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Abstract: Rainfall and reservoir water level are commonly regarded as the two major influencing
factors for reservoir landslides and are employed for landslide displacement prediction, yet their
daily data are readily available with current monitoring technology, which makes a more refined
analysis possible. However, until now, few efforts have been made to predict landslide displacements
using daily data, which is likely to substantially improve accuracy and is crucial for landslide early
warning. A novel feature enhancement approach for extracting critical characteristics from daily
rainfall and reservoir water level data for use in landslide displacement prediction is proposed in this
study. Six models, including gated recurrent units (GRUs), long short-term memory (LSTM), and
support vector regression (SVR) with an unenhanced dataset and GRU-E, LSTM-E, and SVR-E with
an enhanced dataset, were employed for displacement predictions at four GPS monitoring stations
on the Baijiabao landslide, a typical step-like reservoir landslide. The results show that the accuracy
values of all the enhanced models were significantly improved, and the GRU-E model achieved the
most significant improvement, with the RMSE decreasing by 24.39% and R2 increasing by 0.2693,
followed by the LSTM-E and SVR-E models. Further, the GRU-E model consistently outperformed
the other models, achieving the highest R2 of 0.6265 and the lowest RMSE of 16.5208 mm, significantly
superior than the others. This study indicates the feasibility of improving the accuracy of landslide
monthly displacement predictions with finer monitoring data and provides valuable insights for
future research.

Keywords: landslide displacement prediction; feature enhancement; recurrent neural network; gated
recurrent units

1. Introduction

Landslides are a complex and dynamic geological phenomenon that can occur in
various geological settings, resulting in the loss of human lives, damage to infrastructure,
and the disruption of the natural environment [1–5]. More than 4200 potential landslides
within the Three Gorges Reservoir Area (TGRA), located 600 km along the Yangtze River
behind the Three Gorges Dam, could occur due to seasonal rainfall and periodic fluctuations
in reservoir water levels (RWLs). An unfortunate example is the Qianjiangping landslide,
with a volume of 1.4 × 107 m3, which reactivated in 2003 when the RWL reached 135 m,
causing 30-m-high waves of water that overturned many boats, killing 24 people and
destroying 346 houses [1,6]. Due to the demand for flood control and power generation,
the RWL has been cycling annually between the flood limiting level (145 m) and the normal
pool level (175 m) since its operation [7], which, combined with seasonal rainfall, has
caused many landslides with step-like deformation characteristics in its nearest upstream,
the Zigui Basin [8,9]. To reduce the losses of life and property caused by landslides,
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the National Field Observation and Research Station of Landslides in the Three Gorges
Reservoir Area of the Yangtze River has established a professional monitoring network,
providing a large amount of landslide field monitoring data [10]. This makes it possible to
provide early warnings through landslide displacement prediction and provide a basis for
risk management decision making [11].

Rapid advancements in landslide monitoring technology have provided diverse
data [12], enabling data-driven approaches for landslide displacement prediction. Machine
learning and deep learning models such as artificial neural networks (ANNs), extreme
learning machines (ELMs), support vector regression (SVR), long short-term memory
(LSTM), and gated recurrent units (GRUs) have gained popularity due to their powerful
nonlinearity, automatic feature extraction, and flexibility [13–20]. Historical deformation is
considered an internal influencing factor for reservoir landslides, and rainfall and RWLs
are considered external factors. To date, historical landslide factors, including cumula-
tive or monthly displacement, monthly cumulative rainfall, monthly average RWL, and
the statistical parameters based on them, are widely used as input features for landslide
displacement prediction models [21–23]. However, previous research has indicated a sig-
nificant correlation between the displacement of reservoir landslides and abrupt changes in
daily reservoir water and rainfall levels [10,24–26], while most of these factors are derived
from monthly monitoring data and cannot fully describe the variability of influencing
factors. Specifically, it is difficult to accurately describe the variation in influencing factors,
and crucial information is omitted, despite the use of monthly cumulative rainfall and
monthly average reservoir level data. For example, the RWL fluctuation observed in the
TGR area reached 14.47 m in November 2008; however, the monthly average RWL cannot
describe this tremendous change. Similarly, the cumulative monthly rainfall cannot fully
describe the rainfall ratio of each level and the number of consecutive rainfall days within
one month. Moreover, with the current increase in automated monitoring technologies,
monitoring data on finer time scales is becoming easier to acquire, making it possible to ad-
dress these issues. Thus, characterizing the key influencing factors, rainfall and RWL, based
on finer time scales is urgently required to improve the precision of landslide displacement
prediction models.

The main aim of this study is to propose a novel feature enhancement approach for
landslide displacement prediction based on multilayer recurrent neural network (RNN)
models, including LSTM and GRU cells, to address the limitations posed by conventional
input features derived from monthly monitoring data. This study introduces an innovative
methodology for constructing datasets for landslide displacement prediction from daily
rainfall and RWL data, enabling more accurate characterizations of the variability of influ-
encing factors and potentially improving prediction accuracy. In addition to these dataset
construction approaches, this study also proposes a multilayer RNN framework with core
LSTM or GRU cells for landslide displacement prediction, presents hyperparameter and
model evaluation schemes for optimization and performance assessment, and conducts a
case study on the Baijiabao landslide, a typical landslide in the TGR area, to validate the
effectiveness of the proposed feature enhancement approach. Furthermore, the study dis-
cusses two critical issues related to the best-performing and recommended model, namely
sequence length selection and optimal hyperparameter combinations.

2. Methodology

Figure 1 shows a schematic of the workflow of the proposed feature-enhanced RNN
model for landslide displacement prediction, which contains four main steps: landslide moni-
toring data collection, preprocessing, dataset construction, model solving, and evaluation.

