 0.867 0.549 0.715 0.715 0.850 −0.131 0.463

March 0.860 0.955 0.990 0.969 0.974 0.013 0.766 −0.140 0.949
April 0.432 0.513 0.479 0.304 0.696 0.240 0.444 0.067 0.430
May 0.698 0.772 0.431 0.628 0.675 0.814 0.616 −0.010 −0.010
June 0.658 0.760 −0.074 0.958 0.906 0.479 0.726 0.271 0.252

2021 July 0.572 0.610 0.964 0.467 0.413 0.021 0.866 0.715 0.226
August 0.138 −0.030 0.723 0.367 0.911 0.251 0.587 0.754 0.045

September 0.433 0.571 0.499 0.594 0.870 0.823 0.366 0.895
October 0.823 0.861 0.624 0.864 0.808 0.672 0.906 0.774 0.575

November 0.571 0.716 0.631 0.832 0.421 0.558 0.616 0.772 0.483
December 0.721 0.686 0.864 0.857 0.813 0.854 0.681 0.861 0.643

4.3. Comparing ERA5-Land with Agri4Cast

For additional examination of remote sensing sources, we conducted a correlation
analysis involving the ERA5-Land and Agri4Cast datasets, with the inclusion of the addi-
tional parameters listed in Tables A1 and A2. The results are included in the Appendix A
(Tables A3–A5). Temperature consistently displays strong positive correlations across
months and stations. Precipitation correlations vary, with some locations showing high
positive correlations during specific months, while others have low or negative correlations,
likely due to regional weather patterns and local climate influences. Evapotranspiration
correlations fluctuate across months, mainly falling within the moderate to high range
and are influenced by factors like temperature and humidity. While evapotranspiration
generally correlates positively with temperature, discrepancies, especially in late summer,
may be attributed to differences between the Copernicus and Agri4Cast datasets. Radiation
correlations are mostly positive, implying seasonal solar radiation fluctuations, and align
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with temperature. Notably, wind speed correlations remain strong across months and
stations, with some locations showing exceptionally robust correlations during specific
months. The positive correlation between wind speed and temperature is due to its role
in heat transport, and coastal areas maintain high correlations even in summer due to
prevailing strong winds.

4.4. Significance Test

To determine the significance of differences in the variables between the data sources,
the t-test was employed. Parametric statistical tests, such as the t-test, are statistical methods
that assume that the data come from the same Gaussian distribution, i.e., a distribution of
data with the same mean and standard deviation. The test provides a p-value that can be
used to interpret the test result. The p-value can be viewed as the probability of observing
the two data samples under the basic assumption (null hypothesis) that the two samples
were drawn from a population with the same distribution. The p-value can be interpreted
in the context of a chosen significance level, called alpha. The chosen value for α is 5%
or 0.05. If the p-value is below the significance level, the test says that there is sufficient
evidence to reject the null hypothesis and that the samples were probably drawn from
populations with different distributions.

Mathematically, the t-test involves taking a sample from each of the two sets and
framing the problem by assuming a null hypothesis that posits equality of the two means.
Subsequently, certain values are computed based on relevant formulas and compared to
standard values, leading to the acceptance or rejection of the null hypothesis as appropriate.
The key assumptions in this context are the following:

• Observations in each sample are independent and identically distributed,
• Observations in each sample follow a normal distribution,
• Observations in each sample possess equal variances.

In this study, t-tests were conducted to determine whether the data collected from the
ground-based sensors, PinovaMeteo stations, have a significant difference from the satellite
data sourced from Copernicus CDS and the Agri4Cast portal.

We conducted a comprehensive analysis of Copernicus and PinovaMeteo data gath-
ered from nine stations, assessing the statistical significance for each month over the course
of three years. Figure 2a visually presents this analysis in relation to the air temperature
parameter. One of the notable observations arising from our analysis is the consistent diver-
gence of location Potomje from the established confidence interval. Additionally, we identi-
fied deviations from the confidence interval in the data points of Funtane, Otočac, and Oklaj.
In contrast, the remaining stations within the dataset demonstrate statistical significance,
indicating a strong alignment between the Copernicus data and in situ measurements.

Regarding the less favorable performance of the t-test with precipitation data, we
observed consistent statistical insignificance in station comparisons.

As part of our research, we conducted a t-test involving 10 stations, comparing Agri4Cast
and PinovaMeteo data with the results for air temperature illustrated in Figure 2b. Notably,
Potomje consistently displayed statistical insignificance across all months spanning three
years. Furthermore, the comparison of Pinova and Agri4Cast data revealed that the same
stations consistently fell into the non-significant category, including Otočac, Funtane, and
Oklaj. This pattern suggests the presence of specific “problematic” locations within the dataset.

However, when examining the data related to precipitation, we noticed a further
reduction in the number of statistically significant stations compared to the findings ob-
tained from the Copernicus data analysis. This decrease in significance may be attributed
to various factors, including measurement discrepancies, localized variations, or potential
limitations in accurately representing precipitation through satellite data in specific regions.
To gain a deeper understanding and establish more precise models for precipitation in
these areas, further investigation and potential enhancements in data sources are required.
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(a) ERA5-Land - PinovaMeteo (b) Agri4Cast - PinovaMeteo

Figure 2. t-test analysis of air temperature and precipitation data.

