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Abstract: Estimating the intensity of tropical cyclones (TCs) is beneficial for preventing and reducing
the impact of natural disasters. Most existing methods for estimating TC intensity utilize single-
satellite or single-band remote sensing images, but they lack the ability to quantify the uncertainty of
the estimation results. However, TC, as a typical chaotic system, often requires confidence intervals for
intensity estimates in real-world emergency decision-making scenarios. Additionally, the use of multi-
source image inputs contributes to the uncertainty of the model. Consequently, this study introduces
a neural network (MTCIE) that utilizes multi-source satellite images to provide probabilistic estimates
of TC intensity. The model utilizes infrared and microwave images from multiple satellites as inputs.
It uses a dual-branch self-attention encoder to extract TC image features and provides uncertainty
estimates for TC intensity. Furthermore, a dataset for estimating the intensity of multi-source TC
remote sensing images (MTCID) is constructed through the registration of latitude, longitude, and
time, along with data augmentation. The proposed method achieves a MAE of 7.42 kt in deterministic
estimation, comparable to mainstream networks like TCIENet. In uncertain estimation, it outperforms
methods like MC Dropout in the PICP metric, providing reliable probability estimates. This supports
TC disaster emergency decision making, enhancing risk mitigation in real-world applications.

Keywords: multi-source satellites; uncertainty estimation; deep learning; tropical cyclone; intensity
estimation; dual-branch network; attention mechanism

1. Introduction
1.1. Motivation and Background

Tropical cyclones (TCs) are potent meteorological systems that form over tropical
waters, exhibiting intense winds and heavy precipitation [1], potentially leading to nat-
ural disasters such as floods, landslides, thunderstorms, tornadoes, storm surges, rough
seas, etc., causing significant economic losses and casualties [2]. Due to the potential
for widespread destruction caused by TCs, the estimation of TC intensity is crucial for
protecting areas along their path.

The development of TC intensity estimation has undergone several stages, progressing
from early reliance on ground observations to the integrated methods involving satellite
remote sensing and advanced numerical models used today [3]. Meteorological satellites
enable more comprehensive monitoring of TC cloud patterns, structures, and dynamic
changes, leading to more accurate intensity estimations. These satellites typically orig-
inate from meteorological satellite systems on different orbits or platforms, equipped
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with various satellite sensors or radiometers; hence, they are referred to as multi-source
meteorological satellites [4].

The design of multi-source meteorological satellites aims to overcome the limitations
of single-satellite systems and enhance the monitoring capability of atmospheric, cloud,
precipitation, and other meteorological phenomena on Earth [5]. This also results in TC
remote sensing images presenting multi-source characteristics, such as visible light, infrared,
water vapor, and microwave. Infrared images are mainly used to depict the temperature and
spatial distribution of cloud top layers, serving as a common method for estimating the scale
and intensity of TCs. In contrast, microwaves can penetrate certain cloud layers, providing
researchers with enhanced insights into the internal structure of TCs. Furthermore, owing
to microwaves’ sensitivity to water droplets (raindrop impact on microwave transmission),
microwave images are often used for precipitation estimation [6,7].

Traditional methods like the Dvorak technique estimate TC intensity by analyzing
features such as the length and cloud structure of the eyewall [3], which involves a strong
subjective element. The rapid development of deep learning in computer vision has led
researchers to gradually apply it to TC intensity estimation [8]. Leveraging neural networks
and a large amount of observational data, it enhances the accuracy of TC intensity estima-
tion through pattern recognition and feature learning. For example, using convolutional
neural networks to extract features such as curvature from TC remote sensing images
directly estimates its intensity, showcasing capabilities beyond traditional methods [9].

However, previous studies have mostly relied on single-band images, failing to fully
exploit satellite resources and the multimodal features of multi-source satellite images.
For instance, Dawood et al. [10] estimated TC intensity based on infrared (IR) images in
2020 and Wimmers et al. [11] estimated TC intensity using passive microwave (MW) images
in 2019.

Previous studies focused on deterministic intensity estimation without quantifying
the uncertainty of the estimates. However, meteorological phenomena like TC are typical
chaotic systems with inherent characteristics of strong uncertainty [12]. Uncertainty estima-
tion is essential for decision making and risk assessment in the face of complex nonlinear
and chaotic meteorological phenomena like TC [13]. Simultaneously, the utilization of
multi-source satellite images as model inputs introduces additional uncertainty due to vari-
ations among different modalities of data, impacting the estimation results. For instance,
infrared and microwave images of a given TC may produce disparate estimates of its
intensity. Thus, acquiring dependable confidence intervals through probabilistic estimation
facilitates a more conservative and secure decision-making process in addressing TCs,
mitigating losses stemming from inaccurate estimations.