2.1. Landslide Monitoring Data Collection

Landslide monitoring plays a crucial role in landslide displacement prediction by pro-
viding long-term monitoring data on slope movement, ground stability, and environmental
conditions that affect landslide behavior. For reservoir landslides, standard monitoring
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methods include surface displacement monitoring using a global positioning system (GPS),
total stations, crack meters, 3D laser scanners and unmanned aerial vehicles (UAVs); deep
displacement monitoring using inclinometers and optical fibers; and the external environ-
ment monitoring of rainfall and RWLs by weather stations. The aim of this study was to
develop a predictive model for reservoir landslides by integrating long-term GPS surface
displacement measurements with data on rainfall and RWLs, which are critical influencing
factors. Daily data on RWL and rainfall amounts were deemed necessary to enhance
the model’s accuracy. It should be emphasized that including environmental variables,
such as daily RWLs and rainfall amounts, is crucial in developing a reliable and accurate
model for predicting potential landslide events. By incorporating these variables, the
developed model can better account for the dynamic changes in the reservoir environment
and improve its ability to forecast the occurrence of future landslides. Thus, the advanced
collection of monthly displacement (MDP), daily rainfall, and RWL data was essential.
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2.2. Data Preprocessing and Dataset Construction
2.2.1. Feature Enhancement

Previous studies have predominantly utilized monthly cumulative rainfall and average
RWL as input variables for reservoir landslide displacement prediction [27–29]. However,
these metrics may fail to capture the significant temporal variations in rainfall distribution
and RWL fluctuations that can occur within a single month. For instance, the Three Gorges
Reservoir Area (TGRA) experiences considerable water level fluctuations, such as the 14.47 m
fluctuation observed in November 2008. Rainfall patterns also vary significantly in the region.
For instance, between May 2015 and July 2016, the total rainfall was approximately 200 mm.

Nevertheless, the rainfall distribution differed, with over 10 days of rainfall in May
2015 and 17 days in July 2016. Thus, collecting daily data is essential for accurately pre-
dicting landslide displacement and understanding the dynamic changes in the reservoir
environment, which is crucial for risk management and engineering geology. To address
this limitation, we propose a novel attribute enhancement method that incorporates daily
RWL and rainfall data. This approach is expected to improve the accuracy and reliabil-
ity of the landslide displacement prediction model by providing a more comprehensive
understanding of the dynamic changes in the reservoir environment.
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To enhance the RWL attribute, the mean (RWLavg), median (RWLmed), maximum
(RWLmax), minimum (RWLmin), variation (RWLvar), and standard deviation (RWLstd) of
daily RWL within each natural month were calculated. The first four metrics, RWLavg,
RWLmax, RWLmin, and RWLmed, provide insight into the absolute values of the monthly
RWLs. At the same time, RWLvar and RWLstd accurately describe RWL fluctuations within
a particular month. For instance, the RWLstd of a given month is calculated as follows:

RWLstd =
√

∑N
i=1(Wi − µ)2/N, (1)

where Wi is the RWL on day i of the month, µ is the average RWL of the month, and N is
the number of days in the month.

Based on the standards released by the China Meteorological Administration, the daily
rainfall intensity (DRI) can be obtained by classifying the daily rainfall into one of seven
levels: no rain (<0.1 mm/d), light rain (<10 mm/d), moderate rain (<25 mm/d), heavy rain
(<50 mm/d), torrential rain (<100 mm/d), downpour (<250 mm/d), and heavy downpour
(≥250 mm/d) [30]. Then, the percentage of rainfall occurrence for each level in a month
can be calculated by counting the number of days that each level occurs and dividing it
by the total number of days in the month. Finally, traditional monthly cumulative rainfall
(MCR) with enhanced monthly rainfall features, MRIno, MRIlgt, MRImod, MRIhvy, MRItrt,
MRIdp, and MRIhvydp, can be prepared as the input series for modeling. The MCR and MRI
of each level were acquired as follows:

MCR = ∑N
i=1 Ri, (2)

MRIlevel = ∑N
i=1 [(LLlevel ≤ R i < ULlevel)]/N, (3)

where Ri is the cumulative rainfall on day i of the month, N is the number of days in the
month, and LLlevel and ULlevel are the lower and upper limits of daily rainfall intensity
levels, respectively.

2.2.2. Dataset Construction

The construction of a landslide displacement prediction dataset involves developing a
comprehensive framework that treats the prediction as a regression task. This task focuses
on estimating the displacement based on previous deformation and relevant environmental
factors. Key features include history displacement, RWLavg, RWLmax, RWLmin, RWLmed,
RWLvar, RWLstd, MCR, and MRI. These input features are then normalized using the
min–max normalization method for optimal processing.

To create a suitable dataset for training and testing the predictive models, the sliding
window technique was employed. The initial starting window coordinate, denoted as
i, was set to one, and a window size S and a queue length L were used for the monthly
displacement. Features were extracted from time steps t = i to t = i + S − 1, forming the
input feature set FSi, and the displacement at time step t = i + S served as the ground
truth value yi+S. Then, the window coordinate was incremented by raising i = i + 1, with
the extraction process continuing until i + S equaled L. Finally, the dataset was constructed
with a length of L − S, split into a ratio of 7:3, with the first part of the data used as the
training set and the remaining data used as the test set, and then employed for the training
and evaluation of the model, respectively.

2.3. Multilayer RNN Models

The proposed approach employed a multilayer RNN model to construct landslide
displacement prediction models. As shown in Figure 2b,c, the RNN model consists of two
widely used core architectures: LSTM and GRU networks [16].
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as shown in (c).

