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Abstract: Deep learning techniques have made certain breakthroughs in direction-of-arrival (DOA)
estimation in recent years. However, most of the current deep-learning-based DOA estimation
methods view the direction finding problem as a grid-based multi-label classification task and require
multiple samplings with a uniform linear array (ULA), which leads to grid mismatch issues and
difficulty in ensuring accurate DOA estimation with insufficient sampling and in underdetermined
scenarios. In order to solve these challenges, we propose a new DOA estimation method based on a
deep convolutional generative adversarial network (DCGAN) with a coprime array. By employing
virtual interpolation, the difference co-array derived from the coprime array is extended to a virtual
ULA with more degrees of freedom (DOFs). Then, combining with the Hermitian and Toeplitz prior
knowledge, the covariance matrix is retrieved by the DCGAN. A backtracking method is employed
to ensure that the reconstructed covariance matrix has a low-rank characteristic. We performed DOA
estimation using the MUSIC algorithm. Simulation results demonstrate that the proposed method
can not only distinguish more sources than the number of physical sensors but can also quickly and
accurately solve DOA, especially with limited snapshots, which is suitable for fast estimation in
mobile agent localization.

Keywords: direction-of-arrival (DOA) estimation; deep learning; matrix recovery

1. Introduction

In the past few decades, direction-of-arrival (DOA) estimation has emerged a critical is-
sue across various domains, including radar, sonar, mobile communication and localization.
To perform DOA estimation in actual environments, researchers have conducted in-depth
studies and developed two main types of methods: physical model-driven methods [1–5]
and data-driven methods [6–8]. The DOA estimation method based on phase interferome-
try is proposed in [1] for real-time localization. This method can compute the DOA in real
time with lightweight architecture and full-digital dedicated hardware. However, it has
implications for phase ambiguity and phase error, and could only distinguish a low number
of receivers, with no ability to accurately estimate more DOAs at the same time. The high-
resolution DOA estimation methods, such as the multiple signal classification (MUSIC)
algorithm in [2] and the estimation of signal parameters via rotational invariance techniques
(ESPRIT) algorithm in [3], could estimate more DOAs of signals and achieve more accurate
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performance. Nevertheless, the number of DOAs they can distinguish is still limited by the
number of physical sensors, and the computational complexity remains very high. To cope
with a multipath environment, the forward/backward spatial smoothing (FBSS) algorithm
is proposed in [4] to decorrelate the coherent signals, but its degrees of freedom (DOFs) are
reduced, and the required SNR is slightly higher. In [5], the DOA estimation algorithm for
coherent GPS signals not only employs Toeplitz decorrelation but also oblique projection
to suppress noise at low SNR. The aforementioned physical model-driven methods usu-
ally require a number of snapshots and have high computational complexity and lengthy
solution time. Moreover, those methods are based on a rigorous physical model; once in
non-ideal conditions, such as a limited number of snapshots or model mismatch, their
estimation performance would be degraded obviously. Among data-driven methods, deep
neural network models have shown excellent performance and lower computational com-
plexity. The literature [8] introduces a deep neural network (DNN) model, which exhibits
robustness in the presence of defective arrays. In [9], the authors used a convolutional
neural network (CNN) for DOA estimation in low SNR conditions. In [10], it is proved
that the columns of the covariance matrix can be expressed as linear measurements of
undersampling noise in the spatial spectrum, and a deep convolutional neural network
(DCNN) was built using sparse priors. In response to the significant reduction in estimation
accuracy of existing methods for a multipath environment, reference [11] proposes a phase
enhancement model based on a CNN for coherent DOA estimation which improves DOA
estimation accuracy by enhancing phase and reducing phase distortion. In addition, the
authors evaluate the importance of the phase feature for DOA estimation accuracy and
demonstrated that the amplitude feature is redundant for DOA estimation. In [12], resid-
ual neural networks (ResNet) were used to achieve DOA estimation in a single snapshot.
In [13], deep learning was applied to DOA estimation in underwater acoustic arrays.
In [14], the authors present a novel DOA estimation framework that utilizes a complex-
valued deep learning technique. In [15], researchers used the upper triangular region
data of the received signal covariance matrix for training, effectively reducing training
complexity and accelerating training speed. In [16], an angle separation deep learning
method is proposed to achieve near-real-time DOA estimation for coherent signal sources.
Furthermore, the lightweight DNN DOA estimation method for array imperfection cor-
rection has lower computational complexity and faster running speed, making it suitable
for real-time signal processing application [17]. In [18], deep residual learning was used
to achieve wideband DOA estimation. In addition, the DOA estimation method based on
unsupervised learning with sparse array employs ResNet, which can effectively cope with
low SNR and few snapshots scenarios [19]. However, the aforementioned methods did not
consider the underdetermined scenario.