4.5. Principal Component Analysis

The statistical analysis was carried out using the ad hoc Python functions, based on the
scipy and sklearn libraries. The focus of the analysis was only on the symmetric data, which
were available for the variables air temperature and precipitation from all three data sources.
Prior to the analysis, the data were detrended by subtracting each value from the variable
mean. Annual cycles were also removed from the data by calculating the mean value for
each month at each location, and then subtracting this mean value from the corresponding
data points. This process removed all annual cycles present in the data, resulting in a dataset
that was both detrended and devoid of annual cycles. This refined dataset was then used
for further statistical analysis. The variables of interest, air temperature and precipitation,
were now prepared in a manner that allowed for a more accurate and focused comparison
between the different data sources.

The next step in our analysis was to calculate the residuals, considering PinovaMeteo
(terrestrial data source) as our ground truth and subtracting values from ERA5-Land and
Agri4Cast datasets at monthly mean basis. This resulted in four derived variables:

• PinovaMeteo-ERA5-Land_prec,
• PinovaMeteo-agri_prec,
• PinovaMeteo-ERA5-Land_temp,
• PinovaMeteo-agri_temp.

These variables represent the daily and monthly mean differences in precipitation
and air temperature readings between PinovaMeteo and the other two sources for each
observed location.

In our analysis, principal component analysis (PCA) was applied to both the detrended
and de-annualized monthly means and the residuals. The purpose of applying PCA to these
datasets is to reduce their dimensionality and identify the key variables responsible for most
of the variability in the data. The aim of applying PCA to the residuals is to identify patterns
or structures in the residuals that may not be apparent when looking at the residuals alone
and to emphasize systematic errors.

Results of PCA

Analysis of the residuals between different data sources shows considerable dif-
ferences in the forecast accuracy for both precipitation and air temperature on a daily
(Figure 3) and monthly basis (Figure 4). The daily precipitation data are zero-inflated,
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resulting in residuals tending towards zero on most days (as shown in the top two graphs
of Appendix B Figure A1). However, on days with predicted precipitation, ERA5-Land re-
veals more positive deviations from the ground-based measurements (the upper left graph
in Figure 3), but these deviations are smaller in magnitude. In contrast, the Agri4Cast data
source shows predominantly negative daily deviations from the ground-based measure-
ments (the upper right graph in Figure 3), followed by a larger standard deviation of the
residuals. For air temperature data, both ERA5-Land and Agri4Cast show similar patterns
of deviations and magnitudes compared to the ground-based stations (PinovaMeteo), as
can be observed in the two lower graphs in Figures 3 and A1. It can be observed that the
residuals are consistently the smallest for location Suhopolje. A t-test performed between
locations with complex or plain topography did not reveal significant differences between
group means. However, daily deviations observed during the agricultural growing season
can in practice have a large economic impact on crop production.

Figure 3. Heatmap of residuals of daily mean air temperature and precipitation between data
source PinovaMeteo (ground-based) and two model-based data sources ERA5-Land and Agri4Cast.
Standard deviations are shown in plot main titles.
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Figure 4. Residuals of monthly mean temperature and precipitation between data source PinovaMeteo
(ground-based) and two model-based data sources Era5-Land and Agri4Cast. Standard deviations
are shown within plots in bold.

The monthly residual values follow Gaussian properties due to sampling. The highest
monthly mean values of residuals between PinovaMeteo and ERA5-Land for precipitation
were observed for the locations Potomje, Oklaj, and Otočac, for the months of November in
2019 and 2020, and December in 2020 (location Potomje), as can be seen in the upper left
graph in Figure 4. Similarly, the highest monthly mean values of the residuals between
PinovaMeteo and Agri4Cast for precipitation were observed for the months of November
in 2019 and 2020, with the highest leverage of locations Otočac and Funtane in 2019,
and Potomje, Oklaj, Otočac and Funtane in 2020 (the upper right graph in Figure 4).
Note also that the magnitude of the residual values is significantly higher in the case of
PinovaMeteo-Agri4Cast compared to PinovaMeteo-ERA5-Land for precipitation. Analysis
of the detrended residuals of air temperature also indicates discrepancies between the
assessed data sources, with monthly residual mean values often exceeding 0.5 °C, and
sometimes even 1 °C at some locations (the two lower graphs in Figures 4 and A2), while
both ERA5-Land and Agri4Cast show similar patterns of deviations. Note that the observed
temperature differences may seem small, but are very important for PA as they can have a
significant impact on crop health and agricultural production in general.

PCA analysis of the monthly mean data, as illustrated in Figure 5, did not show
support for grouping between locations. The first component was mostly negatively
correlated to temperature data from all analyzed data sources, while the second component
was mostly positively correlated with precipitation data from all data sources. The first
two components explained 83.1% of the overall variance.
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PCA analysis of the residuals (Figure 6) showed the highest absolute loading weights
(eigenvectors) for PinovaMeteo-Agri4Cast for precipitation and PinovaMeteo-ERA5-Land
for temperature, showing the highest absolute values of the residuals for these pairs.
Despite the lack of a distinct grouping of locations, the information about high scattering
of the residuals in locations Potomje and Otočac indicates clear discrepancies and possible
systematic errors between different data sources at these locations (Figure 5). The first two
components explained 85.8% of the overall variance.