LSTM is a type of RNN that is designed to capture long-term dependencies in sequence
data and has been widely used for time series prediction. The LSTM cell is composed of
four main components: an input gate it, a forget gate ft, an output gate ot, and a cell state
ct, which controls the flow of information in and out of the cell, and the memory cell stores
information over time. The forms of the equations for an LSTM cell at time step t are [31]:

ft = σ
(

W f xt + U f ht−1 + b f

)
, (4)

it = σ(Wixt + Uiht−1 + bi), (5)

ot = σ(Woxt + Uoht−1 + bo), (6)

gt = σ(Wcxt + Ucht−1 + bc), (7)

ct = ft
⊙

ct−1 + it
⊙

gt, (8)

ht = ot
⊙

tan (c t), (9)

where ft, ii, ot, andgt are the forget, input, output, and cell gates, respectively; ct, ht,
and xt are the cell state, hidden state, and input at time t; σ is the sigmoid function; the
operator

⊙
denotes the Hadamard product; W, U, and b are the learnable weight and bias

parameters; and the initial values are c0 = 0 and h0 = 0.
A GRU is another type of RNN that is designed to capture long-term dependencies in

sequence data [32]. The GRU cell is similar to the LSTM cell but has fewer gating mechanisms,



Remote Sens. 2024, 16, 618 6 of 21

making it computationally more efficient than LSTM. The GRU cell has two gates: a reset
gate rt and an updated gate zt, which determines how much of the previous hidden state
should be forgotten and how much of the candidate activation should be used to update the
current hidden state, respectively. The equations for a GRU cell at time step t are:

rt = σ(Wrxt + Urht−1 + br), (10)

zt = σ(Wzxt + Uzht−1 + bz), (11)

ĥt = tanh
(

Whxt + Uh

(
rt

⊙
ht−1

)
+ bh

)
, (12)

ht = zt
⊙

ht−1 + (1 − zt)
⊙

ĥt, (13)

where rt and zt are the reset and update gates; ht is the hidden state at time t; W, U, and b
are the learnable weight and bias parameters; σ is the sigmoid function; and the operator⊙

denotes the Hadamard product. Initially, h0 = 0.
As shown in Figure 2a, a multilayer RNN model based on a GRU cell was employed

for predicting landslide displacement, and this model can be alternatively constructed
using the LSTM cell. The proposed model has multiple layers of GRU cells, enabling it to
capture and learn the temporal dependencies and patterns in the input features. The model
architecture comprises multiple layers, and each output of the previous layer is fed to the
next layer as an input. The final step involves using a fully connected layer to connect the
output of the last cell of the previous layer to generate the predicted monthly displacement.

For comparison, the multilayer GRU model, multilayer LSTM model, and popular
SVR model were adopted for displacement prediction. Meanwhile, both pre- and post-
enhancement datasets were adopted for all three models to compare the effectiveness of the
feature enhancement. For model training, the mean squared error (MSE) loss function was
chosen for the three models, and the adaptive moments (Adam) optimization algorithm
was adopted for the parameter optimization of the LSTM and GRU models.

2.4. Hyperparameter Optimization

The selection of model hyperparameters is critical to the accuracy of the model. For
the LSTM- and GRU-based multilayer RNN models, the critical hyperparameters selected
for optimization are the number of layers and the hidden channels of the core cell, which
can be optimized using a grid search method. For SVR, the kernel type C, and γ were
selected as the hyperparameters [29], and the popular particle swarm optimization (PSO)
algorithm [33] was employed to accelerate the optimization. The hyperparameter search
spaces are listed in Table 1.

Table 1. Hyperparameter search spaces of the models.

Model Hyperparameters

GRU hidden_channels = {8, 16, 32, 64, 128}, numlayers = {1, 2, 3}

LSTM hidden_channels = {8, 16, 32, 64, 128}, numlayers = {1, 2, 3}

SVR
kernel = {′ poly′ ,′ rb f ′ ,′ sigmoid′}, C =

{
10−3, 10−2, 10−1, 1, 10, 100, 1000

}
,

γ =
{

10−3, 10−2, 10−1, 1, 10, 100, 1000
}

2.5. Performance Evaluation Criteria

Monthly landslide displacement prediction could be considered a regression problem,
and three metrics were utilized for model evaluation: the MSE, root mean square error
(RMSE), and R-squared (R2) score. The MSE measures the average squared difference
between the predicted and actual values, and its formula is as follows:

MSE =
1
n∑N

i=1(yi − ŷ)2, (14)
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where n is the number of instances, yi is the ground truth, and ŷ is the predicted displacement.
The RMSE is the square root of the MSE, which measures the residuals’ standard

deviation. The formula is as follows:

RMSE =
√

MSE =

√
1
n∑N

i=1(yi − ŷ)2. (15)

The R2 score measures the proportion of variance in the dependent variable that is
predictable from the independent variables. It ranges from 0 to 1, where 1 indicates a
perfect prediction, and 0 indicates no correlation between the predicted and actual values.
A higher R2 value indicates better model performance. The formula is as follows:

R2 = 1 − ∑(yi − ŷ)2

∑(yi − y)2 , (16)

where y is the mean of the ground truth.
Ultimately, the MSE was used as the loss function for model training and hyperpa-

rameter optimization, and the RMSE and R2 were employed for model evaluation and
comparison.

3. Case Study
3.1. Landslide Overview

The Baijiabao landslide, the subject of the case study in this paper, is located on the
right bank of the Xiangxi River (a tributary of the Yangtze River), approximately 2.5 km from
the entrance to the Xiangxi River. As shown in Figures 3 and 4, the landslide has a short
tongue-shaped planar morphology, with an elevation of 270 m at the top and 120 m at the
foot. The landslide is approximately 360 m wide and 550 m long, covering 2.2 × 105 m2,
with an average depth of 45 m and a volume of approximately 9.9 × 106 m3. The major
sliding direction is 75◦, and it is a large-scale deep-seated soil landslide. The landslide mass is
mainly composed of quaternary gray–yellow and brown–yellow powdery clay clasts, gravel,
and blocky stone soil. The sliding surface consists of gray–yellow powdery clay mixed with
gravel and pebbles, with purple–red plasticity. The bedrock is composed of Jurassic Lower
Xiangxi Formation feldspar-quartz sandstone and mudstone, dipping at 250◦∠30◦. The annual
average rainfall is approximately between 1100 and 1300 mm, with the rainy season spanning
from May to September accounting for approximately 80% of the total annual rainfall. The
average temperature in the TGRA is 18 ◦C, and the hottest months are July and August,
with an average temperature of 28 ◦C. The water level in the TGRA varies throughout the
year due to seasonal changes in precipitation and water usage for power generation and
navigation. Generally, the water level starts to decrease in March, reaching its minimum level
of approximately 145 m in early June, when the reservoir is operated at a lower capacity to
conserve water for power generation and navigation during the dry season. Then, it gradually
rises and reaches its maximum level of approximately 175 m in October or November, when
the reservoir operates at full capacity to store floodwater and generate hydroelectric power.
Figure 5 shows the RWLs in this reservoir from 2007 to 2018.