With the continuous development of the Internet of Things (IoT) and Internet of Vehi-
cles (IoV), the number of intelligent mobile agents is growing constantly. In the process of
localization and communication, the number of estimated targets is often greater than the
number of array sensors, which results in the frequent occurrence of underdetermined situ-
ations. Moreover, the mobile agents require fast calculation speed with limited snapshots,
which places higher requirements on the running speed of the DOA estimation algorithm.
However, most of the current deep-learning-based DOA estimation methods use CNN
models [10,11,20], treating the direction finding problem as a multi-label classification
task and requiring multiple samplings with a uniform linear array (ULA). The output
of the network in these methods is the probability associated with each corresponding
label. These methods not only suffer from grid mismatch problems but are also unable to
distinguish all targets in underdetermined situations, which would decrease the estimation
accuracy dramatically. In [20], the sparse array was adopted, and its covariance matrix
was recovered from the first row using a CNN-based regression method. Then, the DOA
was obtained with the Root-MUSIC algorithm from the recovered covariance matrix. This
approach has the ability to cope with underdetermined situations but cannot guarantee the
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low-rank characteristic of the recovered covariance matrix, so its DOA estimation accuracy
is constrained, especially with limited snapshots.

Therefore, in order to address the aforementioned challenges, a virtual ULA was con-
structed in this study by filling the virtual sensors into the difference co-array derived from
the coprime array, which can obtain more DOFs and improve DOA estimation resolution.
The deep convolutional generative adversarial network (DCGAN) was adopted to recover
the data associated with the virtual sensors and rebuild the covariance matrix of the virtual
ULA using the Hermitian and Toeplitz prior knowledge. In order to ensure the low-rank
characteristic of the covariance matrix, the output data of the DCGAN were further pro-
cessed using the low-rank matrix optimization algorithm. Finally, DOA estimation was
performed using the MUSIC algorithm. The proposed method not only has the ability to
cope with underdetermined scenarios but can also improve the accuracy and estimation
speed with limited snapshots.

The remaining sections of this paper are organized as follows. Section 2 introduces the
signal model. Section 3 elaborates on the structure and processing details of the proposed
method. Section 4 describes the loss function used by the network and some important
parameters. Section 5 provides experimental results. The last section summarizes the
entire paper.

2. Signal Model

It is presumed that K far-field narrow-band source signals impinge onto an M-element
array antenna (K>M), and the received signal at the array is given by:

X(t) = A(θ)s(t) + n(t), t = 1, 2, . . . , T, (1)

where θ, A, and T represent the source direction vector, array manifold matrix, and snapshot
number, respectively. s(t) and n(t) denote the spatial signal vector and additive Gaussian
white noise vector at time t, respectively. The k-th column of the array manifold matrix

A can be represented as a(θ) =

[
e
−j∗2π u1 d sin(θ)

λ , e
−j∗2π u2 d sin(θ)

λ , . . . , e
−j∗2π uM d sin(θ)

λ

]T
, where

ui, (i = 1, 2, . . . M) represents the i-th element position.
A coprime array is constructed with two sparse uniform linear sub-arrays with

I + J − 1 sensors, the first sub-array being [0, Id, 2Id, . . . , (J − 1)Id] and the second sub-
array being [0, Jd, 2Jd, . . . , (I − 1)Jd], where I and J are coprime integers. The two sub-
arrays do not overlap except for position 0. The structure of the coprime array is depicted
in Figure 1a. The covariance matrix of the received signal X(t) with the coprime array can
be expressed as

