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Abstract: Accurate individual-tree segmentation is essential for precision forestry. In previous studies,
the canopy height model-based method was convenient to process, but its performance was limited
owing to the loss of 3D information, and point-based methods usually had high computational
costs. Although some hybrid methods have been proposed to solve the above problems, most
canopy height model-based methods are used to detect subdominant trees in one coarse crown
and disregard the over-segmentation and accurate segmentation of the crown boundaries. This
study introduces a combined approach, tested for the first time, for treetop detection and tree
crown segmentation using UAV–LiDAR data. First, a multiscale adaptive local maximum filter was
proposed to detect treetops accurately, and a Dalponte region-growing method was introduced to
achieve crown delineation. Then, based on the coarse-crown result, the mean-shift voxelization
and supervoxel-weighted fuzzy c-means clustering method were used to identify the constrained
region of each tree. Finally, accurate individual-tree point clouds were obtained. The experiment was
conducted using a synthetic uncrewed aerial vehicle (UAV)–LiDAR dataset with 21 approximately
30 × 30 m plots and an actual UAV–LiDAR dataset. To evaluate the performance of the proposed
method, the accuracy of the remotely sensed biophysical observations and retrieval frameworks was
determined using the tree location, tree height, and crown area. The results show that the proposed
method was efficient and outperformed other existing methods.

Keywords: UAV–LiDAR; improved FCM; individual-tree segmentation; multiscale adaptive local
maximum filter

1. Introduction

The forest ecosystem is one of the most important ecosystems on Earth [1,2]. Forest
monitoring provides valuable information about the forest structure. The inventory of
the forest follows a unique sampling scheme design, and detailed individual-tree char-
acteristics, including the tree height, crown width, and trunk diameter, can be obtained.
However, this method has limitations due to high labor costs and timing and accessibility
issues [3,4]. Light detection and ranging (LiDAR) has recently become an important tool for
monitoring the forest inventory [5–8]. Airborne LiDAR can gather 3D information about
forest structures effectively. With the use of an individual-tree segmentation algorithm,
forests can be characterized at the individual-tree scale, which is important for accurately
estimating the individual-tree height, aboveground biomass, and carbon stock in precision
forestry [9–11].

Previously, LiDAR-derived individual-tree segmentation algorithms have been classi-
fied into two types: raster-based methods and point-based methods [12–14]. Raster-based
methods project point clouds onto a planar raster, such as a canopy height model (CHM) or
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a digital surface model (DSM), and then individual-tree segmentation is conducted based
on the raster.

Normally, treetop detection is the first step in raster-based methods. The accuracy of
the crown delineation is substantially dependent on the treetop detection result. Because
treetops tend to be the highest value in tree crowns, a local maximum (LM) filter is widely
used to identify treetops [15–17]. However, the window size of an LM filter has a substantial
effect on the treetop detection accuracy. A large filtering window would result in more
omission errors, and a small filtering window would detect many false treetops. To solve
such problems, a variable window size has been proposed. Popescu et al. [18] assumed
that the crown width strongly relates to the tree height and developed a linear regression
between the tree height and crown width. Based on that equation, the window size at
each pixel was calculated. However, their method is only suitable for forests with a single
species and performs poorly under difficult forest conditions [19–21]. Instead of using
filter windows, Persson et al. [22] used a hill-climbing method to identify treetops. Also,
different from the highest-point assumption, Liu et al. [23] developed a cluster-center-of-
higher-points algorithm with the use of a statistical assumption.

The crown delineation was then applied to the raster based on the treetop detec-
tion. Conventional crown delineation methods include region-growing (RG) methods
and marker-controlled watershed (MCW) algorithms. Region-growing methods recog-
nize treetops previously detected as initial seeds, and then neighbor pixels are added to
crown regions according to specific growing rules [24]. Such methods are knowledge based
and substantially rely on the threshold in the growing rules. The watershed algorithm
mimics pouring water into pits to segment each region. Duncanson et al. [25] extracted
individual-tree crown boundaries with the use of an MCW algorithm. However, simple
MCW algorithms usually lead to under- or over-segmentation in multistory and multi-
species forests. To extract tree crowns accurately, a novel transferable individual-tree crown
delineation model was proposed by Liu et al. [26]. Based on MCW-derived coarse-tree-
crown delineation results, the model used a fishing-net-dragging method and adopted
random forest machine learning to classify the boundary further. Considering the random
expansion at the same height interval in tree crowns, Yun et al. [27] used an energy function
to control the stochasticity of the water expansion and achieved tree segmentation with the
use of the novel MCW algorithm.