This paper proposes a TC intensity probability estimation network (MTCIE) based
on multi-source satellite images to address the aforementioned issues. MTCIE utilizes
a dual-branch network based on the Vision Transformer (ViT) with visual self-attention
transformers to extract distinct features from TC infrared and microwave images. These
infrared and microwave images are sourced from various geostationary or polar-orbiting
meteorological satellites worldwide. By integrating data from these multi-source satellites,
the model gains a more comprehensive understanding of TC states. Additionally, utilizing
the concept of probabilistic deep learning, MTCIE not only provides deterministic estimates
of TC maximum sustained wind (MSW) but also offers the estimated standard deviation
σ, representing the probability estimation of TC intensity. To our knowledge, this is
the first instance of introducing uncertainty or probability estimation into TC intensity
estimation. Furthermore, through measures such as latitude and longitude matching
and data augmentation, this paper creates the Multi-source TC Image-based Intensity
Estimation Dataset (MTCID) for model training and testing.

In summary, the contributions of this paper are as follows.

1. We introduce a novel network for probabilistic estimation of TC intensity based
on multi-source satellite remote sensing images, marking the first application of
uncertainty in TC intensity estimation.
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2. Experimental results on the constructed MTCID dataset demonstrate that our model
achieves performance comparable to current mainstream networks in deterministic
TC intensity estimation and provides reliable probability estimates.

3. Probability and interval estimates of TC intensity facilitate decision makers in better
assessing the level of TC danger and assisting governments and emergency agencies
at all levels in adopting timely and reasonable warning measures to minimize the
impact of disasters.

1.2. Related Work
1.2.1. Estimates of TC Intensity

Humans have long been involved in estimating the intensity of TCs, initially relying
mainly on land-based observatories [14]. However, as TCs typically form and develop
over the ocean, ground observations have limited coverage. Subsequently, aircraft recon-
naissance became a crucial means for TC research and monitoring [15]. Aircraft fly near
the cyclone center to directly measure wind speed and pressure. However, this method is
costly, has limited coverage, and poses significant challenges to the safety of the crew.

With the development of satellite technology, satellite observations have become the
primary means of TC monitoring [16,17]. Researchers analyze the cloud structure and
texture of TCs to estimate their intensity. The Dvorak technique is one of the earliest
techniques to estimate TC intensity using satellite images [18]. This technique estimates the
intensity of TCs by analyzing cloud features in satellite infrared and visible light images,
such as cloud-top temperature and the cloud structure of the eyewall [3]. Initially, it relied
on manual analysis and later evolved into computer-aided automation. However, this
method often exhibits strong subjectivity and is typically applicable only to specific types
of TCs [19].

Currently, the rapid development of deep learning has led to an increasing number
of studies using it in TC intensity estimation. For example, in 2017, Pradhan [20] utilized
a convolutional neural network (CNN) to extract features from TC infrared images for
intensity estimation. In 2019, Wimmers [11] and colleagues used passive microwave
images from the 37 and 85–92 GHz channels as model input, validating the applicability of
microwave images in TC intensity estimation. In 2023, Jiang [21] and colleagues utilized
multispectral infrared images and Kalman filters to further enhance the accuracy of TC
intensity estimation.

1.2.2. Uncertainty Research

The widespread application of deep learning in the real world has heightened the
emphasis on confidence in its estimates and predictions. Because basic neural networks can-
not provide uncertainty estimates, issues such as overconfidence or inadequacy arise [22].
Many researchers have begun to focus on dissecting and quantifying the uncertainty of
predictions in deep learning. The concept of Bayesian deep learning, introduced in 2016
by Gal [23] and colleagues, adopts MC Dropout as an approximation to Bayesian mod-
els. Some studies estimate probability distributions or compute expected values through
multiple random samplings [24,25]. Another approach is ensemble learning, combin-
ing multiple different models or training processes to enhance performance and reduce
uncertainty [26–28].

Some scholars have also explored uncertainty studies in TCs. For instance, Mercer et al. [29]
utilized ensemble methods for TC intensity prediction, Tolwinski-Ward et al. [30] modeled
uncertainty in TC landfall frequency and spatial distribution, and Bonnardot et al. provided
probabilistic forecasts for TC paths and intensities in the Indian Ocean basin [31].
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2. Materials and Methods
2.1. Introduction to the Dataset
2.1.1. Source of Data

The original data for this study originates from the National Centers for Environmental
Information of the National Oceanic and Atmospheric Administration (NOAA). The dataset
aggregates hurricane satellite (HURSAT) data globally, incorporating geostationary satellite
data (HURSAT-B1), microwave radiation data (HURSAT-MW), and Advanced Very High-
Resolution Radiometer data (HURSAT-AVHRR). We used the HURSAT-B1 and HURSAT-
MW data products to build our dataset. The dataset originates from TCs globally, enhancing
the model’s generalization capabilities.

• HURSAT-B1 data are employed for collecting infrared images of TCs. The data
covers the time span from 1978 to 2015, with a resolution of 8 km and a 3 h interval,
encompassing global TCs. The IRWIN (infrared window, near 11 µm) channel from
this dataset is utilized for the MTCID dataset’s infrared images in this study.