Figure 5. PCA of the monthly mean values across 8 locations covered by this study (above) and
eigenvector weights (correlations with PCs) shown as heatmap (below).
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Figure 6. PCA of the monthly residuals between PinovaMeteo (ground-based) and two model-based
data sources (ERA5-Land and Agri4Cast) across 8 locations covered by this study (above) and
eigenvector weights (correlations with PCs) shown as heatmap (below).

5. Discussion

In this paper, we compare data from sources that provide freely available meteorologi-
cal data that can be used in precision agriculture with data from on-site agrometeorological
stations. Specifically, we analyze and compare data types from the Copernicus CDS and
the Agri4Cast meteorological database with measurements from the PinovaMeteo stations
deployed at 10 sites in Croatia for a three-year period. The analyzed agrometeorological
parameters include air and soil temperature, and precipitation.

Examining the air temperature correlations, we find strong positive correlations, espe-
cially between the data collected by the PinovaMeteo stations and the ERA5-Land dataset.
This could be due to the smaller grid cells in the Copernicus dataset compared to Agri4Cast.
In general, the temperature correlations are lower in the winter months. A notable observa-
tion is that the PinovaMeteo stations tend to record more extreme temperatures, while the
ERA5-Land and Agri4Cast datasets show greater stability. For example, the PinovaMeteo
data consistently show lower temperatures, especially in winter, compared to the other two
sources. In contrast, Agri4Cast generally records higher temperatures.



Remote Sens. 2024, 16, 641 20 of 27

However, the precipitation correlations are, in general, moderate, or even weak or
negative for specific months. Regarding precipitation data, the PinovaMeteo stations detect
precipitation events in a timely manner, while Agri4Cast and Copernicus CDS often register
them with some delay. The correlation results between the PinovaMeteo and Agri4Cast
data generally show stronger correlations compared to PinovaMeteo and ERA5-Land.
However, the overall correlation weakens in the summer months, which are characterized
by sporadic and sudden precipitation.

Correlations between soil temperatures were calculated for five sites using Copernicus
and PinovaMeteo data. In particular, the Našice location show consistently high and
relatively linear correlation trends, with somewhat lower values in the summer months.

An analysis of the residuals indicated higher overall residuals for precipitation be-
tween PinovaMeteo and Agri4Cast than PinovaMeteo and ERA5-Land, while the residuals
for air temperature were comparable. The precipitation accuracy in this case might be
affected by better resolution of the ERA5-Land dataset compared to Agri4Cast.

The principal component analysis indicated potential systematic errors of both hourly
estimates from ERA5-Land and daily estimates from Agri4Cast for locations near the sea
or large water bodies (location Potomje) and with complex topography (location Otočac).
This is consistent with the existing reports that have identified topographic properties to
negatively influence the accuracy of satellite readings, especially in complex terrains [30].

Deviations of residuals on daily and monthly scales found in our study show limitations
of satellite data for decision-making in agriculture, especially considering that sometimes
thresholds for taking measures are below 1 °C (frost protection, ET-based irrigation).

6. Conclusions

Our study uses three-year agrometeorological data retrieved for 10 different locations
in Croatia from three data sources relevant for agriculture: ground-based weather stations
(PinovaMeteo), gridded agrometeorological data with 25 × 25 km resolution (Agri4Cast),
and gridded meteorological data with 9 × 9 km resolution (ERA5-Land). The findings
of our study have several important implications for data-driven agriculture and can be
summarized as follows:

• The study confirms high correlations between remote sensing data and ground ob-
servations and can be used to monitor air temperature with high accuracy, even in
locations with complex topography.

• The study highlights the limitations of remote sensing for monitoring precipitation.
The study found that precipitation data from different sources showed very low
resemblance to ground observations, regardless of topography. This suggests that
remote sensing cannot be relied upon to provide accurate precipitation estimates.

• The study indicates that remote sensing may introduce larger and systematic errors
for locations near the sea or large water bodies and with complex topography. This
is likely due to the fact that satellite data are affected by factors such as cloud cover,
atmospheric aerosols, and land surface conditions.

• The study found that deviations of residuals on daily and monthly scales can be
significant in use cases of PA, even for air temperature. This means that satellite data
may not be accurate enough to support decision-making in agriculture, especially
considering that thresholds for taking measures are sometimes below 1 °C (frost
protection, ET-based irrigation).

Overall, the study’s findings suggest that PA requires ground-based measurements,
especially in areas with complex topography and near large water bodies or the sea. Al-
though our data did not reveal significant differences between data source residuals based
on topography, the observed daily deviations, especially within the agricultural growing
season, can create a large impact on crop growth. A significantly larger dataset with ground
observations from a larger number of representative stations located in geographical regions
with similar topology is needed for further study.
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Future research should, thus, focus on the following: (1) the development of new and
improved methods for correcting systematic errors in remote sensing data, especially for
precipitation and in areas with complex topography and near large water bodies or the
sea; (2) fusing of remote sensing data with other sources of data, such as ground-based
measurements and numerical models; and (3) development of new and improved decision
support systems that can account for the uncertainty in remote sensing data. With such
improvements, the use of fused data from remote sensing and ground-based sources can
provide reliable information which is effective for PA.
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Appendix A. ERA5-Land—Agri4Cast Comparison

Tables A3–A5 show the monthly correlation values between the ERA5-Land and
Agri4Cast datasets. The parameters that were chosen for comparison are available in both
datasets and include the following: air temperature, precipitation, evapotranspiration, ra-
diation, and wind speed. The descriptions of the additional parameters are provided in
Tables A1 and A2.