RX = E
[
X(t)XH(t)

]
=

K

∑
k=1

pka(θk)a
H(θk) + σ2I, (2)

where pk denotes the power of the k-th source signal, and I denotes the identity matrix.
Afterward, by vectorizing the covariance matrix RX and taking the distinct elements, the
equivalent virtual signal of the difference co-array can be obtained as

yd = Adp + σ2i, (3)

where Ad = [a∗(θ1)⊗ a(θ1), a∗(θ2)⊗ a(θ2), . . . , a∗(θK)⊗ a(θK)] ∈ C[2I(J−1)+1]×K, ⊗ denotes
the Kronecker product, p = [p1, p2, . . . pK]

T and i = vec(I). The difference co-array contains
a few missing elements that are called holes. The array structure of the difference co-array
is shown in Figure 1b.
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Figure 1. Array structures. (a) The coprime array for I = 3, J = 5. (b) The difference co-array derived
from coprime array. (c) The virtual ULA when the number of sensors is 13.

So as to fully utilize the available information and increase DOFs, by filling the
interpolated virtual sensors, the model can be extended further as a virtual ULA with
N = max{(I − 1)J, (J − 1)I}+ 1 sensors, as shown in Figure 1c. The virtual ULA corre-
sponds to a binary vector v of 0s and 1s, in which 0 represents the interpolated virtual
element and 1 stands for the others. Correspondingly, the received signal yd is extended
to the N dimension vector yi, which has some zero elements corresponding to the virtual
received signal of interpolated virtual sensors. As demonstrated in [21], the covariance
matrix Rv of the received signal with the virtual ULA is equal to the Toeplitz matrix T (yi)
with vector yi as its first row, which can be represented as

T (yi) = Rv. (4)

In actual application, because the received signals of the interpolated virtual sensors in
virtual ULA default to 0, some elements in covariance matrix Rv are also set to 0. Compared
with the covariance matrix R of the actual ULA with N physical sensors, the covariance
matrix of the virtual ULA and actual ULA has the following relationship

T (yi) = Rv = R ⊙ L, (5)

where ⊙ denotes the Hadamard product, L = v ∗ vT is a binary matrix to imply the zero
and non-zero elements in Rv and R is the covariance matrix associated with the actual ULA
with N elements. Our focus is to rebuild the covariance matrix R of the virtual ULA from
T (yi) with some missing elements.

As a priori knowledge, a covariance matrix should be a Hermitian matrix with a
Toeplitz structure and has a low-rank characteristic in theory. Therefore, in order to
reconstruct the covariance matrix accurately and quickly, we adopted some measures to
ensure that the recovered Rres has the above characteristics. Here, we took the average
of the values in the conjugate symmetric part of the generated matrix so as to limit the
changes in the non-missing part to the minimum range. Finally, the backtracking method
further ensures the positive definiteness of the covariance matrix.
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3. The Proposed Method

Depicted in Figure 2, the proposed model framework consists of three components:
preprocessing, the DCGAN structure and post-processing.

Figure 2. Framework of proposed model.

Firstly, we assume that the signal X is collected by T snapshots with a coprime array.
The preprocessing part calculates the covariance matrix through the raw data, which is
then normalized to the range of [−1, 1]. This is to reduce the range of values for different
features to the same range in order to accelerate training speed and improve model stability.
Subsequently, the covariance matrix Rv is transformed into a two-channel tensor. The
DCGAN structure is responsible for reconstructing the covariance matrix with a virtual
ULA from noise signals. The generator produces a result that is similar to the real covariance
matrix. Finally, the post-processing part ensures the low-rank characteristic of the recovered
covariance matrix and solves the DOA using the generated output.