Although raster-based methods are simple and convenient to process, their efficacy
is limited owing to the loss of 3D information in the rasterization process [13,28]. Thus,
some studies have focused on processing 3D raw point clouds indirectly. The point-based
methods can be classified into clustering methods and knowledge-based RG methods.
Clustering methods cluster points in a feature space and are similar to tree point clouds
in 3D space. Thus, many traditional clustering methods have been introduced to detect
and segment individual-tree point clouds according to the local distance or density fea-
tures. Morsdorf et al. [29] set treetops as initial clustering points and adopted a k-means
approach for individual-tree segmentation. On the assumption that the center of a tree
crown has the highest density, mean-shift clustering has been widely used to extract
individual-tree point clouds [30]. Francois et al. [31] used the DBSCAN algorithm to cluster
tree-crown points. Also, with the help of spectral graph theory, Pang et al. [28] used a
Nyström-based spectral clustering algorithm in density airborne LiDAR point clouds for
individual-tree segmentation.

In addition to clustering methods, many RG methods have been developed. Such
methods merge and split point clouds following a series of knowledge-based rules. Because
the horizontal spacing between the trees at the top is larger than that between the trees
at the bottom, Li et al. [32] proposed a point-based RG algorithm from top to bottom
and supplemented additional classification rules to improve the segmentation accuracy.
Sačkov et al. [33] set several tree height and crown width rules to detect individual trees.
Hao et al. [3] developed a bottom-up hierarchical region-merging algorithm by combining
over-segmentation and merging steps. Unfortunately, point-based methods have high
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computational costs and require complicated knowledge-based assumptions relative to
CHM-based methods. Additionally, for distance-based clustering methods, point-based
methods do not work well for forests where the tree sizes vary and the distances between
the trees are different.

Because of the limitations of CHM-based and point-based methods, some studies have
explored hybrid approaches [34,35]. Hu et al. [36] used a multiscale segmentation method
to generate initial tree crowns first, and then for each identified possible segment, 3D point-
based k-means clustering was adopted. Harikumar et al. [37] projected 3D problematic
point cloud segments derived from a CHM-based method onto a novel 3D space to extract
the lower trees accurately. Yang et al. [38] conducted a multidirectional 3D spatial profile
analysis to determine cluster centers in each coarse region, which was obtained using an
MCW segmentation algorithm. Then, a k-means method was used based on re-identified
cluster centers. These hybrid methods follow the idea that first, CHM-based methods are
used to extract constrained regions, and then fine segmentation is achieved in a 3D point
cloud space. Hybrid methods can simplify computations by constraining regions and fully
using 3D structural information. However, previous hybrid methods have focused mainly
on the under-segmentation of subdominant trees because point-cloud-based segmentation
was only conducted on one coarse crown. Thus, the over-segmentation problems caused
by partial crowns might not be solved. Also, these methods demonstrated the accuracy of
the treetop detection in the procedure of the 3D segmentation but disregarded the effects
of the initial crown delineation and point-based methods on the accuracy of the final
tree segmentation.

Recently, uncrewed aerial vehicle (UAV)–LiDAR has been widely used in forest in-
ventorying. Relative to airborne LiDAR, UAV–LiDAR has a lower data cost and more
straightforward operation [39], and the quality of the obtained data is higher [3,40]. Owing
to increased point densities, the computational cost of point-based methods is higher, and
tree-crown boundaries in CHMs with higher resolutions are more irregular. Previously,
most individual-tree segmentation algorithms have been aimed at airborne LiDAR, which
might not be suitable for collecting UAV–LiDAR data.