Table A1. Additional ERA5-Land parameters for correlation analysis.

Name Unit Description

10 m u-component of wind m/s eastward component of the 10 m wind
10 m v-component of wind m/s northward component of the 10 m wind

surface pressure Pa atmosphere pressure of the on the surface of land, sea, and inland water
surface net solar radiation J/m2 amount of solar radiation

total evaporation m of water equivalent accumulated amount of water that has evaporated from the Earth’s surface

Table A2. Additional Agri4Cast parameters for correlation analysis.

Name Unit Description

wind speed m/s average wind speed at 10 m altitude
pressure hPa vapour pressure
radiation kJ/m2 solar radiation per day

evaporation mm potential evapotranspiration per day
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Table A3. 2019 Correlations between ERA5-Land and Agri4Cast data. Correlations below the
correlation threshold value of r = 0.7 are marked in bold. The month with the strongest correlation
value for each location is highlighted in orange, the weakest in blue.

Station Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature 0.882 0.952 0.914 0.945 0.964 0.944 0.942 0.965 0.946 0.982 0.928 0.889
Precipitation 0.852 0.939 0.263 0.553 0.786 0.563 0.672 0.286 0.411 0.652 0.161 0.624

N
aš

ic
e

Evapotranspiration 0.780 0.798 0.571 0.893 0.862 0.927 0.798 0.708 0.604 0.606 0.887 0.520
Radiation 0.790 0.954 0.915 0.930 0.945 0.929 0.871 0.754 0.907 0.878 0.741 0.798

Wind speed 0.882 0.952 0.914 0.945 0.964 0.944 0.942 0.965 0.946 0.982 0.928 0.889

Temperature 0.921 0.928 0.924 0.957 0.962 0.955 0.948 0.956 0.934 0.977 0.933 0.890
Precipitation 0.794 0.960 0.253 0.576 0.785 0.727 0.770 0.284 0.659 0.661 0.233 0.772

K
am

en
ac

Evapotranspiration 0.886 0.816 0.641 0.848 0.880 0.901 0.644 0.053 0.059 0.604 0.818 0.576
Radiation 0.753 0.924 0.881 0.907 0.950 0.904 0.871 0.804 0.910 0.869 0.639 0.761

Wind speed 0.958 0.978 0.888 0.893 0.926 0.872 0.834 0.842 0.820 0.926 0.925 0.951

Temperature 0.921 0.957 0.908 0.943 0.963 0.926 0.920 0.944 0.918 0.973 0.920 0.943
Precipitation 0.679 0.757 0.413 0.596 0.872 0.373 0.618 0.206 0.328 0.724 0.316 0.648

Su
ho

po
lj

e

Evapotranspiration 0.852 0.779 0.703 0.897 0.853 0.883 0.865 0.698 0.679 0.722 0.851 0.422
Radiation 0.727 0.909 0.906 0.922 0.948 0.921 0.909 0.703 0.905 0.830 0.731 0.795

Wind speed 0.906 0.918 0.898 0.747 0.907 0.784 0.777 0.844 0.713 0.887 0.606 0.922

Temperature 0.913 0.959 0.902 0.963 0.978 0.951 0.954 0.960 0.963 0.969 0.893 0.927
Precipitation 0.814 0.951 0.352 0.560 0.763 0.606 0.485 0.382 0.458 0.536 0.197 0.778

Sk
en

de
ro

vc
i

Evapotranspiration 0.401 0.573 0.482 0.906 0.879 0.932 0.869 0.817 0.799 0.597 0.783 0.068
Radiation 0.723 0.967 0.952 0.934 0.905 0.930 0.840 0.674 0.887 0.874 0.765 0.835

Wind speed 0.837 0.934 0.888 0.811 0.909 0.661 0.753 0.904 0.755 0.791 0.419 0.765

Temperature 0.908 0.933 0.933 0.953 0.948 0.905 0.923 0.858 0.891 0.954 0.942 0.977
Precipitation 0.613 0.236 0.835 0.711 0.849 0.667 0.504 0.770 0.190 0.654 0.489 0.918

N
ed

el
iš

će

Evapotranspiration 0.294 0.807 0.333 0.812 0.593 0.820 0.824 0.834 0.724 0.613 0.752 0.265
Radiation 0.581 0.845 0.926 0.946 0.936 0.928 0.869 0.852 0.907 0.865 0.743 0.744

Wind speed 0.861 0.948 0.825 0.856 0.858 0.830 0.603 0.863 0.768 0.884 0.839 0.925

Temperature 0.687 0.743 0.768 0.895 0.855 0.967 0.880 0.874 0.898 0.837 0.771 0.904
Precipitation 0.700 0.973 0.313 0.263 0.609 0.496 0.941 0.810 0.511 0.857 0.680 0.879