3.1. Data Preprocessing

In order to adapt to the input requirements of the DCGAN, we used Rv and R
′

as
two inputs for the DCGAN, both of which are real tensors. In the experiment, since the
covariance matrix R is a theoretical value and unknown, its sampled value R

′
was used with

N-elements ULA. The first dimension represents the real part matrix Rv[1, :, :] = Real(Rv),
and the second dimension represents the imaginary part matrix Rv[2, :, :] = Imag(Rv).
According to the structure of the DCGAN generator, the generator restricts the output
data to the range of [−1, 1]. In order to speed up the training process, we performed
row-wise normalization of the real and imaginary parts. It is also helpful to create different
features with the same scale, which leads to easier optimization. Moreover, normalizing
the input data can effectively prevent gradient explosion and mode collapse, which can
better balance the generator and discriminator and improve the stability and robustness of
the model.

3.2. DCGAN Structure

For the DCGAN, the proposed design is illustrated in Figure 3.
We approach the covariance matrix reconstruction as a restoration task aiming to

compute the mapping correlation between Rv and R
′
, so that the generated Rres is as close

as possible to R
′
. The DCGAN consists of a generator with a transposed convolutional

structure and a discriminator with a convolutional structure. The transposed convolutional
structure in the generator allows for a more suitable upsampling method based on the
dataset. Following each transposed convolutional layer in the generator, a ReLU activation
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function and a batch normalization layer are applied. The final layer of the generator
network utilizes a Tanh activation function. A convolutional structure was adopted for
the discriminator. Following each convolutional layer, a LeakyReLU activation function
and a batch normalization layer are utilized. The final layer uses a Sigmoid activation
function. The LeakyReLU activation function retains a small gradient for the negative
part, facilitating higher quality recovery by the generator. Additionally, a dropout layer is
incorporated into the discriminator to balance training.

Figure 3. DCGAN structure.

The proposed model widely uses batch normalization layers due to their ability
to prevent overfitting and accelerate the training and convergence process. However,
it is important to note that batch normalization layers are not used in the input layer
of the generator or the output layer of the discriminator, since this may cause sample
oscillation and model instability. The DCGAN structure does not have pooling layers or
fully connected layers because pooling operations may lose some important information,
and the use of fully connected layers is prone to overfitting. The final output shape of the
generator is 2 × N × N.

3.3. Data Post-Processing

Finally, for the data post-processing part, it should be noted that the last layer of the
generator uses the Tanh activation function. Therefore, we used the saved parameters to
reverse-normalize the network output back to its original values. In addition, although the
generated data roughly conform to the distribution of R

′
, the data do not strictly satisfy

the conjugate symmetry. Therefore, the average of the conjugate symmetric parts of the
real part matrix was directly calculated. The diagonal data of the imaginary matrix were
set to 0, the absolute values of the conjugate symmetric parts of other data were taken, the
average was calculated and positive and negative signs were assigned. Strict adherence
to this property was ensured. Furthermore, since the training strategy involves real and
imaginary dual channels, the two-channel real value data for each recovered covariance
matrix were combined into a complex-valued matrix for DOA estimation. Finally, in order
to ensure positive definiteness of the complex-valued matrix, we utilized the low-rank
matrix optimization algorithm to regularize this matrix.

4. Training Approach
4.1. Loss Function

For small-scale tasks, cross-entropy loss is sufficient for network training. However,
during the experimental process, it was found that a single cross-entropy loss led to
difficulty in limiting the recovery direction of the covariance matrix. Therefore, in this
study, a combined approach of generator loss, discriminator loss, context loss, perceptual
loss and nuclear norm loss was adopted for training. Both generator loss and discriminator
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loss are cross-entropy losses, and the input of the cross-entropy loss is a pair of outputs
from the generator or discriminator and the corresponding size label. The labels of the real
data have been smoothed using 0.9 to maintain balance at both ends. The perceptual loss is
generated by the DCGAN itself and can be represented as

Lperceptual = log(1 − D(G(Rv))), (6)

where D(·) represents the discriminator, and G(·) stands for the generator.
The context loss constrains the consistency of the non-missing parts of the covariance

matrix and aims to minimize changes in non-missing parts during the recovery process. The
L2 norm is employed to calculate the loss, and the inputs of the context loss are R

′
,G(Rv),

and L, which can be represented as

Lcontextual =
∥∥∥L ⊙ G(Rv)− L ⊙ R

′
∥∥∥

2
. (7)

The nuclear norm loss serves as a regularization constraint to reduce the rank of the
restored covariance matrix. It can reduce the number of unknown values that need to be
restored. Additionally, the nuclear norm loss helps control the complexity of the matrix to
avoid overfitting. The nuclear norm loss can be represented as

∥Rres∥∗ =
N

∑
i=1

σi(Rres), (8)

where Rres is the covariance matrix generated by the generator, N represents the number of
rows and columns in the covariance matrix and σi(Rres) represents the i-th singular value
of Rres.