• HURSAT-MW data offers microwave images of TCs through passive microwave
observations. The dataset includes a total of 2412 TC microwave images from 1987
to 2009, sharing the spatial resolution of HURSAT-B1. In this study, the 37 GHz
(T37) and 85 GHz (T85) microwave channels are applied as microwave images for the
MTCID dataset. This selection is motivated by the influential nature of the 85–92 GHz
frequency range in the model, with the inclusion of 37 GHz providing marginal
benefits [11].

2.1.2. Construction of the MTCID Dataset

Through matching longitude and latitude with time, we paired TC infrared images
and microwave images taken by HURSAT-B1 and HURSAT-MW at the same time and
location. This process created the original images for the MTCID dataset, with an image size
of 301 × 301 (cropped to 300 × 300 for calculation). Figure 1a,b display two data examples.

(a)

Intensity(MSW)

41.00 kt

(b)

Intensity(MSW)

63.51 kt

Infrared Window 

(IR, near 11 µm)

85 GHz Microwave 

(T85)

37 GHz Microwave

(T37)

TC Intensity (kt)

Q
u
an

ti
ty

(c) Histogram of TC Intensity Distribution

Figure 1. (a,b) showcase multi-source satellite images of TCs, featuring, from (left) to (right), infrared,
85 GHz microwave, and 37 GHz microwave images. (c) delineates the intensity distribution within
the dataset, uncovering a pronounced long-tail effect in the data.

The intensity data of TCs is derived from the global best track maximum sustained wind
speed (MSW). We embed the intensity size corresponding to each TC image into the image
name, ensuring one-to-one correspondence. While using the estimated best track MSW as
the ground truth may not be optimal due to some values lacking on-site confirmation, it
is necessary to maintain a large sample of relatively homogeneous data [32]. The unit of
intensity size is the knot (kt), internationally recognized by the International Hydrographic
Organization, where 1 kt = 0.514 m/s. The data processing steps are as follows:
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1. The dataset contains numerous images with black patches that do not convey any
information about hurricanes, which could complicate the learning process. Hence,
images with over 40% invalid information are chosen for elimination through ra-
tio computation.

2. As microwave data are captured in a striped pattern by polar-orbiting meteorolog-
ical satellites, images with scanning coverage less than 60% of the image frame are
directly discarded. Moreover, each data point ranges from 0 to 350 as a decimal,
and empty values in the data are filled with the maximum value (350, consistent with
the background value).

3. Due to the intrinsic long-tailed nature of the data (more mid–low intensity TCs and
fewer high-intensity TCs), Figure 1c illustrates the intensity distribution of the TC
dataset. In this study, some data augmentation approaches are utilized to balance
the dataset and alleviate its long-tail effects. We generate additional high-intensity
TC data through operations like random rotation and adding noise, as depicted in
Figure 2 illustrating the employed data augmentation methods.

(a) (b) (c) (d) (e) (f)

Figure 2. Illustration of the data augmentation process, showcasing (a) the original image, (b) rotated
by 90°, (c) rotated by 180°, (d) rotated by 270°, (e) with added Gaussian noise, and (f) with added
salt-and-pepper noise.

Ultimately, we acquired around 15,000 pairs of infrared images, microwave images,
and corresponding TC intensity data. The data was partitioned into training, validation,
and test sets in an 8:1:1 ratio randomly.

2.2. TC Intensity Probability Estimation Network

Deep learning architectures like CNNs are used to extract features from TC remote
sensing images, nonlinearity is introduced by incorporating activation functions (e.g.,
ReLU), and ultimately TC intensity is obtained through the output layer. This represents
the mainstream approach in current deep learning for TC intensity estimation, generally
given by the following simplified formula:

[ŷ] = f (x), (1)

where x represents the input image, f (x) represents the deep learning model, and ŷ
represents the result of TC intensity estimation.

However, many existing methods primarily use a single-source image for TC intensity
estimation, not fully leveraging the diverse features of multiple satellite sources. Therefore,
this paper introduces a dual-branch self-attention network for TC intensity estimation
based on infrared and microwave images (MTCIE), as illustrated in Figure 3.

The model comprises a dual-branch self-attention encoder, feature fusion module,
and intensity estimation decoder. The fundamental concept involves using a dual-branch
network to extract primary features of microwave and infrared images, incorporating a
frequency-domain attention mechanism to strengthen crucial features (P1 in Figure 3).
Subsequently, the feature fusion module combines the two sets of features (P2 in Figure 3),
and the merged features are further compressed and interpreted to yield TC intensity (P3 in
Figure 3). It is important to note that this study, alongside providing deterministic estimates
of TC intensity (ŷi), also captures the standard deviation of the results (σ), representing
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probability estimates. This is of particular value in predicting uncertainty in chaotic systems.
The model can be simplified as follows:[

ŷ , σ2
]
= f (xIR, xMW), (2)

where xIR denotes TC infrared images, xMW represents microwave images, ŷ signifies
the accurate value of intensity estimation, and σ represents the standard deviation. The
following sections will sequentially introduce each module of the network.