To solve the aforementioned problems, in this study, a hybrid method was developed
to segment individual trees from UAV–LiDAR data. First, instead of using a traditional LM
filter, a multiscale adaptive LM filter based on a gray-level co-occurrence matrix (GLCM)
was proposed to identify treetops accurately. Then, for each tree, the constrained region
was extracted using a neighbor-searching method rather than from only one coarse crown,
which was generally adopted in previous studies. Then, point-cloud voxelization was con-
ducted in constrained regions to lower the computational cost, and an improved fuzzy clus-
tering method (FCM) was adopted to calculate memberships. Finally, fine individual-tree
point clouds were segmented based on the maximum membership principle. Specifically,
to assess the performance of the proposed method, experiments were conducted on both a
simulated dataset with various densities and an actual LiDAR dataset.

To evaluate the effect of the multiscale adaptive LM filter, we compared the treetop
detection results of the proposed multiscale adaptive LM filter with those of the traditional
LM filter. In addition, instead of the simple universal location and linear-distance measure-
ments used in most studies, in this study, a new “accuracy of remotely sensed biophysical
observation and retrieval” (ARBOR) framework was introduced. ARBOR matches trees
with various metrics (tree height, location, and crown area) to quantify the accuracy of the
segmentation results [41].

2. Materials and Methods
2.1. Study Data
2.1.1. Synthetic Dataset

UAV-borne laser-scanning single-tree point clouds from benchmark datasets provided
by Weiser et al. [42] were used as base models to create simulated forests. The datasets were
acquired from Central European forests that comprised various tree species. Considering
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the spatial distributions of trees in actual forests, Poisson disk sampling was adopted to
generate tree locations in a 2D space. Then, individual-tree point clouds were placed in an
approximately 30 × 30 plot. In all, 21 plots were generated, including 9 coniferous plots,
9 broadleaved plots, and 3 mixed plots with different densities. The attributes for each
plot type are summarized in Table 1. Figure 1 shows three simulated plots: coniferous,
broadleaved, and mixed.

Table 1. Three types of synthetic plots.

Type Number of
Plots Stand Density (stems/ha) Tree Height (m) Crown Area (m2)

Range Mean Range Mean Range Mean

Coniferous
plot 9 233–811 510 3.34–46.81 26.71 3.40–112.45 38.93

Broadleaved
plot 9 211–677 382 8.27–31.23 21.86 7.07–136.53 45.22

Mixed plot 3 233–288 262 3.69–39.23 22.60 4.43–337.53 54.29
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2.1.2. Real UAV–LiDAR Dataset

To examine the effectiveness of the proposed method for a real dataset, an openly
available dataset was included in this study. The dataset was obtained from the 2017
Speulderbos laser-scanning campaign and covered approximately 2 ha of forest [43]. An
approximately 50 × 50 plot and an approximately 30 × 30 plot were clipped from the
UAV–LiDAR dataset. To acquire accurate referenced individual-tree characteristics, the
single-tree isolation MATLAB tool was applied to corresponding TLS point clouds [44], and
a manual correction for some wrong segmentation was then adopted in CloudCompare.
Figure 2 shows these two plots and the individual-tree segmentation result of the TLS
point clouds.

2.2. Methodology

In this study, a novel algorithm was devised for segmenting individual trees. Specifi-
cally, coarse crowns were first segmented on a CHM with the use of a multiscale adaptive
LM filter to identify treetops and an RG method to obtain crowns. Point clouds extracted
from a coarse crown and its neighbors were transformed into supervoxels via a mean-shift
voxelization method. Then, the supervoxels were clustered based on the maximum mem-
bership degree principle. Figure 3 shows the workflow of the proposed method, which
comprised three main parts: preprocessing, CHM-based coarse-crown delineation, and
point-based individual-tree segmentation.
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2.2.1. Preprocessing

For actual UAV–LiDAR data, a statistical outlier filter (SOR) was applied to remove
noise and outliers. Next, the remaining points were classified into ground points and
nonground points with the use of cloth simulation filtering [45]. For the cloth simulation
filter, the cloth resolution was 0.2, and the max iterations and classification threshold were
both default values. Then, ground points were used to create the digital elevation model,
and normalized point clouds were obtained by subtracting the value of the corresponding
DSM raster from the elevation of the nonground points.

Then, a CHM with a 0.2 m pixel size was derived from the normalized point clouds.
Because the simulated dataset was generated using individual-tree point clouds that
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had been normalized, the CHM could be directly obtained via rasterization without the
above processes.