To monitor the displacement of the landslide, four GPS stations have been in operation
since October 2006. Among them, ZG324 and ZG325 were installed in the principal
direction, while ZG323 and ZG326 are located on both flanks of the landslide mass. For
our study, data on the daily RWL of the TGRA were collected from the Department of
Water Resources of Hubei Province [2]. The rain gauge (RG) installed in 2017 acquires
high-precision daily rainfall data, but previous data were unavailable for the proposed
feature enhancement approach. Therefore, daily rainfall monitoring data from Quyuan
Station, located 8 km downstream and established in 2012, were used to supplement the
missing data from June 2012 to October 2018, while data from Badong Station, located
35 km upstream, were used to fill in the remaining missing data from before June 2012.
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Figure 3. Overview of the Baijiabao landslide. The orthophoto was taken using a DJI Phantom 4 RTK
on 6 May 2022, when the RWL was 168.6 m. The Chinese map in the top-right corner was sourced
from http://bzdt.ch.mnr.gov.cn (accessed on 12 February 2023).

The Baijiabao landslide was predominantly in its creeping stage, presenting a tiered
displacement curve after the impoundment of the Three Gorges Reservoir. As illustrated
in Figure 5, the preponderance of landslide activity transpired during the rainy season,
specifically when the reservoir water level was markedly low, and precipitation was con-
siderably high. Throughout the monitoring period, ZG326 exhibited the largest cumulative
displacement, attaining 1.8 m, while the lowest displacement was observed at ZG323,
measuring 1.4 m. With respect to annual displacement, the Baijiabao landslide underwent
its most accelerated displacement during the rainy seasons of 2009, 2012, and 2015 and
manifested a conspicuous deceleration commencing from 2016 onwards [34].

http://bzdt.ch.mnr.gov.cn
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Figure 4. A geological cross-section (A-A’) of the Baijiabao landslide. The location of the section line
is shown in Figure 3.
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Figure 5. Cumulative displacement, monthly rainfall, and RWL data relating to the Baijiabao landslide.
The RWL and rainfall data were sourced from the Department of Water Resources of Hubei Province
(http://113.57.190.228:8001/, 12 February 2023).

3.2. Preprocessing Displacement Data and Influencing Features

Considering the phenomenon of reservoir-triggered landslides, variations in precip-
itation and reservoir water levels have the potential to alter the geotechnical character-
istics of the soil, compromising stability during instances of rapid reservoir drawdown
or rise [24,25,35]. For the Baijiabao landslide, our study not only collected historical dis-
placement curve data but also incorporated external contributory factors such as daily
precipitation measurements and reservoir water level records.

3.2.1. Monthly Displacement

The cumulative displacement data of the four GPS stations are shown in Figure 5,
which indicates that the Baijiabao landslide shows an obvious step-like deformation. The
incremental displacement predominantly occurs between May and August each year and
remains relatively stable in other months. The GPS stations are manually monitored at a

http://113.57.190.228:8001/
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typical frequency of one month, with increased monitoring frequency during the rainy sea-
son to capture rapid changes in landslide movement. However, the specific sampling date
varies between the start, middle, and end of each month, which leads to irregular monitor-
ing intervals. Consequently, linear interpolation was employed to calculate the cumulative
displacement at the end of each month, followed by the subtraction of the cumulative
displacement at the end of the previous month to obtain the monthly displacement.

Figure 6 shows the monthly displacement data of the four GPS stations monitoring the
Baijiabao landslide. Based on Figures 5 and 6, it is evident that the majority of the landslide
deformation occurs between May and August, with the most significant deformations
being observed in June each year, particularly in 2009, 2012, and 2015. Moreover, the
deformation trends observed at the four GPS stations are generally consistent, suggesting
that the different parts of the landslide exhibit similar sliding tendencies. Conversely,
during nonrainy seasons, the landslide remains in a relatively stable state.
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Figure 6. Monthly displacement data relating to the Baijiabao landslide from February 2007 to
September 2018. The data shown are derived from four GPS stations: ZG323 (a), ZG324 (b), ZG325 (c),
and ZG326 (d).

3.2.2. Feature Enhancement of Rainfall and RWL Data

As described in Section 2.2, the daily rainfall data in this case study were subjected to
feature enhancement. Specifically, the rate of precipitation was classified into seven levels,
and the monthly rainfall intensity distribution was calculated based on the daily rainfall
intensity, as shown in Figure 7. The predominant type of rainfall intensity in the region
was light rain, with heavy rain, torrential rain, and downpour occurring during the rainy
season. Heavy downpours did not occur during the monitoring period. Moreover, the
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rainy season typically features continuous rainfall, with precipitation occurring for half
of each month. Ultimately, eight monthly rainfall-related features, MCR, MRIno, MRIlgt,
MRImod, MRIhvy, MRItrt, MRIdp, and MRIhvydp, were obtained for landslide displacement
prediction modeling.
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Figure 7. Monthly rainfall intensity distribution, classified based on the standard released by the
China Meteorological Administration (GB/T 28592-2012 [30]).