CBAM

ViT

ViT ViT

ViTViT

ViT ViTViT

ViT

P1:Dual-Branch Self-Attention Encoder

IFEMCNN 

DownSampling

64×300×300

128×150×150

256×75×75 256×75×75

512×75×75

512×75×75

2048×12×12

294,912→1024

Flatten

128→2

1024→128

T85

T37

IR

ො𝑦𝑖~𝑁(𝜇, 𝜎
2)

CNN Feature 

Extraction
P2:Feature Fusion

Module

P3: Intensity Estimation Decoder
Concat

1024×75×75

T85: 85 GHz microwave image input

T37: 37 GHz microwave image input

IR: Infrared image input

P1: Part 1

CNN: Convolutional Neural Network

IFEM: Integrated Feature Encoder Module

ViT: Vision Transformer

CBAM: Convolutional Block Attention Module

Explanation of abbreviations in the figure

Figure 3. The comprehensive framework diagram of the MTCIE model consists of three main compo-
nents: the dual-branch self-attention encoder, feature fusion module, and intensity estimation decoder.

2.2.1. Dual-Branch Self-Attention Encoder

Given that this study employs multi-source satellite TC infrared and microwave
images as inputs to the model, a straightforward addition or concatenation technique
would fail to effectively extract and integrate the diverse features from both sources.
Consequently, we opt for a dual-branch network to independently process the two sets of
images, efficiently merging diverse information by learning distinct feature representations
in each branch. Furthermore, a dual-branch network is well-suited to address the diversity
and complexity inherent in multi-source data. This imparts greater robustness to the
network against noise, deformations, or other interference factors, rendering it more stable
and facilitating easier convergence during model training.

As depicted in Figure 3 P1, the image undergoes three layers of common CNN for
downsampling, reducing the size of feature maps. The convolutional kernels of the encoder
are 7, 3, 3, and the final output feature map size is denoted as R256×75×75. Subsequently,
features pass through three Vision Transformers (ViT) [33] for feature learning. The detailed
architecture of ViT is depicted in Figure 4a, encompassing common preprocessing stages
(DownSampling, Patch Flattening, Linear Mapping, and Positional Encoding), a trans-
former encoder with Multi-Head Attention, and post-processing stages (Patch Deflattening
and UpSampling).

Furthermore, the model includes an Integrated Feature Encoder Module (IFEM) in
the middle, where the ViT architecture aligns with the two branches but incorporates the
Convolutional Block Attention Module (CBAM). By incorporating channel and spatial
attention mechanisms, CBAM directs the network’s attention towards important channels
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and spatial positions, thereby improving feature representation. In this context, CBAM
integrates features from both infrared and microwave sources at the channel level and
concentrates on spatial positions to identify critical components such as the eyewall and
spiral rainbands of the TCs. This aids the network in capturing critical information within
the TCs, improving overall model performance.

Multi-Head

Attention

Layer Norm

Add & Norm

Feed Forward

Add

Output features

Input features

Patch Deflattening

UpSampling

ViT post-processing

Transformer Encoder

DownSampling

Patch Flattening

Linear Mapping

Positional Encoding

ViT pre-processing

3×3 

Average Pool

1×1 Conv

1×1 Conv

1×1 Conv

3×3 Conv

3×3 Conv 3×3 Conv 1×1 Conv

Filter

Concat

2×2 Average Pool

Stride = 2

3×3 Conv

Stride = 2

3×3 Conv

Stride = 2
1×1 Conv 3×3 Conv

Input 

Features

Output 

Features

Feature Extraction Module DownSampling Module

(a) ViT Architecture Diagram (b) CNN Feature Extraction Diagram

Figure 4. (a) illustrates the detailed network architecture diagram of ViT, while (b) displays the
CNN feature extraction block utilized in the intensity estimation decoder for feature extraction and
dimensionality reduction.

2.2.2. Feature Fusion and Intensity Estimation

Following the concatenation of features from different branches, the feature map
proceeds to the feature fusion module (FFM). Common feature fusion methods include
addition fusion, maximum value fusion, and convolutional fusion. This study utilizes
convolutional fusion, allowing the network to learn how to combine features from different
sources in a more complex manner. The network architecture is inspired by Residual
CNN [34]. The features first undergo two common CNN convolutional identity mapping
processes (3 × 3 conv, BatchNorm, and ReLU activation) for feature fusion. Subsequently,
a Residual Connection captures the difference between the input and output, followed
by another ReLU activation. This process is repeated three times to ensure thorough
feature fusion.

After preceding feature extraction and fusion, stable fused features enter the intensity
estimation decoder. Firstly, there are three CNN feature extraction blocks, inspired by the
Inception V3 module [35], which aids in multi-scale feature extraction to improve parameter
and computational efficiency, as depicted in Figure 4b. Readers can try modifying it with
other models to enhance performance but this is not the primary focus of the current
research. Subsequently, the features are flattened and, after traversing three fully connected
layers, the final outputs for intensity and standard deviation are obtained.