Because the noise in a CHM might affect the detection of the LM, a smooth filter was
used to smooth the CHM. The typical filters adopted in previous studies were median
and Gaussian filters. However, some fine shape features important in crown delineation
might have been missing if those filters had been used. In this study, an adaptive Gaussian
filter was applied to the CHM, which could adaptively suppress the noise and preserve
sharp features.

2.2.2. Treetop Detection

An LM filter is the most common method to identify individual trees [15,18]. It is based
on the assumption that treetops are the local highest values in a CHM. LM filters can be
classified into fixed- and variable-window filters. Variable windows are more appropriate
than fixed ones because a region’s crown sizes vary. Usually, it is assumed that crown
sizes strongly relate to tree heights, and a linear or nonlinear regression model is adopted
to predict window sizes in filtering [46,47]. However, a linear regression might not be
appropriate in all the plots. Moreover, crown sizes not only depend on the tree height but
also are associated with the tree species. For example, broadleaved trees’ crown sizes are
larger than those of coniferous trees. Thus, another indicator must be selected that can
accurately reflect the crown size.

Therefore, a multiscale adaptive LM filter based on a GLCM was designed in this
study to locate individual trees. It was assumed that the values of the CHM are similar
for large crowns and that the values of the CHM for small crowns have a higher degree of
heterogeneity. Then, an angular second moment (ASM) could be adopted to measure the
uniformity of the height values within crowns.

The smoothed CHM was transformed into an n-bit grayscale image via Jenks natural
breaks optimization [48]. A GLCM and an ASM were generated in filter windows of various
sizes passing over the smoothed CHM. Specifically, the ASM was divided by the number
of pixels, n, in the filter window to mitigate the effects of the window size. Equation (1)
shows the calculation of n_ASM, where p(i, j) is the (i, j)th value in the GLCM, and N is
the total number of pixels in the filter window as follows:

n_ASM =

∑
i

∑
j

p(i, j)2

N
(1)

For each pixel, the window size corresponding to the max n_ASM was adopted as the
size of the LM filter. Figure 4 is a flowchart of the adaptive LM filter. A multiscale filter
was used to search for the proper window size for each crown.

Figure 5 shows the central concept of the adaptive LM filter algorithm. For coniferous
trees, n_ASM would reach the maximum at a small window size (Figure 5b), whereas
for broadleaved trees, the max n_ASM would be obtained with a larger window because
the canopy edge would be included, which could contribute to the value of the ASM
(Figure 5a).
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2.2.3. CHM-Based Crown Delineation

After the treetop detection, a seeded RG method was used for the coarse-crown seg-
mentation [24]. The algorithm took each maximum as the initial seed and then neighboring
pixels were added to the crown region by considering a series of criteria: (1) the neigh-
boring pixel heights exceeded the seed height × σ1 and the mean height of the current
crown × σ2, (2) the neighboring pixel heights were below the seed height × σ3, and (3) the
maximum distance between the growing pixels and the seed was σ4. These threshold val-
ues were set based on the current tree information. Additionally, σ1 and σ2 were decimals
between 0 and 1, σ3 was a decimal greater than 1, and σ4 should be similar to the crown
radius. The constrained regions were extracted based on the coarse crowns in the further
point-based segmentation.

2.2.4. Point-Based Individual-Tree Segmentation

The contours of the tree crowns derived from the CHM-based method were prone to in-
accuracy due to the loss of 3D information. Especially in high-density forests, where crowns
are often clumped and overlapped, the common problem is that the small trees would be
under-segmented. Therefore, point-based methods, which directly segment individual
trees in 3D space, were used to adjust the result of the coarse-crown segmentation.

Normally, clustering methods assign each point to only one cluster, but in forests, the
boundaries between adjacent crowns are blurred, and traditional clustering methods might
fail to alleviate the ambiguity. To address the clustering uncertainty of point clouds at crown
boundaries, a weighted FCM method was used to calculate the degree of membership of
each supervoxel. These supervoxels were then assigned to corresponding clusters based
on the maximum membership degree principle. Figure 6 shows the detailed workflow
for the fine segmentation. Notably, the traversal of the trees was in descending order by
the height.