Fu
nt

an
e

Evapotranspiration 0.744 0.652 0.857 0.411 0.115 0.808 −0.124 0.372 0.687 0.822 0.271 0.714
Radiation 0.840 0.965 0.930 0.911 0.884 0.812 0.894 0.833 0.943 0.825 0.923 0.943

Wind speed 0.706 0.852 0.863 0.696 0.838 0.671 0.838 0.852 0.792 0.748 0.917 0.790

Temperature 0.788 0.915 0.756 0.870 0.898 0.864 0.841 0.754 0.841 0.772 0.810 0.874
Precipitation 0.665 0.475 0.686 0.481 0.736 0.871 0.865 0.199 0.337 0.637 0.226 0.961

O
to

ča
c

Evapotranspiration 0.045 0.424 0.637 0.856 0.837 0.847 0.743 0.787 0.643 0.360 0.506 0.456
Radiation 0.652 0.879 0.902 0.870 0.874 0.807 0.875 0.864 0.773 0.748 0.588 0.691

Wind speed 0.794 0.940 0.711 0.724 0.832 0.768 0.520 0.834 0.615 0.806 0.604 0.763

Temperature 0.872 0.861 0.853 0.945 0.915 0.951 0.885 0.888 0.877 0.858 0.881 0.932
Precipitation 0.797 0.783 0.590 0.525 0.380 0.930 0.235 0.078 0.498 0.871 0.449 0.811

O
kl

aj

Evapotranspiration 0.457 0.606 0.814 0.832 0.837 0.756 0.363 0.220 0.443 0.735 0.503 0.642
Radiation 0.806 0.937 0.808 0.887 0.884 0.898 0.835 0.756 0.878 0.818 0.843 0.906

Wind speed 0.885 0.929 0.912 0.748 0.878 0.837 0.744 0.832 0.906 0.891 0.851 0.908

Temperature 0.925 0.897 0.952 0.918 0.939 0.977 0.935 0.907 0.946 0.924 0.856 0.912
Precipitation 0.739 0.851 0.250 0.676 0.856 0.938 0.502 0.224 0.483 0.539 0.544

Po
to

m
je

Evapotranspiration 0.074 0.318 0.778 0.599 0.377 0.505 0.029 0.356 0.317 0.764 0.550 0.285
Radiation 0.811 0.950 0.839 0.818 0.889 0.874 0.844 0.756 0.833 0.852 0.917 0.887

Wind speed 0.708 0.871 0.801 0.902 0.767 0.796 0.886 0.867 0.770 0.736 0.902 0.759
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Table A4. 2020 Correlations between ERA5-Land and Agri4Cast data. Correlations below the
correlation threshold value of r = 0.7 are marked in bold. The month with the strongest correlation
value for each location is highlighted in orange, the weakest in blue.

Station Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature 0.908 0.916 0.979 0.966 0.889 0.895 0.910 0.862 0.955 0.974 0.968 0.960
Precipitation 0.811 0.675 0.715 0.782 0.448 0.321 0.862 0.463 0.659 0.535 0.674 0.588

N
aš

ic
e

Evapotranspiration 0.842 0.461 0.765 0.856 0.659 0.867 0.690 0.602 0.432 0.618 0.719 0.531
Radiation 0.782 0.885 0.891 0.903 0.840 0.922 0.882 0.955 0.943 0.950 0.817 0.828

Wind speed 0.912 0.966 0.937 0.930 0.915 0.974 0.834 0.728 0.912 0.927 0.921 0.921

Temperature 0.877 0.951 0.982 0.975 0.920 0.923 0.897 0.779 0.947 0.972 0.964 0.953
Precipitation 0.927 0.441 0.754 0.749 0.276 0.468 0.808 0.363 0.431 0.724 0.921 0.523

K
am

en
ac

Evapotranspiration 0.863 0.436 0.800 0.585 0.697 0.621 0.522 0.483 0.151 0.566 0.585 0.627
Radiation 0.735 0.900 0.918 0.885 0.836 0.901 0.880 0.925 0.912 0.922 0.713 0.828

Wind speed 0.946 0.963 0.932 0.943 0.867 0.911 0.860 0.731 0.917 0.917 0.933 0.929

Temperature 0.873 0.908 0.977 0.969 0.904 0.888 0.881 0.890 0.961 0.972 0.970 0.963
Precipitation 0.935 0.726 0.629 0.667 0.370 0.631 0.600 0.559 0.890 0.433 0.581 0.661

Su
ho

po
lj

e

Evapotranspiration 0.884 0.550 0.792 0.880 0.665 0.881 0.771 0.901 0.625 0.788 0.780 0.563
Radiation 0.783 0.857 0.902 0.809 0.884 0.935 0.920 0.943 0.931 0.969 0.779 0.779

Wind speed 0.897 0.946 0.928 0.885 0.788 0.947 0.850 0.707 0.820 0.918 0.839 0.867

Temperature 0.720 0.877 0.976 0.983 0.941 0.916 0.947 0.893 0.970 0.938 0.962 0.962
Precipitation 0.813 0.811 0.646 0.952 0.484 0.524 0.865 0.335 0.549 0.338 0.599 0.572