2.2.3. Loss Function

Due to the complexity, nonlinearity, and chaotic effects of the Earth system, there
is inherent uncertainty in TC intensity estimation [36]. It is commonly assumed that the
errors in TC intensity estimation follow an approximate normal distribution, with a mean
close to zero. To fully capture the uncertainty in multimodal TC data, the output of this
study’s model is modeled as a Gaussian distribution. In other words, the model learns to
predict both the mean and standard deviation of the dependent variable, providing more
accurate predictions.

Typically, intensity estimation deep learning models use the Mean Squared Error
(MSE) loss function to achieve precise intensity estimates, as shown in Equation (3). This
study requires two sets of outputs: one set is the final predicted results (ŷ) and the other set
is the uncertainty standard deviation of the results (σ̂). Therefore, the loss function used is
shown in Equation (4).
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Loss =
1
N ∑

i
∥yi − ŷi∥2, (3)

Loss =
1
N ∑

i

1
2

σ̂−2
i ∥yi − ŷi∥2 +

1
2

log σ̂2
i , (4)

where N represents the number of samples and i is the index of the image. The loss function
illustrated in Equation (4) comprises two components: one is the residual of the regression
model, aimed at capturing the cognitive uncertainty of model parameters; the other is the
aleatoric uncertainty of the estimated results, serving as a regularization term [37]. It is
noteworthy that, when learning aleatoric uncertainty, there is no need to annotate the true
values for the standard deviation σ̂ separately. This is because, during the minimization of
the loss function, the size of the standard deviation will adaptively adjust.

3. Experimental Results
3.1. Experimental Setup and Evaluation Metrics

All models in this study are implemented using the PyTorch framework. The initial
learning rate is set to 0.0002, the Adam optimizer is selected, and the learning rate is
gradually decreased during training. The batch size is set to 4. Our experimental and
validation environment is as follows: an Intel Core i9-9900K CPU, 128 GB RAM, and a
Geforce RTX 3090 GPU, with the operating system being Ubuntu 18.04.

3.1.1. Deterministic Estimation Metrics

To assess the performance of the model’s deterministic estimation, the study adopts the
current mainstream metrics, namely, Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE), to calculate the errors between the estimated values and the ground truth.

MAE =
1
N

N

∑
i=1

|yi − ŷi|, (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (6)

where N represents the number of samples, ŷ represents the deterministic TC intensity
estimate, y represents the true intensity value, and i is the index of the image.

3.1.2. Probabilistic Estimation Evaluation Metrics

To evaluate the performance of the model’s probabilistic estimation, the study adopts
the Continuous Ranked Probability Score (CRPS), where a smaller CRPS indicates better
overall performance in probability prediction. The formula for CRPS based on a normal
distribution (µ, σ) is as follows:

CRPS(x, y) = σ

{
ω[2Φ(ω)] + 2ϕ(ω)− 1√

π

}
, (7)

where ω = (y − µ)/σ, and Φ and ϕ represent the probability density function (PDF) and
cumulative distribution function (CDF) of the standard normal distribution, respectively.

To assess the usability of interval predictions, the study applies the Prediction Inter-
val Coverage Probability (PICP) and the Mean Width Percentage (MWP). PICPα is the
probability of observed values falling within the predicted interval at a confidence level α
and MWPα represents the width of the interval. High PICP and low MWP are generally
considered ideal for interval prediction performance. By default, a 95% confidence interval
is used to compare interval metrics.

PICPα =
cα

m
× 100%, (8)
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MWPα =
1
m

m

∑
i=1

upi − downi

ŷi
, (9)

where cα is the number of samples with observed values falling within the predicted interval.

3.2. Ablation Experiment Results

Different module designs and inputs from different sources can have a significant impact
on experimental results. Therefore, this study primarily conducts two types of ablation experi-
ments to validate the effectiveness of the model and find the optimal model configuration.

3.2.1. Module Ablation Experiment for MTCIE

In this section, ablation experiments were conducted on the module design of MTCIE.
In Table 1, “Baseline” denotes a standard dual-branch structure composed of CNNs, “ViT”
signifies replacing the CNNs in the dual-branch encoder with a ViT encoder, “IFEM” refers
to inserting ViT Blocks with CBAM in the middle of the dual-branch encoder (Figure 3
P1), and “FFM” is employed for feature fusion just before the intensity estimation decoder
(Figure 3 P2). Table 1 shows the MAE and RMSE performance of different module combi-
nations on the test set. The results indicate that the introduction of the three modules has
helped improve the accuracy of intensity estimation. Looking at the MAE and RMSE met-
rics, the ViT module and IFEM module show significant improvements, both around 5%,
while FFM, relatively speaking, has a smaller improvement, only about 1%. We speculate
that, as the model already has relatively good performance, further improvement enters a
saturation stage, making performance enhancement more challenging.