• Constrained region extraction: First, a zone method was used because of the compu-
tational complexity for large-scale point clouds. This method also eliminated the effect
of the distance on the clustering because the tree-crown sizes varied, and the tree distri-
butions were uneven, which would restrict the distance-based cluster methods. Other
hybrid methods defined each coarse crown derived from the CHM as a constrained
region, and point-based treetop reidentification and clustering were conducted in such
regions. However, these methods worked only when there was under-segmentation
of subdominant trees because they did not consider the neighboring region. In this
study, new constrained regions were defined with the use of a neighbor-searching
method. For each tree, the constrained region comprised its k-nearest neighbor crowns
and itself, and a distance threshold was applied to remove the far-neighbor crowns.
Then, the point clouds in constrained regions were extracted, and further clustering
was conducted in the region;

• Mean-shift voxelization: A mean-shift voxelization method was applied to obtain su-
pervoxels. Relative to traditional voxel-based methods, which transform point clouds
into cubic voxels at a fixed resolution, mean-shift voxelization is more robust and flexi-
ble [30] and groups points by iteratively shifting each point to the density maxima via a
kernel. Considering the various point cloud densities in different constrained regions,
a bandwidth estimation technique was used to choose the appropriate bandwidth for
each region;

• Maximum membership degree principle-based supervoxel clustering: Given the
boundary’s ambiguity, for each coarse single-tree point cloud and its neighbors, an
FCM was adopted to complete the fine segmentation [49]. Fuzzy c-means is a data-
clustering technique where each data point belongs to a cluster to a degree that is
specified by a membership grade. Because the supervoxels aggregated different
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quantities of points, in this study, a sample weight for each supervoxel was introduced
to the objective function of the FCM (Equation (2)).

J =
C

∑
i=1

N

∑
j=1

µm
ij nj
∥∥xj − vi

∥∥2 (2)

where µm
ij is the membership of the supervoxel, xj, and for each supervoxel, the mem-

bership in all the clusters adds to 1. N is the number of supervoxels in a constrained
region, C is the number of clusters, m is a weighting exponent, vi is the centroid of
cluster i, nj is a weight for the number of points in each supervoxel, and

∥∥xj − vi
∥∥2

is the Euclidian distance between xj and vi. The optimization problem of J could
be solved with the use of a Lagrange multiplier (Equation (3)). Then, by calculating
the first derivatives of uij and vi for the constraint function L

(
uij, vi, λj

)
and setting

them equal to zero, two optimal parameters were obtained (Equations (4) and (5),
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Specifically, the number of clusters, C, was the total number of treetops in a constrained
region, and the initialization of µm

ij relied on the locations of the treetops, which were defined
as the initial centroids.

After clustering, each supervoxel was assigned a membership vector and then each
point in the supervoxels was labeled based on the maximum membership principle. Be-
cause the clustering labels were meaningless, the new label of the original tree was still
unknown. To determine the corresponding tree label, an intersection method was consid-
ered. It counted the number of point clouds where the original target tree intersected with
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each new tree cluster. The new target tree was the cluster that had the maximum number
of intersections.

Also, the points in a new individual tree might have been classified in the last fine
segmentation. Based on that condition, the memberships of the two points were compared,
and the point with the highest membership was labeled as the class.

2.2.5. Accuracy Assessment

To evaluate the effect of the multiscale adaptive LM filter, a temporary coarseness-
matching method was adopted. It was assumed that the two treetops were matched
if the horizontal distances between the detected treetops and true treetops were below
half the plot’s average tree-crown width. The detection results were evaluated using
three indicators: the tree detection rate, r (recall); the correctness of the detected trees, p
(precision); and the overall accuracy of the detected trees, f, (Equations (6)–(8), respectively)
as follows:

r = TP/(TP + FN) (6)

p = TP/(TP + FP) (7)

f = 2× (r× p)/(r + p) (8)

Many studies use tree-to-tree match-pairing agreements to assess the accuracy of the
individual-tree segmentation. Such methods select simple linear-distance thresholds to match
detected trees with reference trees. However, these measures fail to represent the multivariate
nature of individual-tree segmentations and would lead to a misleading assessment.