Sk
en

de
ro

vc
i

Evapotranspiration 0.669 0.425 0.681 0.817 0.775 0.896 0.785 0.921 0.670 0.684 0.815 0.442
Radiation 0.740 0.887 0.888 0.891 0.868 0.916 0.865 0.951 0.931 0.939 0.810 0.809

Wind speed 0.928 0.947 0.938 0.912 0.898 0.957 0.732 0.595 0.828 0.810 0.893 0.910

Temperature 0.797 0.884 0.960 0.951 0.834 0.913 0.823 0.848 0.909 0.960 0.966 0.833
Precipitation 0.861 0.978 0.522 0.147 −0.042 0.703 0.266 0.504 0.683 0.854 0.802 0.528

N
ed

el
iš

će

Evapotranspiration 0.575 0.504 0.657 0.673 0.483 0.922 0.802 0.735 0.702 0.559 0.719 0.525
Radiation 0.830 0.812 0.898 0.781 0.810 0.967 0.898 0.825 0.873 0.934 0.832 0.706

Wind speed 0.715 0.942 0.975 0.896 0.889 0.792 0.767 0.639 0.856 0.817 0.706 0.808

Temperature 0.721 0.751 0.878 0.852 0.766 0.924 0.877 0.852 0.947 0.855 0.899 0.907
Precipitation 0.741 0.212 0.645 0.516 0.272 0.181 0.167 0.621 0.558 0.605 0.997 0.876

Fu
nt

an
e

Evapotranspiration 0.549 0.840 0.595 0.626 0.781 0.403 0.541 0.206 −0.215 0.529 0.915 0.466
Radiation 0.939 0.876 0.907 0.972 0.891 0.871 0.833 0.922 0.954 0.894 0.814 0.907

Wind speed 0.730 0.700 0.900 0.824 0.449 0.607 0.883 0.872 0.833 0.813 0.910 0.885

Temperature 0.692 0.857 0.957 0.861 0.622 0.778 0.859 0.802 0.822 0.885 0.779 0.729
Precipitation 0.928 0.424 0.452 0.729 0.476 0.657 0.259 0.688 0.750 0.611 0.650 0.627

O
to

ča
c

Evapotranspiration 0.313 0.506 0.743 0.717 0.666 0.825 0.653 0.748 0.816 0.713 0.501 0.128
Radiation 0.639 0.938 0.881 0.942 0.843 0.824 0.807 0.829 0.879 0.890 0.660 0.288

Wind speed 0.828 0.824 0.915 0.797 0.752 0.762 0.864 0.775 0.805 0.798 0.889 0.650

Temperature 0.630 0.813 0.913 0.839 0.867 0.855 0.826 0.721 0.931 0.940 0.837 0.832
Precipitation 0.818 0.672 0.629 0.830 0.428 0.958 0.382 0.649 0.830 0.564 0.324 0.897

O
kl

aj

Evapotranspiration 0.815 0.700 0.716 0.661 0.768 0.707 0.537 0.267 0.633 0.690 0.654 0.620
Radiation 0.855 0.927 0.910 0.935 0.915 0.912 0.829 0.778 0.936 0.949 0.866 0.830

Wind speed 0.904 0.932 0.905 0.826 0.822 0.855 0.939 0.776 0.809 0.940 0.925 0.917

Temperature 0.844 0.893 0.935 0.914 0.942 0.930 0.911 0.803 0.939 0.957 0.953 0.853
Precipitation 0.907 0.578 0.831 0.864 0.392 0.745 −0.018 0.620 0.858 0.371 0.514 0.852

Po
to

m
je

Evapotranspiration 0.508 0.745 0.570 0.502 0.624 0.361 0.260 −0.109 −0.580 0.804 0.442 0.699
Radiation 0.821 0.822 0.841 0.942 0.826 0.842 0.754 0.835 0.851 0.882 0.923 0.877

Wind speed 0.677 0.863 0.921 0.869 0.619 0.908 0.918 0.853 0.822 0.902 0.845 0.975
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Table A5. 2021 Correlations between ERA5-Land and Agri4Cast data. Correlations below the
correlation threshold value of r = 0.7 are marked in bold. The month with the strongest correlation
value for each location is highlighted in orange, the weakest in blue.

Station Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature 0.973 0.976 0.968 0.972 0.856 0.974 0.931 0.972 0.943 0.975 0.912 0.953
Precipitation 0.847 0.812 0.738 0.379 0.634 0.678 0.618 0.481 0.290 0.851 0.579 0.468

N
aš

ic
e

Evapotranspiration 0.518 0.750 0.600 0.849 0.847 0.484 0.273 0.802 0.720 0.406 0.735 0.696
Radiation 0.766 0.913 0.864 0.959 0.927 0.589 0.831 0.901 0.947 0.942 0.676 0.922

Wind speed 0.917 0.939 0.965 0.935 0.901 0.936 0.631 0.767 0.901 0.946 0.844 0.912

Temperature 0.966 0.985 0.971 0.978 0.881 0.979 0.930 0.972 0.959 0.970 0.901 0.958
Precipitation 0.802 0.756 0.801 0.421 0.713 0.555 0.350 0.367 0.639 0.847 0.731 0.669

K
am

en
ac

Evapotranspiration 0.611 0.694 0.503 0.897 0.871 −0.240 −0.197 0.469 0.441 0.454 0.726 0.719
Radiation 0.810 0.891 0.857 0.932 0.950 0.489 0.876 0.897 0.965 0.958 0.637 0.876