In Table 1, “Baseline” denotes a standard dual-branch structure composed of CNNs,
“ViT” signifies replacing the CNNs in the dual-branch encoder with a ViT encoder, “IFEM”
refers to inserting ViT Blocks with CBAM in the middle of the dual-branch encoder,
and “FFM” is employed for feature fusion just before the intensity estimation decoder.

Table 1. Results of module ablation experiment. ✓ indicates the presence of the module and the best
results are highlighted in bold.

Modules Metrics

Baseline ViT IFEM FFM MAE↓ (kt) RMSE↓ (kt)

✓ 8.34 10.48
✓ ✓ 7.93 9.83
✓ ✓ ✓ 7.51 9.35
✓ ✓ ✓ ✓ 7.42 9.25

3.2.2. Ablation Experiment for Multiple Source Image Inputs

To validate the intensity estimation effect of TC images from different satellite sources,
we conducted ablation experiments on different image inputs. Here, IR represents infrared
images from geostationary meteorological satellites, T37 represents images from the 37 GHz
microwave channel of polar-orbiting meteorological satellites, and T85 represents images
from the 85 GHz microwave channel. When experimenting with a single-source image,
we removed one branch of the dual-branch model. To minimize the impact of changes
in the model structure on the experiment, we retained the CBAM attention mechanism
module and FFM feature fusion module. Four different models were trained for different
scenarios and the best-performing model (on the validation set) was selected to represent
each scenario.

The final experimental results are shown in Table 2. It can be seen that infrared images
play the most crucial role in the intensity estimation of TCs. This is because infrared images
usually contain information such as the cloud-top temperature and cloud structure of
TCs. For stronger TCs, infrared remote sensing images can also display the formation and
development of the eyewall. This information is often closely related to the intensity of TCs,
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which is one of the reasons why scientists initially used infrared remote sensing images to
study TC intensity.

Table 2. Experiment on ablation of input data. IR, T37, and T85 represent the infrared, 37 GHz
microwave, and 85 GHz microwave images, respectively. ✓ indicates the presence of the data and
the best results are highlighted in bold.

Input Data Metrics

IR T37 T85 MAE↓ (kt) RMSE↓ (kt)

✓ 7.95 9.87
✓ 12.48 14.35

✓ 10.67 12.62
✓ ✓ 7.84 9.74
✓ ✓ 7.51 9.38
✓ ✓ ✓ 7.42 9.25

The 85 GHz microwave channel (T85) is slightly inferior to the infrared channel (IR),
while the 37 GHz microwave channel (T37) is the least effective. From Table 2, it is evident
that the intensity estimation results obtained from using only the T37 as model input
are less effective compared to T85. The intensity estimation performance experiences a
substantial improvement after the inclusion of IR data. Nevertheless, the combination of IR
and T85 continues to outperform the combination of IR and T37. Consequently, it can be
inferred that the 85 GHz images contain a greater amount of intensity-related information
compared to the 37 GHz images. This experimental outcome aligns with the findings of
Wimmers [11]. However, overall, the effect of microwave images on intensity estimation is
still significantly different from that of infrared images. When all multiple-source images
are input together, the best results are obtained. This indicates that microwave images
can supplement information that infrared images may not capture, contributing to a more
comprehensive understanding of TCs by the model.

3.3. Deterministic Estimation Experiments

The model used in this study introduces uncertainty, and the model output includes
both the mean and standard deviation, representing probability estimates. Of course, it
can also be directly understood as deterministic intensity estimation and the error range of
uncertainty. This section primarily verifies the experimental effectiveness of deterministic
estimation by the model.

3.3.1. Input Image Size Comparative Experiment

In our study, we found that TC images captured by satellites are centered around
the eyewall, with a fixed window size covering the entire TC. This leads to significant
differences in coverage relative to the entire image for TC cloud images of different sizes and
shapes. The most valuable information about cyclone intensity is typically located near the
center. Therefore, different image sizes obtained through cropping will have different effects.
Secondly, since microwave images are obtained by polar-orbiting satellites, the images are
striped, and there is some information loss compared to infrared images. Different image
sizes will also affect the balance between effective information and interference information
in microwave images.

The experimental results are shown in Figure 5a. It can be seen that, when reducing
the input image size, some noise or interference information can be physically excluded,
allowing the model to focus more deeply on extracting valid information to improve
performance. However, the gains from this approach will disappear after reducing the
image to a certain extent and it may have a negative impact due to the loss of too much
image information, especially when reducing to around 80×80. The optimal image size
we obtained is around 200×200. Since there are a large number of different experimental
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configurations here, there may be other optimal image sizes, but this is not the focus of
this study.
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Figure 5. Displaying deterministic estimation experiments. (a) presents the contrasting results of
input images with varying sizes; (b) compares the TC intensity estimated by the model with that of
the best track (Truth).