Cross-entropy loss provides backpropagation gradients and other parameters. The
entire restoration task’s loss function can be represented as

Ltotal = Lcontextual + λ1Lperceptual + λ2Lnorm, (9)

where λ1 and λ2 are hyperparameters used to adjust the importance of the two losses.
Therefore, our goal is to ensure the stability of the non-missing parts while guiding

the generator to produce globally consistent results with the real covariance matrix. This
can further improve the accuracy of subsequent DOA estimation.

4.2. DCGAN Training

To construct the dataset, we randomly selected two angles within the range of
[−60◦, 60◦]. Each data point was then generated based on the signal model. The dataset has
SNR values ranging from −5 dB to 10 dB, with a size of 1,000,000. The training set consists
of 80% of the data, and the remaining 20% are used for validation. The model employs the
Adam optimizer to update the weights, and hyperparameters λ1 and λ2 of the total loss of
the recovery task were all set to 0.1.

The model initializes its weights from a normal distribution N
(
0, 0.022). After ini-

tialization, the model immediately applies these weights. Unlike generative tasks, the
generator’s input Rv is reshaped into a vector of shape (N × N × 2, 1) rather than random
noise, which can utilize the prior characteristics of the covariance matrix.

5. Simulation Results

We conducted several experiments to demonstrate the performance of the proposed
method. Based on individual experiment results and quantitative experimental results,
we compared this approach with some other methods. In this study, all experiments were
conducted on a desktop computer equipped with an Intel Core i7-12700F processor running
at 3.5 GHz, with 16 GB of RAM and an NVIDIA GeForce RTX 4060Ti GPU (Galax, Hong
Kong, China). The operating system used is Windows 10. The software environment uses



Remote Sens. 2024, 16, 626 8 of 13

Python 3.6.5 as the programming language and uses the PyTorch framework for training
and testing deep learning models.

5.1. Single Experiment Results

The proposed method was tested with a physical array consisting of seven sensors.
We conducted the experiments with a fixed snapshot count of 256 and SNR at 10 dB. Two
scenarios were considered: one with five signal sources (less than seven) and another with
eight signal sources (greater than seven). In both scenarios, we employed the following
comparison algorithms: the MUSIC algorithm, the sparse representation with lp-norm
algorithm (MAP) [22], the sparse-recovery-based method (SR-D) [23] and the CNN-based
DOA estimation method (CNN-D) [20].

As shown in Figure 4, when the number of signal sources is five (less than seven),
we assume that five uncorrelated signals originate from [−43◦,−29◦, 10◦, 32◦, 54◦]. It is
visible that all of the aforementioned methods can achieve good performance and provide
accurate DOA estimation.

Figure 4. Spectrum of DOA estimation methods when the number of signal sources is five. (a) MUSIC.
(b) MAP. (c) SR−D. (d) CNN−D. (e) Proposed method.

However, as depicted in Figure 5, when the number of signal sources increases to eight
(greater than seven), these signal sources arrive from [−43◦,−29◦,−16◦, 0◦, 10◦, 21◦, 32◦, 54◦].
The spatial spectrum of the MUSIC algorithm becomes flattened, and some spectral peaks
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merge together. The MAP algorithm can only accurately estimate partial angles of arrival.
Both of these two algorithms fail to distinguish more sources than the number of physical
sensors. Although the CNN-D method and SR-D method can obtain eight spectral peaks,
their peaks exhibit some bias, which leads to a decrease in the accuracy of these DOA
estimation algorithms. In contrast, the proposed method still forms eight sharp peaks
at the actual DOAs, which is more than the number of physical sensors (seven). It can
achieve more accurate DOA estimation in underdetermined scenarios, which is because the
proposed method extends the DOFs of the virtual ULA to 12 and reconstructs its covariance
matrix accurately using the DCGAN with the prior knowledge.