Wind speed 0.903 0.948 0.955 0.915 0.929 0.888 0.831 0.850 0.928 0.950 0.925 0.952

Temperature 0.971 0.981 0.958 0.972 0.842 0.968 0.857 0.981 0.935 0.981 0.920 0.942
Precipitation 0.780 0.904 0.915 0.450 0.503 0.835 0.606 0.556 0.319 0.610 0.548 0.490

Su
ho

po
lj

e

Evapotranspiration 0.671 0.785 0.644 0.899 0.912 0.437 0.420 0.803 0.705 0.606 0.742 0.680
Radiation 0.822 0.895 0.815 0.964 0.923 0.639 0.802 0.876 0.945 0.925 0.682 0.849

Wind speed 0.867 0.900 0.945 0.943 0.910 0.843 0.686 0.741 0.830 0.938 0.771 0.935

Temperature 0.966 0.979 0.958 0.985 0.893 0.973 0.930 0.986 0.977 0.979 0.941 0.942
Precipitation 0.881 0.842 0.687 0.410 0.549 0.853 0.707 0.543 0.152 0.813 0.725 0.531

Sk
en

de
ro

vc
i

Evapotranspiration 0.171 0.690 0.629 0.843 0.868 0.721 0.558 0.896 0.878 0.656 0.672 0.636
Radiation 0.713 0.917 0.780 0.958 0.883 0.784 0.808 0.898 0.954 0.923 0.626 0.914

Wind speed 0.862 0.869 0.959 0.927 0.883 0.827 0.592 0.326 0.683 0.874 0.812 0.865

Temperature 0.973 0.970 0.946 0.955 0.842 0.949 0.891 0.958 0.853 0.963 0.927 0.946
Precipitation 0.318 0.695 0.925 0.561 0.524 0.902 0.353 0.625 0.358 0.762 0.315 0.543

N
ed

el
iš

će

Evapotranspiration 0.567 0.589 0.766 0.669 0.927 0.749 0.737 0.792 0.726 0.648 0.776 0.490
Radiation 0.753 0.936 0.838 0.938 0.940 0.902 0.892 0.932 0.952 0.956 0.791 0.781

Wind speed 0.940 0.875 0.903 0.940 0.870 0.847 0.709 0.881 0.819 0.947 0.852 0.876

Temperature 0.829 0.950 0.884 0.872 0.517 0.933 0.825 0.946 0.844 0.876 0.837 0.660
Precipitation 0.751 0.790 0.943 0.513 0.550 0.681 0.743 0.397 0.343 0.706 0.464 0.618

Fu
nt

an
e

Evapotranspiration 0.473 0.572 0.729 0.163 0.601 −0.114 0.128 0.140 −0.125 0.823 0.491 0.453
Radiation 0.916 0.951 0.951 0.939 0.924 0.706 0.821 0.893 0.923 0.951 0.836 0.908

Wind speed 0.764 0.881 0.707 0.528 0.441 0.612 0.591 0.756 0.613 0.861 0.754 0.687

Temperature 0.891 0.974 0.896 0.895 0.595 0.907 0.806 0.903 0.755 0.914 0.812 0.801
Precipitation 0.788 0.850 0.791 0.575 0.700 0.700 0.692 0.593 0.596 0.829 0.308 0.706

O
to

ča
c

Evapotranspiration −0.045 0.714 0.795 0.840 0.787 0.501 0.759 0.846 0.785 0.405 0.573 0.436
Radiation 0.788 0.850 0.791 0.575 0.700 0.700 0.692 0.593 0.596 0.829 0.308 0.706

Wind speed 0.641 0.895 0.908 0.604 0.490 0.748 0.611 0.635 0.715 0.799 0.743 0.711

Temperature 0.944 0.967 0.936 0.959 0.798 0.930 0.710 0.945 0.896 0.888 0.872 0.810
Precipitation 0.821 0.666 0.613 0.569 0.214 0.872 0.442 0.490 0.856 0.624 0.507 0.555

O
kl

aj

Evapotranspiration 0.642 0.714 0.745 0.873 0.815 0.308 0.116 −0.335 0.265 0.339 0.478 0.542
Radiation 0.875 0.940 0.918 0.851 0.849 0.706 0.902 0.862 0.928 0.928 0.895 0.863

Wind speed 0.905 0.943 0.944 0.930 0.923 0.790 0.834 0.676 0.913 0.905 0.724 0.844

Temperature 0.976 0.950 0.877 0.969 0.910 0.992 0.875 0.936 0.920 0.958 0.866 0.895
Precipitation 0.851 0.628 0.865 0.409 0.762 −0.036 0.309 0.055 0.260 0.729 0.268 0.517

Po
to

m
je

Evapotranspiration 0.153 0.582 0.720 0.573 0.604 0.078 −0.255 −0.124 0.485 0.030 0.489 0.095
Radiation 0.887 0.972 0.941 0.886 0.739 0.697 0.837 0.883 0.865 0.934 0.881 0.907

Wind speed 0.749 0.924 0.819 0.891 0.911 0.847 0.847 0.749 0.772 0.692 0.906 0.751
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Appendix B

Figure A1. Kernel daily density estimation graphs between different data sources.