3.3.2. Test Dataset Quantitative Evaluation Experiment

In the study, around 1500 TC images from the test set were estimated. Figure 5b
displays a scatter plot comparing the deterministic estimation of TC intensity with the
actual values. The blue line represents the linear fit between the estimated intensity and
actual wind speed, and the figure includes the formula of the fitted line and the correlation
coefficient (CC).

The scatter plot reveals that, when estimating TC wind speeds below approximately
30 kt, corresponding to tropical depressions, our TC intensity estimates tend to be higher
(leaning towards the bottom right). A similar pattern occurs when the wind speed exceeds
around 120 kt, while, in the intermediate wind speed range, the distribution is relatively
uniform. We hypothesize that the model, when estimating extreme values, tends to overesti-
mate to reduce errors. We posit that adopting an inclination towards estimating worst-case
scenarios is beneficial in real-world situations, particularly during erroneous estimations,
to mitigate losses induced by TCs.

Additionally, due to the long-tail effect in data distribution, the scatter plot has more
sample points at low wind speeds and the distribution is denser, concentrated around the
diagonal with a slope of 1. This indicates that the model’s accuracy is higher with smaller
standard deviations when predicting low wind speeds and the opposite is observed at high
wind speeds.

For a more comprehensive analysis of the model’s deterministic estimation perfor-
mance, we categorized the TC intensity in the test set. As the World Meteorological
Organization has different standards for TC classification in different ocean regions, we fol-
lowed the standards for the Northwest Pacific. The results of the model’s actual estimation
of TC intensity by category are presented in Table 3.

Overall, the model demonstrates good performance in deterministic estimation of
TC intensity, comparable to current mainstream models. It is noteworthy that the model
exhibits better accuracy in estimating the intensity of weaker TCs (TD and TS) compared to
more intense ones, such as severe typhoons (STYs) and super typhoons. This aligns with the
observations in Figure 5b. We speculate that the limited data for higher-intensity TCs may
result in suboptimal model training, requiring further improvement in estimation accuracy.
Additionally, high-intensity TCs usually have more complex internal structures and may
undergo more transient processes, adding to the difficulty of estimating their intensity.
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Table 3. Intensity deterministic estimation results categorized by TC types, classified according to
the Northwest Pacific standards as Tropical Depression (TD), Tropical Storm (TS), Severe Tropical
Storm (STS), Typhoon (TY), Severe Typhoon (STY), and Super Typhoon (Super TY). The best results
are highlighted in bold. The ↓ indicates that a lower value represents better performance.

Range of Wind Speed (kt) Sample Size MAE↓ (kt) RMSE↓ (kt)

TD ≤33.25 478 6.67 8.47
TS 33.45–47.45 332 6.72 8.58

STS 47.64–63.32 256 7.61 9.47
TY 63.52–80.47 198 8.17 10.03

STY 80.73–98.79 157 9.05 11.14
Super TY ≥99.13 88 10.68 12.75
Average 7.42 9.25

3.3.3. Comparative Experiments in Deterministic Estimation

This section compares several mainstream TC intensity estimation methods, including
DeepMicroNet [11], TCIENet [38], Deep-PHURIE [10], TCICENet [39], and DMANel_KF [21].
The results are shown in Table 4. To be precise, directly comparing our model with others
is unfair because different models use different datasets. Additionally, since our data come
from multiple satellites, reproducing other models on our dataset is challenging. However,
to demonstrate the performance of our method, we still compare it with the estimation results
of other researchers. From the table, although our model did not achieve the best performance
in terms of RMSE and MAE metrics, it still controlled the errors within a reasonable range
and could compete with current mainstream models in deterministic forecasting.

Table 4. Comparative experiments with other mainstream models on deterministic estimation. The ↓
indicates that a lower value represents better performance.

Models Data MAE↓ (kt) RMSE↓ (kt) References

DeepMicroNet MINT - 10.60 [11]
TCIENet IR, WV 7.84 9.98 [38]

Deep-PHURIE IR 7.96 8.94 [10]
TCICENet IR 6.67 8.60 [39]

DMANel_KF IR1, IR2, IR3, IR4 6.19 7.82 [21]
MTCIE IR, T37, T85 7.42 9.25 Ours

We speculate that two factors limit the model’s deterministic prediction capability.
First, the influence of probability estimation affects the performance of deterministic esti-
mation. Since the model’s estimation results include both deterministic intensity values
and the standard deviation of uncertain estimation, the two mutually affect each other,
as reflected in the loss function shown in Formula (4). Therefore, the model’s deterministic
estimation tends to be conservative and cautious, balancing with probability estimation.
Second, data quality limits the model’s performance. As our data comes from paired
infrared and microwave images from multiple satellites, there are issues such as misalign-
ment and data sparsity. Compared with other homogeneous and homologous datasets,
the data quality is not high. We speculate that these two main reasons limit the model from
achieving better MAE and RMSE metrics in deterministic estimation.