Figure 5. Spectrum of DOA estimation methods when the number of signal sources is eight. (a) MU-
SIC. (b) MAP. (c) SR−D. (d) CNN−D. (e) Proposed method.

5.2. Quantitative Experimental Results

To evaluate the performance of the proposed DCGAN method, we compared it with
two existing methods: CNN-D and SR-D. The evaluation is based on the root mean square
error (RMSE) metric. We constructed a coprime array using the coprime pairs of 3 and
5, with the element positions being {0, 3, 5, 6, 9, 10, 12}d. Furthermore, experiments were
conducted at SNR values of [−5, 0, 5, 10] dB.

As presented in Figure 6, when the quantity of snapshots is held constant at 256, the
performance of the proposed method improves consistently as the SNR increases and
surpasses the other methods, especially in low SNR conditions.
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Figure 6. RMSE versus SNR.

Then, as illustrated in Figure 7, the SNR was fixed at 10 dB, and we compared the
performance of the above methods with different numbers of snapshots. The proposed
method does not experience a significant performance degradation as snapshots decrease
and outperforms other methods. This is because the covariance matrix could be accurately
rebuilt although with the limited snapshots, which preserves low-rank characteristics and
more DOFs.

Figure 7. RMSE versus snapshots.

Next, as shown in Figure 8, we demonstrate the RMSE of these methods at different
angle separation degrees. It is apparent that the proposed method exhibits robust perfor-
mance at different resolutions, without significant fluctuations, and exhibits considerable
robustness. The CNN-D method only uses the first-row elements to recover the covari-
ance matrix and is incapable of guaranteeing the positive definiteness of the resulting
covariance matrix.
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Figure 8. RMSE versus angular separation.

In the subsequent analysis, we investigated the influence of different snapshots and
SNR levels on the performance of the proposed method. As shown in Figure 9, the
performance of the proposed method improves with an increase in the number of snapshots.
It can be observed from the figure that when the snapshot count is greater than 256, the
performance of the proposed method stabilizes. Even with a relatively limited number of
snapshots, the proposed method can achieve accurate DOA estimation without excessive
performance loss. Furthermore, the performance of the proposed method continuously
improves with an increase in SNR and stabilizes at a level of 10 dB.

Figure 9. RMSE of the proposed method with different SNRs and snapshots.

Finally, we performed 10,000 Monte Carlo simulations and recorded the estimated
total time results in Table 1. It should be noted that, to ensure the accuracy of the model,
the deep learning methods mentioned above require a long training period, so well-trained
models were used for testing. From the results, it can be seen that compared to the
traditional physics-based model SR-D, the proposed method can achieve faster estimation
time, with a decrease of about 30 times. Compared to the CNN-D method, especially at
lower SNR from −5 dB to 5 dB, our estimation time is about 10–30 s faster, although, at
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10 dB SNR, the proposed method also has a slight improvement. Combining Figure 7 and
Table 1, it becomes evident that the proposed method is capable of achieving fast estimation
even with limited snapshots. Therefore, it is suitable for fast DOA estimation in mobile
agent localization scenarios.

Table 1. DOA estimation times.

Method −5 dB 0 dB 5 dB 10 dB

SR-D 5890 s 5290 s 5720 s 5810 s
CNN-D 216.5672 s 209.0678 s 184.01 s 171.723 s

Proposed 192.8996 s 179.845 s 172.8436 s 171.667 s

6. Conclusions

This paper proposes a DOA estimation framework based on the DCGAN in underde-
termined scenarios. Compared with most of the current DL-based methods, our proposed
method transforms DOA estimation to a recovery task of a covariance matrix with more
DOFs. Our method uses the DCGAN model and takes measures to preserve the Hermitian,
Toeplitz and low-rank prior characteristics of the recovered covariance matrix. In underde-
termined scenarios, the proposed method exhibits notable advantages in the fields of both
accuracy and estimation speed, especially with limited snapshots. It is suitable for mobile
agent localization.
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