For daily RWLs, the RWLavg, RWLmax, RWLmin, RWLmed, RWLvar, and RWLstd were
calculated as enhanced RWL features for the landslide displacement prediction models, as
shown in Figure 8. Throughout the year, a consistent decreasing trend regarding the RWL
was observed from January to June, with the rate of decline increasing until the lowest level
(145 m) was reached. Subsequently, the RWL remained low during July and August, with
significant fluctuations due to concentrated rainfall during the rainy season being observed.
From September to November, the RWL rose steadily until it reached its peak (175 m) in
December.
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3.3. Dataset Construction

To evaluate the effectiveness of the proposed feature enhancement method, pre- and
post-enhanced datasets were constructed for model training and testing. After feature
normalization, a total of 133 feature-displacement pairs were generated using a sliding
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window of 6 months (S = 6) based on the data from February 2007 to August 2018, with
the first 93 pairs (70%) being used as the training set and the remaining 40 pairs (30%)
being used as the testing set. For the control group, before enhancement, the input of the
models included the MDP, MCR, and RWLavg of the past 6 months. After enhancement,
the experimental group included additional enhanced rainfall and RWL features, including
MRIno, MRIlgt, MRImod, MRIhvy, MRItrt, MRIdp, MRIhvydp, RWLmax, RWLmin, RWLmed,
RWLvar, and RWLstd, which were obtained through feature enhancement. In summary,
a total of eight datasets were constructed for the four GPS monitoring stations, and each
monitoring point contained one pre- and one post-enhanced dataset, with the former
containing 3 features per month and the latter including 15 features per month.

3.4. Experimental Design for Model Comparison

To compare the performance of the feature enhancement with different models, three
popular models, GRU, LSTM, and SVR, were applied to two types of datasets (DSpre and
DSenh), and the “-E” suffix was added to the models applied to DSenh, namely, GRU-E,
LSTM-E, and SVR-E, respectively. The GRU/GRU-E and LSTM/LSTM-E models were
built and trained based on PyTorch [36], and the SVR model was based on scikit-learn.
All analyses, including data pre-processing, model construction, training, validation, and
post-processing, were performed using Python 3.10.4, PyTorch 1.13.1, scikit-learn 1.2.0, and
ArcGIS Pro 3.0.2 in Windows Pro 22H2 with an AMD Ryzen 7 5800H CPU @3.2 GHz, 64G
RAM and RTX 3060.

4. Results
4.1. Model Performance Comparison

Hyperparameter tuning was implemented for each model using the method delin-
eated in Section 2.4, and the optimal hyperparameter configurations and corresponding
performance metrics for both the training and test sets are presented in Table 2. First, the
findings showed that the application of feature augmentation to the GRU-E, LSTM-E, and
SVR-E models yielded significant performance gains, thereby validating the effectiveness
of the proposed approach. This was further confirmed by Taylor diagrams depicting each
model’s performance with the test sets, as exemplified in Figure 9. Second, the GRU-E
model consistently outperformed the other models, achieving the most favorable prediction
results across all four GPS stations. Specifically, the GRU-E model achieved the lowest
RMSE of 15.65 mm for predicting the displacement of ZG323, followed by the LSTM-E
(16.53 mm), LSTM (19.26 mm), SVR-E (19.36 mm), GRU (19.55 mm), and SVR (25.96 mm)
models. Notably, the displacement prediction results for the other three GPS stations,
ZG324, ZG325, and ZG326, demonstrated a high degree of conformity with the ZG323
predictions, suggesting that the GRU-E model is robust in capturing the spatiotemporal
variation in GPS displacement.

This study offers compelling evidence that the GRU-E model consistently outperforms
others in predicting monthly landslide displacement at the four GPS stations. The Taylor
diagrams in Figure 9 and the composite performance comparison in Table 3 illustrate that
the GRU-E model achieved the lowest mean RMSE (16.5208 mm) and the highest mean R2

(0.6265), followed by the LSTM-E, SVR-E, GRU, LSTM, and SVR models. This suggests that
the GRU-based models produced the best performance in both groups of unenhanced and
enhanced models, with the GRU-E model standing out among the six models.

The comparison between enhanced models and their corresponding unenhanced
models in Table 3 indicates that the GRU-E model yielded the most significant perfor-
mance improvement, reducing the mean RMSE by 24.39% and increasing the mean R2

by 0.2693. The LSTM-E model displayed similar but minor improvements, reducing the
mean RMSE by 21.09% and increasing the mean R2 by 0.2517. The SVR-E model resulted
in the slightest improvement, reducing the mean RMSE by 11.47% and increasing the
mean R2 by 0.2087, which is still a considerable improvement. Therefore, the proposed
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feature enhancement approach achieved significant performance improvements for the
GRU, LSTM, and SVR models.

Table 2. Model hyperparameter optimization results and performance on the training and testing sets.

GPS
Station Model

Training Set Testing Set
HyperparametersRMSE

(mm) R2 RMSE
(mm) R2

ZG323

GRU 0.5365 0.9995 19.5490 0.3309 hidden_channels = 64, num_layers = 1
GRU-E 0.0391 1.0000 15.6533 0.5710 hidden_channels = 32, num_layers = 1
LSTM 3.4877 0.9778 19.2647 0.3503 hidden_channels = 32, num_layers = 3

LSTM-E 3.4403 0.9784 16.5343 0.5214 hidden_channels = 16, num_layers = 3
SVR 4.8724 0.9566 25.9641 −0.1802 kernel = “rb f ”, C = 9.9935, γ = 0.2691

SVR-E 9.9379 0.8194 19.3652 0.3435 kernel = “rb f ”, C = 2.926, γ = 0.2827

ZG324

GRU 2.1572 0.9932 22.0556 0.3496 hidden_channels = 32, num_layers = 2
GRU-E 2.7860 0.9887 17.5927 0.5862 hidden_channels = 32, num_layers = 3
LSTM 3.9108 0.9777 19.9053 0.4702 hidden_channels = 16, num_layers = 3