Therefore, an ARBOR method was used in this study to quantify the agreement
between the reference tree datasets and detected trees. The framework was proposed
by Murray et al. [41] and models trees as Gaussian curves with the use of biophysical
properties (tree location, tree height, and crown area). A Jaccard similarity coefficient was
then developed to assess the agreements of the trees in different datasets as follows:

J(A , B) = |A ∩ B|/(|A|+ |B| − |A ∩ B| ) (9)

A Hungarian combinatorial optimization algorithm was applied to achieve match
pairing based on the Jaccard similarity coefficient. Finally, two metrics were calculated,
the average match-pairing similarity (AMPS) index and the dataset size similarity (DSS)
index. As shown in Equations (10) and (11), the AMPS index assesses the overall quality
of the matched pairs, and the DSS index indicates similar tree population sizes in two
datasets, respectively.

AMPS =
m

∑
i=1

J(A , B)/m (10)

DSS = m/(a + b−m) (11)

where m is the number of paired trees, and a and b are the numbers of trees in datasets
A and B, respectively. Notably, unlike the ARBOR framework, in this study, not all pairs
matched using the Hungarian algorithm were used to calculate the above two indicators.
Imperfect pairs were defined by a Jaccard similarity coefficient of matched pairs below a
threshold and were abandoned.

Also, following the matching procedure, the accuracies of the estimated tree-crown
areas and tree heights were evaluated using linear regression. The R-squared values of the
reference metrics and UAV–LiDAR-derived metrics were also calculated.
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3. Results
3.1. Treetop Detection

Figure 7 shows two examples of treetop detection. The top row shows plots of
coniferous trees, and the bottom row shows broadleaved plots. Figure 7(a1,a2) show the
treetop detection result obtained with the use of the multiscale adaptive LM filter proposed
in this study. A traditional LM method was also applied to those two plots as a comparison.
Two fixed window sizes were chosen. The results are displayed in Figure 2(b2) and
Figure 7(b1,c1,c2). As shown in Figure 7 most of the treetops were detected in the two plots.
The red boxes highlight the main differences between these two methods. The LM filter
with the larger window tended to omit true treetops, and that with the smaller window
had more commission errors. The method proposed in this study had better detection
that achieved a balance between omission and commission. Also, the distances between
the true treetops and detected treetops in the broadleaved trees were longer than those
between the true treetops and detected treetops in the coniferous trees. That was because
broadleaved trees usually have larger crowns and flatter inner foliage than coniferous trees.
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Table 2 shows the average rates of treetop detection in all the plots. Although the LM
with the larger window had higher p values and the LM with the smaller window had
higher r values, the adaptive LM based on the GLCM had a higher overall accuracy. The
higher treetop detection rate of the LM with the smaller window was at the expense of
more false-detected treetops. The LM with the larger window had a higher p value but at
the expense of the treetop detection rate.

Table 2. Evaluation of treetop detection results.

Method Recall (r) Precision (p) Overall Accuracy (f)

Multiscale adaptive LM 86.31% 88.27% 87.28%
LM with larger window 75.45% 92.35% 83.05%

LM with smaller window 90.46% 70.39% 79.17%

3.2. Individual-Tree Segmentation

The individual-tree point cloud extracted using the CHM-based method was coarse
because it only considered the canopy height information. Figure 8 shows two examples
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of the individual-tree point clouds derived from CHM-based crowns and other point-
based clustering results. In Example I, according to the 2D-segmented result, the smaller
tree’s point cloud was classified as a part of the target individual-tree clouds. The under-
segmented part was abandoned in the point-based clustering process, which used 3D
spatial information. In Example II, because the heights of the trees were similar, partially
neighboring crowns’ point clouds were assigned to the target tree, and the crown’s inner
foliage missed some points. This clustering method filled the empty areas and cut the
excess points by re-segmenting in the neighboring constrained region.
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Figure 9 shows four example plots of segmentation results, suggesting that the method
proposed in this study performed well in individual-tree segmentation.
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3.3. Results for the Accuracy of the Remotely Sensed Biophysical Observation and Retrieval
(ARBOR) Framework

The accuracy of the individual-tree segmentation was assessed in the ARBOR frame-
work, as mentioned above. AMPS and DSS were calculated for different plots. A high
AMPS meant a better overall match for the paired trees, and a high DSS meant a greater
degree of similarity between the tree population sizes. Different from the simple treetop-
matching method described in Section 3.1, ARBOR achieved match pairing in accordance
with the Jaccard similarity coefficient. As described in previous sections, the Jaccard sim-
ilarity coefficient considered the tree location, height, and crown area. Thus, relative to
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the matching method based on treetop horizontal distances, DSS and AMPS were stricter
indicators of the individual-tree identification and segmentation.