Figure A2. Kernel monthly density estimation graphs between different data sources.
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17. Kępińska-Kasprzak, M.; Struzik, P. Monitoring of Plant Cultivation Conditions Using Ground Measurements and Satellite
Products. Water 2023, 15, 449. [CrossRef]

18. Barrile, V.; Simonetti, S.; Citroni, R.; Fotia, A.; Bilotta, G. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach
between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 2022, 22, 7910. [CrossRef] [PubMed]

19. Hernandez, F.; Leivas, J.; Coaguila Nuñez, D.; Franco, R.; Teixeira, A. Surface Temperature Estimated with Landsat 8 Images and
Geostatistical Tools in the Northwestern São Paulo State; SPIE: San Francisco, CA, USA, 2017; Volume 10, p. 14.

20. Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D. A Method for the Analysis of Small Crop Fields in Sentinel-2
Dense Time Series. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2150–2164. [CrossRef]

21. Pleština, D.; Bracewell, C.; David-Barrett, L.; Lampe, J.R. Croatia. Encyclopedia Britannica. 2023. Available online: https:
//www.britannica.com/place/Croatia (accessed on 20 March 2023).

22. Copernicus and In Situ Team Up for Europe’s Environment—Copernicus In Situ Component. Available online: https://insitu.
copernicus.eu/news/copernicus-and-in-situ-hand-in-hand-for-europes-environment-1 (accessed on 3 February 2022).

23. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thepaut, J.N. The ERA5 global reanalysis. Q. J.
R. Meteorol. 2020, 146, 1999–2049. [CrossRef]

24. ERA5-Land Hourly Data from 1981 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-land?tab=overview (accessed on 3 February 2022).

25. ECMWF. IFS Documentation CY45R1—Part IV: Physical Processes; Number 4; ECMWF: Reading, UK, 2018.
26. Thepaut, J.N.; Dee, D.; Engelen, R.J.; Pinty, B. The Copernicus Programme and its Climate Change Service. In Proceedings of the

IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1591–1593.
27. Cloud Native Computing Foundation. Kubernetes. Available online: https://climate.copernicus.eu/ecmwf-copernicus-services-

general-qas (accessed on 21 September 2023).
28. Micale, F.; Genovese, G. Methodology of the MARS crop yield forecasting system. In Volume 1: Meteorological Data Collection,

Processing and Analysis; der Goot, E.V., Supit, I., Boogard, H., Diepen, K.V., Micale, F., Orlandi, S., Otten, H., Geuze, M., Schulze,
D., Eds.; EC: Luxembourg, 2004; p. 21291.

http://doi.org/10.1126/science.1183899
http://www.ncbi.nlm.nih.gov/pubmed/20150492
http://dx.doi.org/10.3390/rs12193136
http://dx.doi.org/10.1016/j.compag.2020.105256
http://dx.doi.org/10.3390/agronomy13071942
http://dx.doi.org/10.1109/ACCESS.2021.3116814
http://dx.doi.org/10.5194/essd-13-4349-2021
http://dx.doi.org/10.1109/MGRS.2020.3023343
http://dx.doi.org/10.3390/atmos11111252
http://dx.doi.org/10.1007/s11600-020-00429-w
http://dx.doi.org/10.1016/j.wace.2021.100373
http://dx.doi.org/10.1016/j.ejrh.2022.101182
http://dx.doi.org/10.1016/j.atmosres.2022.106131
http://dx.doi.org/10.3390/rs10020168
http://dx.doi.org/10.3390/w15030449
http://dx.doi.org/10.3390/s22207910
http://www.ncbi.nlm.nih.gov/pubmed/36298261
http://dx.doi.org/10.1109/TGRS.2019.2953652
https://www.britannica.com/place/Croatia
https://www.britannica.com/place/Croatia
https://insitu.copernicus.eu/news/copernicus-and-in-situ-hand-in-hand-for-europes-environment-1
https://insitu.copernicus.eu/news/copernicus-and-in-situ-hand-in-hand-for-europes-environment-1
http://dx.doi.org/10.1002/qj.3803
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://climate.copernicus.eu/ecmwf-copernicus-services-general-qas
https://climate.copernicus.eu/ecmwf-copernicus-services-general-qas


Remote Sens. 2024, 16, 641 27 of 27

29. Interpolation of Observed Weather—Agri4castWiki. Available online: https://marswiki.jrc.ec.europa.eu/agri4castwiki/index.
php/Interpolation_of_observed_weather (accessed on 3 February 2022).

30. Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Interpolation_of_observed_weather
https://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Interpolation_of_observed_weather
http://dx.doi.org/10.1109/JSTARS.2015.2468594

	Introduction
	Related Work
	Available Agrometeorological Data Sources in Croatia
	Copernicus Climate Data Store and ERA5-Land Dataset
	Agri4Cast Portal
	PinovaMeteo

	Comparison of Available Datasets for Locations in Croatia
	Comparing ERA5-Land with PinovaMeteo
	Comparing Agri4Cast with PinovaMeteo
	Comparing ERA5-Land with Agri4Cast
	Significance Test
	Principal Component Analysis

	Discussion
	Conclusions
	ERA5-Land—Agri4Cast Comparison
	
	References