LSTM-E 2.4049 0.9916 17.6805 0.5820 hidden_channels = 64, num_layers = 3
SVR 12.6521 0.7667 24.5768 0.1923 kernel = “rb f ”, C = 5.1545, γ = 0.1938

SVR-E 11.7092 0.8002 22.8566 0.3015 kernel = rb f , C = 3.3917, γ = 0.2818

ZG325

GRU 1.5528 0.9960 18.6689 0.4414 hidden_channels = 8, num_layers = 1
GRU-E 0.3610 0.9998 14.3027 0.6722 hidden_channels = 32, num_layers = 1
LSTM 2.8944 0.9860 21.1489 0.2832 hidden_channels = 16, num_layers = 3

LSTM-E 4.4246 0.9673 15.9239 0.5936 hidden_channels = 8, num_layers = 3
SVR 12.3302 0.7462 22.6608 0.1770 kernel = “rb f ”, C = 3.4917, γ = 0.2938

SVR-E 10.9944 0.7982 21.0879 0.2873 kernel = “rb f ”, C = 3.0824, γ = 0.3484

ZG326

GRU 3.2225 0.9890 27.1311 0.3069 hidden_channels = 16, num_layers = 3
GRU-E 3.0281 0.9903 18.5345 0.6765 hidden_channels = 32, num_layers = 3
LSTM 3.5563 0.9866 29.4517 0.1832 hidden_channels = 16, num_layers = 3

LSTM-E 3.7689 0.9849 20.7026 0.5964 hidden_channels = 16, num_layers = 3
SVR 15.1977 0.7547 28.4148 0.2397 kernel = “rb f ”, C = 4.2260, γ = 0.2691

SVR-E 13.8861 0.7952 26.6538 0.3311 kernel = “rb f ”, C = 3.2446, γ = 0.3536

Note: Bold values indicate optimal scores in each metric.

Furthermore, this study demonstrates the commendable generalizability of the model
across diverse sites, which is an essential trait for any predictive model. Moreover, the
optimal hyperparameter configurations for each model varied across different monitoring
stations. However, the GRU-E model exhibited optimal performance with 32 hidden chan-
nels, emphasizing the critical role of the number of hidden channels as a hyperparameter
when implementing the GRU-E model for landslide monthly displacement prediction.

Figure 10 illustrates the training loss curves of various RNN models across the four
GPS stations. The findings reveal that the enhanced models, GRU-E, LSTM-E, and SVR-
E, exhibited notably superior convergence curves for all four stations, both in terms of
convergence speed and the final results, compared to those of the nonenhanced models,
GRU, LSTM, and SVR. This observation highlighted the efficacy of the proposed feature
enhancement approach. Specifically, the GRU-E model exhibited the fastest convergence
speed for ZG323, ZG325, and ZG326, with a shallow loss for ZG325 relative to the other
models. While the GRU-E model converged slower than the LSTM-E model for ZG324, both
models demonstrated comparable final loss values, indicating similar performance. These
findings suggest that the proposed feature enhancement approach is a compelling strategy
for improving the performance of RNN models for landslide displacement prediction.
Moreover, the superior performance of the GRU-E model highlighted the significance of
selecting an appropriate RNN architecture to achieve optimal performance.
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Table 3. The composite performance of the six models for displacement prediction at the four
GPS stations.

Unenhanced Models Enhanced Models

GRU LSTM SVR GRU-E LSTM-E SVR-E

Mean RMSE (mm) 21.8512 22.4427 25.4041 16.5208 17.7103 22.4909
Mean R2 0.3572 0.3217 0.1072 0.6265 0.5734 0.3159

Decrease in RMSE (%) 24.39% 21.09% 11.47%
Increase in R2 0.2693 0.2517 0.2087

Note: The mean RMSE and R2 values were derived by averaging the metrics of each model with the testing sets
(from ZG323 to ZG326) from Table 2, and the percentage decrease in the RMSE value and the increase in the R2

value were quantified by comparing the mean RMSE and R2 values for each enhanced and relatively unenhanced
model. Bold values indicate optimal scores.
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4.2. Analysis of Monthly Landslide Displacement Prediction Results

In addition to comparing the macroscopic performance of different models, we con-
ducted a detailed analysis of their specific prediction results. Figure 11 illustrates the
prediction performance of the six models for the four GPS monitoring stations over a
period of 40 months, from May 2015 to August 2018, spanning four rainy seasons. The
left side of Figure 11 shows the prediction results of the unenhanced models, and the
right side displays the prediction results of the enhanced models. Our research findings
indicate that the enhanced models outperformed the unenhanced models in predicting
landslide displacement during the rainy seasons and had higher accuracy. Moreover, the
enhanced models accurately differentiated between rainy and nonrainy seasons, with a
stable prediction sequence during the nonrainy seasons and an accurate prediction of
landslide displacement during the rainy seasons.

To elaborate, in contrast to the conventional nonenhanced model, the GRU-E model
offered increased precision in predicting monthly landslide displacement throughout
the rainy seasons of 2015, 2016, and 2017, demonstrating adaptability to the abrupt dis-
placement variations in landslides during those periods. On the other hand, the original
nonenhanced model exhibited marked time lag in its landslide displacement predictions
for the rainy seasons, rendering it deleterious for this particular class of tiered landslides.
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Figure 11. Comparative Analysis of Displacement Predictions for Non-Enhanced and Enhanced
Models Across Four GPS Stations During Rainy Seasons (May 2015–August 2018). This figure
juxtaposes the displacement prediction outcomes from non-enhanced and enhanced models on the
left and right sides, respectively, for four GPS stations (ZG323, ZG324, ZG325, and ZG326) across
rainy seasons spanning from May 2015 to August 2018. Solid red lines depict the actual measured
monthly displacement (ground truth), while dashed lines in various colors signify the displacement
predictions from different models. Panels (a,c,e,g) display the predictions from non-enhanced models
for stations ZG323, ZG324, ZG325, and ZG326, respectively. Conversely, panels (b,d,f,h) illustrate the
results from enhanced models for the same stations, in the same order.