All the synthetic plots were divided into five classes and then the means of the AMPS
and DSS were obtained in various classes. The results are shown in Table 3.

The low-density coniferous plots achieved the highest AMPS and DSS, at 0.8237 and
0.7547, respectively. The high-density broadleaved forests had the lowest AMPS, and the
mixed forest had the lowest DSS. Generally, the accuracy of the coniferous plots was higher
than those of the broadleaved and mixed plots. That was because coniferous treetops
could be detected more easily using the LM filter method, and the crowns of broadleaved
trees were more complex than those of coniferous trees, which made individual-tree
segmentation more difficult. Also, the segmentation results were influenced by the plots’
densities. Trees in higher-density plots were prone to clumping and overlapping, often
leading to treetop detection errors and the under- or over-segmentation of tree crowns.
Owing to the complexity of the tree species, AMPS and DSS were low for the mixed plots.

For two actual LiDAR plots, the AMPS and DSS of plot1 were 0.6469 and 0.6449,
respectively, and the AMPS and DSS of plot2 were 0.7080 and 0.6667, respectively, which
indicated that the proposed method also worked well for actual LiDAR datasets.

Furthermore, the accuracy of the tree heights and crown areas was evaluated. The
correlation between the reference metrics and UAV–LiDAR-derived metrics was analyzed.
The results are shown in Figure 10. The tree-height and crown-area metrics both showed
good agreement, with R2 values of 0.8391 and 0.6404, respectively. Indeed, the tree height
showed a stronger correlation than the crown area because the estimation of the crown-area
metric was more complex and tended to be affected by other factors, such as the definition
and measurement methods of the crown area. In this study, the horizontal projection of
individual-tree point clouds was first obtained, and the convex hull area was taken as the
crown area, which was a rough estimation.
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3.4. Comparison with Existing Methods

The proposed method was compared with other existing methods, including the point-
based method proposed by Li in 2012, the RG method proposed by Dalponte in 2016, and
the classic watershed algorithm [24,32]. The method proposed by Li was implemented in
lidR [50], and the Dalponte method and the classic watershed algorithm were implemented
in Python. Table 3 summarizes the AMPS and DSS of the various methods. The results
show that the two indicators of the proposed method in this study were generally higher
than those of the other methods. Additionally, it was found that the AMPS of the mixed
plots and real plot1 were higher than that of our method; that could be explained by the
number of matched pairs. According to the definition of AMPS in the ARBOR framework,
AMPS is the mean Jaccard similarity coefficient of the matched pairs. Therefore, AMPS
not only depends on the agreement of each pair but also is influenced by the number
of matched pairs, which could be measured using DSS. As shown in Table 3, the DSS
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values of the other methods were lower than those of the proposed method; thus, the other
methods had fewer matched pairs, which might have contributed to the higher AMPS.
Additionally, owing to the zonalization and supervoxelization of the point clouds, the
computational performance of the proposed method was also better than those of other
point-based algorithms [3]. The runtime of our method was approximately 530 s for one
30 × 30 m plot at ~600 pt/m2.

Table 3. Comparison of segmentation accuracies obtained in the ARBOR framework.

Plot

Method

Proposed Method Li 2012 Dalponte Watershed

AMPS DSS AMPS DSS AMPS DSS AMPS DSS

Coniferous plots (L) 0.8237 0.7547 0.8054 0.7245 0.7824 0.7044 0.7940 0.7213
Coniferous plots (H) 0.7498 0.6679 0.6775 0.4905 0.6536 0.5322 0.5943 0.6626
Broadleaved plots (L) 0.7033 0.5542 0.6626 0.4875 0.6844 0.4873 0.6797 0.4417

Broadleaved
plots (H) 0.6399 0.6073 0.6132 0.5470 0.5530 0.5814 0.5926 0.5458

Mixed plots 0.6603 0.5294 0.6936 0.5013 0.6546 0.4864 0.6700 0.4345
Real plot1 0.6469 0.6449 0.6512 0.5273 0.6223 0.6170 0.6711 0.5857
Real plot2 0.7080 0.6667 0.7024 0.4366 0.6935 0.5970 0.6987 0.5735