Specifically, among the three enhanced models, the GRU-E model’s prediction results
were significantly closer to the true values. The model’s predictions for the first three rainy
seasons were found to be highly accurate, with the first one being particularly precise.
However, the predictions for the fourth rainy season deviated significantly from the ground
truth. This deviation may be attributed to the lack of prior experience from the previous
three rainy seasons, suggesting that the model’s predictive ability may decrease as the
extrapolation interval increases. Therefore, the optimal extrapolation time for the GRU-E
model is recommended to be one year, which means predicting the displacement within
the next year, and it is not recommended to predict more than three years.

4.3. Selection of the Sequence Length of the Model Input

The selection of an appropriate sequence length for predicting landslide displacement is
crucial, as it can significantly impact the model’s accuracy. To determine the optimal sequence
length, we conducted a study with four GPS stations, examining the performance of the
training and testing sets under different sequence lengths, as shown in Figure 12. Among the
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three sequence lengths tested (3, 6 and 12), the GRU-E model achieved the best results for the
testing set, with a sequence length of 6, exhibiting the smallest RMSE and the highest R2. This
performance was consistent across all four GPS stations. In addition, the model exhibited no
significant differences in performance with the training set, especially for R2. Therefore, we
suggest that the input sequence length of the GRU-E model be set to 6.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 23 
 

 

4.3. Selection of the Sequence Length of the Model Input 

The selection of an appropriate sequence length for predicting landslide displace-

ment is crucial, as it can significantly impact the model’s accuracy. To determine the opti-

mal sequence length, we conducted a study with four GPS stations, examining the perfor-

mance of the training and testing sets under different sequence lengths, as shown in Fig-

ure 12. Among the three sequence lengths tested (3, 6 and 12), the GRU-E model achieved 

the best results for the testing set, with a sequence length of 6, exhibiting the smallest 

RMSE and the highest R2. This performance was consistent across all four GPS stations. In 

addition, the model exhibited no significant differences in performance with the training 

set, especially for R2. Therefore, we suggest that the input sequence length of the GRU-E 

model be set to 6. 

 

Figure 12. Performance of the GRU model with different sequence lengths for predicting landslide 

displacements at different GPS monitoring stations: (a) ZG323, (b) ZG324, (c) ZG325, and (d) ZG326. 

4.4. Influence of Hyperparameters for the GRU-E Model 

Model hyperparameters play a crucial role in determining the accuracy and perfor-

mance of a model. In this study, a grid search was performed for two hyperparameters 

and the numbers of hidden channels and layers of the GRU-E model. The search space for 

these hyperparameters is specified in Table 1. Increasing the numbers of hidden channels 

and layers can significantly enhance the model’s complexity and capacity to learn from 

data but may also make the model harder to train and more prone to overfitting. Con-

versely, if there are too few hidden channels and layers, the model may not be able to 

capture displacement features adequately. To investigate the impact of hyperparameter 

combinations on the model’s performance, the model’s performance was evaluated using 

different hyperparameter settings, as shown in Figure 13 The results indicate that the op-

timal performance for the GRU-E model at all four GPS stations was achieved with 32 

hidden channels, resulting in the lowest RMSE. However, the optimal number of layers 

varied among the stations, with the best performance for ZG323 and ZG325 being ob-

tained with one layer and that for ZG324 and ZG326 being obtained with three layers. As 

there is no clear consensus on the optimal hyperparameter settings, we recommend that 

hyperparameter tuning be performed when using the GRU-E model to ensure optimal 
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4.4. Influence of Hyperparameters for the GRU-E Model

Model hyperparameters play a crucial role in determining the accuracy and perfor-
mance of a model. In this study, a grid search was performed for two hyperparameters and
the numbers of hidden channels and layers of the GRU-E model. The search space for these
hyperparameters is specified in Table 1. Increasing the numbers of hidden channels and
layers can significantly enhance the model’s complexity and capacity to learn from data but
may also make the model harder to train and more prone to overfitting. Conversely, if there
are too few hidden channels and layers, the model may not be able to capture displacement
features adequately. To investigate the impact of hyperparameter combinations on the
model’s performance, the model’s performance was evaluated using different hyperparam-
eter settings, as shown in Figure 13 The results indicate that the optimal performance for
the GRU-E model at all four GPS stations was achieved with 32 hidden channels, resulting
in the lowest RMSE. However, the optimal number of layers varied among the stations,
with the best performance for ZG323 and ZG325 being obtained with one layer and that
for ZG324 and ZG326 being obtained with three layers. As there is no clear consensus
on the optimal hyperparameter settings, we recommend that hyperparameter tuning be
performed when using the GRU-E model to ensure optimal model performance. In sum-
mary, selecting appropriate hyperparameter combinations is crucial for optimizing the
performance of the GRU-E model, and a grid search is an effective method for tuning
hyperparameters. However, careful consideration must be given to the trade-offs between
model complexity, training difficulty, and overfitting, and hyperparameter optimization
should be performed to identify the best settings for each specific application.
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4.5. Comparison of RNN Models for Landslide Displacement Prediction

Based on the performance of the enhanced models for the test set presented in Table 2,
as well as in Figures 9–11, it is evident that the two enhanced RNN models, GRU-E
and LSTM-E, achieved the best and second-best results, respectively, outperforming SVR.
However, from the model structures displayed in Figure 2b,c, it can be seen that the
GRU-based models have a simpler structure and fewer parameters than the LSTM-based
models, making them less prone to overfitting. Moreover, due to the increased number
of parameters in the LSTM-based models, the convergence speed during training was
slower, as seen in the loss curves of Figure 10. Additionally, as shown in Figure 11, the
GRU-E model exhibited superior accuracy in predicting large displacements during the
rainy season compared to that of the LSTM-E model. In summary, the GRU-based models
demonstrated a prominent advantage in predicting landslide displacement compared to
the LSTM-based models, with the GRU-E model achieving the best prediction results
among the considered models. Thus, this model is recommended for monthly landslide
displacement prediction.