4. Discussion
4.1. Parameter Analysis

The performance of the proposed method depended on the parameter values. Two
key parameters accounted for the accuracy of the individual-tree segmentation. First, the
moving window size of the LM filter was important for the treetop detection accuracy. The
window size, S, relied on the crowns’ sizes in the plots. According to the tests on different
plots in this study, higher Smin and Smax values are advisable for plots with larger crowns
and vice versa. In our studies, for broadleaved plots, Smax was approximately 10, and
Smin was approximately 6 (in pixels, radius). For coniferous plots, Smax was approximately
6, and Smin was approximately 3. The stem density of the plots also affected the results
of the treetop detection. Most studies have focused on the relation between tree-crowns
and other metrics, such as tree heights, and are based on individual trees. That relation
would not be suitable in high-density plots where trees are clumped and crowns overlap.
For high-density plots, because the distances between trees are shorter, the window size
threshold should be set lower. Therefore, the values of Smin and Smax should be further
adjusted for the tree density in plots.

Additionally, the bandwidth used in the mean-shift voxelization is important. Because
the number of points in different constrained regions varies, the bandwidth function
estimated with the use of percentiles in Python’s Scikit-learn library was adopted to select
suitable bandwidths for different regions. In accordance with previous studies and our
own experiments, the quantile parameter was set at the ratio of the point density to the
number of points in constrained regions. Notably, when the point density was high, a
coefficient k (from 0 to 1) was introduced to improve the computational efficiency. Indeed,
the quantile value affected the algorithm’s computational efficiency from two aspects: (1) a
higher quantile increased the computational time of the bandwidth estimation function,
and (2) a lower quantile led to more supervoxels. Therefore, more pair distances were
calculated during the process of the membership initialization. Specifically, for better
clustering performance, the Z values of all the point clouds were divided by six before the
fine segmentation.

4.2. Synthetic Dataset Compared with Actual LiDAR Dataset

In this study, a synthetic dataset was generated and used to test the performance of
the proposed method. Indeed, simulated forest data have been adopted in studies related
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to individual-tree segmentation problems. Liu et al. [23] created a simulated forest to test
an individual-tree identification algorithm. They first generated random tree locations,
and then 3D point clouds were created based on specific functions. Wang et al. [35] also ex-
plored an unsupervised semantic and instance segmentation algorithm based on a synthetic
dataset, which was modeled using SpeedTree software (Interactive Data Visualization, Inc.,
Lexington, SC, USA) and simulated using HELIOS.

Synthetic datasets are available at lower costs than actual LiDAR datasets. Thus, di-
verse forest conditions can be simulated to test algorithm robustness and better understand
the relation between plot characteristics and algorithm parameters. Also, the synthetic
datasets bypassed some problems in the actual LiDAR data [51–53]. The ground reference
data also excluded measurement errors, such as tree trunk location deviations.

However, in actual LiDAR datasets, some problems exist that are not present in
synthetic datasets. For example, individual-tree segmentation results are substantially
affected by surface topography [54,55]. In steep areas, the normalization of the point
cloud may change the shape of crowns and would affect the performance of the proposed
algorithms. It is suggested that the terrain’s slope be considered when simulating a forest
LiDAR dataset. Future works should focus on the robustness of the proposed method,
considering various terrains.

5. Conclusions

Individual-tree segmentation for UAV–LiDAR data remains challenging owing to the
increased number of points. In this study, to better extract single-tree point clouds, a hybrid
method was devised by combining the CHM-based method and the point-based method.
First, a multiscale adaptive LM filter based on GLCM was used to detect treetops accurately,
and a Dalponte RG method was introduced to achieve crown delineation. Based on coarse
crowns, a neighboring constrained region was extracted for each tree. Then, a mean-shift
voxelization was conducted in the region, and a supervoxel-weighted FCM initialized by
treetops was used to calculate memberships.

Finally, new individual trees were segmented based on the maximum membership
principle. The algorithm was tested on a simulated dataset and an actual LiDAR dataset
and evaluated using the ARBOR framework; that framework considered not only tree
locations but also tree heights and crown areas. The results showed that the proposed
method performed better than existing methods. Accurate individual-tree segmentation
can provide detailed forest information and contribute to more precise forestry management
and carbon stock estimation at an individual-tree scale.
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