5. Discussion

In this paper, we propose a novel feature enhancement approach designed to improve
the accuracy of reservoir landslide displacement prediction, and we verified the effective-
ness of the method through a comparative study. Compared to traditional approaches
that use single parameters such as monthly average reservoir water level or monthly ac-
cumulated precipitation to characterize external environmental changes, our proposed
method substantially expands and enriches the parameters of external environmental
factors. Rainfall parameters such as MCR, MRIno, MRIlgt, MRImod, MRIhvy, MRItrt, MRIdp,
and MRIhvydp, and water level parameters such as RWLavg, RWLmax, RWLmin, RWLmed,
RWLvar and RWLstd enable the model to capture the influence of external environmental
changes on landslide displacement more comprehensively. Contrasting studies of nonen-
hanced and enhanced models have shown that the proposed feature enhancement approach
significantly improves the description of external factors. Essentially, this attribute enhance-
ment approach is a new way of thinking about fusing and analyzing monitoring data from
different time scales, and it is applicable and could be subsequently applied to these types
of landslide displacement prediction models and cases.
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The GRU-E model, while demonstrating superior performance compared to both
nonenhanced and other enhanced models, presents several limitations, and it is crucial
that these limitations are improved upon in future. First and foremost, hyperparame-
ter optimization remains a critical aspect for enhancing the effectiveness of the GRU-E
model, similar to other machine learning models. Additionally, the current approach in
constructing displacement prediction models for each GPS station independently over-
looks the potential interdependencies and deformation correlations across different parts
of the landslide, which is a vital factor in comprehensive landslide analysis. Another
notable limitation is the requirement for high-resolution monitoring data, including daily
rainfall and reservoir water level (RWL) data. Acquiring such detailed data can be challeng-
ing, especially in the context of early long-term monitoring projects, potentially limiting
the model’s applicability in these scenarios. Moreover, the enhanced models, including
the GRU-E, tend to show reduced performance when making extrapolations beyond the
observed data range. This limitation becomes particularly pronounced for predictions
extending over periods longer than three years, underlining the need for cautious inter-
pretation in long-term forecasting. This study also faced challenges with data sourcing, as
the daily rainfall data for the extended monitoring period were partially obtained from
nearby national weather stations, not in situ rain gauges. This substitution led to minor
discrepancies in the data source, which might impact the model’s precision. Furthermore,
the model’s validation, carried out using data on the Baijiabao landslide from four GPS
stations, indicates that additional case studies are required to fully assess its generalizability
across diverse landslide scenarios.

Addressing the model’s adaptability to diverse landslide types, particularly in com-
plex environments such as dam reservoir banks, is a critical area for enhancement. The
wide range of landslide typologies in these settings demands a modeling approach that
is versatile and robust. Furthermore, the model’s capacity to predict complex geological
behaviors, especially in scenarios with the potential for rapid and significant slope defor-
mations, is a vital aspect of its development. This consideration is crucial in mitigating the
risks associated with catastrophic landslide events.

In light of these factors, it is evident that while the GRU-E model marks a significant
stride in landslide displacement prediction, there is substantial scope for improvement.
Future work should focus on augmenting the model’s adaptability to different landslide
typologies and enhancing its predictive capabilities for a range of geological behaviors.
These improvements are crucial for effectively managing landslide risks, particularly in
scenarios involving complex or rapidly evolving geological conditions.

6. Conclusions

This study proposed a feature enhancement approach for improving landslide dis-
placement prediction by enhancing the rainfall and RWL parameters of the models. For
comparison, six models, including GRU, LSTM, and SVR using an unenhanced dataset
and GRU-E, LSTM-E, and SVR-E using an enhanced dataset, were employed for landslide
displacement prediction at four GPS monitoring stations on the Baijiabao landslide. The
results indicate the following:

1. The enhanced models, including the GRU-E, LSTM-E, and SVR-E models, showed
significant improvements in terms of the prediction accuracy for all four GPS monitoring
stations, demonstrating the effectiveness of the proposed feature enhancement approach
for daily rainfall and daily RWL characteristics in landslide displacement prediction.
The GRU-E model showed the highest improvement, with the RMSE decreasing by
24.39% and the R2 increasing by 0.2693, followed by the LSTM-E model, with a decrease
in the RMSE of 21.09% and an increase in the R2 of 0.2517, and the SVR-E model, with a
decrease in the RMSE of 11.47% and an increase in the R2 of 0.2087.

2. The GRU-E model consistently excelled in comparison to the other models for the
four GPS monitoring stations. Specifically, it attained the highest mean R2 of 0.6265
and the lowest mean RMSE of 16.5208 mm, substantially superior results to those
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of the LSTM-E model (mean RMSE = 17.7103 mm and R2 = 0.5734) and the SVR-E
model (mean RMSE = 22.4909 mm and R2 = 0.3159). This highlights its remarkable
aptitude for predicting displacements in reservoir landslides with step-like deforma-
tion characteristics. Moreover, it was determined that an input sequence length of 6 is
the optimal configuration for the GRU-E model, and fine-tuning the hyperparameters
is also crucial for enhancing its performance.

3. The GRU-E model showed promising results in landslide displacement prediction, but
it has limitations that need to be addressed, including the need for hyperparameter op-
timization and the lack of consideration of deformation correlations between different
parts of the landslide. Further case studies are needed to evaluate its generalizability.

In conclusion, the proposed approach for incorporating daily rainfall and daily RWL
characteristics was effective in improving the prediction accuracy of landslide displacement
models, and the GRU-E model was shown to be the most promising model for displacement
prediction of reservoir landslides with step-like deformation characteristics. This study
highlights the importance of the proposed feature enhancement approach and provides
valuable insights for future research in this field.
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