3.4. Probability Estimation Experiments
3.4.1. Comparative Experiment of Probability Estimation

This section compares various models’ performance in probability estimation (uncer-
tainty estimation). We evaluated some of the most popular uncertainty estimation models,
including MC Dropout [23], Deep Ensemble(DE) [40], Quantile Regression (QR) [41], and
Bootstrap [42]. The results are presented in Table 5.
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Overall, regarding deterministic evaluation metrics such as MAE and RMSE, as well
as probability estimation metrics like PICP, the MTCIE model exhibits relatively superior
performance. However, for CRPS and MWP metrics, the Bootstrap model outperforms
others. It is noteworthy that the QR model’s performance differs significantly from other
models, performing almost the worst in all metrics.

In terms of the CRPS metric, the Bootstrap model demonstrates the best performance,
while the MC Dropout and MTCIE metrics are slightly less favorable. We speculate that this
is because Bootstrap introduces uncertainty through simple random resampling, a method
that aligns well with the normal distribution, making the CRPS metric calculation more
fitting. In contrast, MC Dropout introduces randomness by randomly deactivating neurons
and MTCIE constrains the model’s direct output uncertainty through the loss function.
The uncertainty outputs of the latter two do not align as well with the CRPS metric
calculation as Bootstrap, resulting in relatively poorer performance.

Table 5. Comparative experiments with other mainstream models on probabilistic estimation.
The best results are highlighted in bold. The ↓ indicates that a lower value represents better perfor-
mance. The ↑, on the contrary, signifies the opposite.

Models MAE↓ (kt) RMSE↓ (kt) CRPS↓ PICP↑ MWP↓
MC Dropout 9.74 11.39 2.18 0.487 0.235

DE 8.81 10.60 3.43 0.916 0.781
QR 11.35 13.26 - 0.258 0.574

Bootstrap 7.83 9.87 1.76 0.445 0.139
Ours 7.42 9.25 2.45 0.958 0.925

Therefore, we also introduced a joint comparison of the PICP and MWP metrics,
providing a more comprehensive analysis of the model’s interval prediction and probability
estimation. In terms of interval coverage (PICP), MTCIE performs the best, achieving
close to a 96% interval coverage rate in most cases. Although the Deep Ensemble model
also has a 91% interval coverage rate, its performance in deterministic forecasting is poor.
When considering interval width (MWP), it is evident that MTCIE consistently exhibits the
widest intervals, which may not be user-friendly in practical applications. In comparison,
Bootstrap has the best MWP metric but the generated interval coverage range is too narrow,
making it unable to capture actual values and resulting in a low interval coverage rate
(PICP), less than 50%. We speculate that this is consistent with the high CRPS metric,
indicating that this method relies entirely on data selection without considering sufficient
uncertainty. Such overconfident estimates are not very practical in TC intensity estimation.

3.4.2. Individual Case Experiment

For independent validation, we chose two typical TCs. Figure 6 depicts the intensity
variations of two significant TCs, “Nida” and “Choi-wan”, impacting the northwest Pacific
in 2009. It showcases the intensity values along the best track (ground truth), our estimated
intensities, and the associated uncertain estimation intervals. To assess the efficacy of
probabilistic forecasting, we compare Bootstrap (Figure 6c,d) with our MTCIE model
(Figure 6a,b).

From Figure 6a,b, it can be seen that our model has a good deterministic estimation of
TC intensity but the error is larger at higher TC intensities than at lower intensities. This
is reflected in the sudden overestimation or underestimation of the model’s results when
estimating high-intensity TCs. Correspondingly, the uncertainty estimation also increases
in such high-intensity TC estimations, reflecting an increase in the interval of uncertainty
estimation. We believe this may be due to the small sample size of high-intensity TCs
in the dataset, coupled with the fact that high-intensity TCs usually have more complex
structures and variations, leading to an increase in the model’s estimated uncertainty.

Figure 6c,d reveal that the TC intensity determinacy estimation results from Bootstrap
are somewhat less favorable compared to MTCIE. Furthermore, in line with Table 5, while
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Bootstrap demonstrates relatively narrow interval widths in uncertainty estimation, aiding
clearer decision making in practical applications, its interval coverage rate is low. Such
overconfidence can lead to significant errors, especially in the context of severe natural
disasters like TCs, which is deemed unacceptable.

Additionally, in Figure 6a,b, for extreme TCs with wind speeds below 30 kt and
above 120 kt, the model tends to make overestimations, consistent with the scatter plot in
Figure 5b. It is worth noting that the uncertainty estimation results here almost completely
cover the actual values, indicating that MTCIE can play an important role in actual risk
decision making. In high-intensity TC forecasting, uncertainty estimation can make inten-
sity estimation more flexible, facilitating adjustments to the next preventive strategy and
enhancing risk resilience.
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Figure 6. “Nida” and “Choi-wan” case study experiment, with dark and light shades representing
80% and 50% confidence intervals, respectively. (a,b) showcase the estimation results of our MTCIE
model, whereas (c,d) display the results from Bootstrap.

4. Discussion
4.1. Misestimation Analysis

Deep learning models are often considered black-box structures, meaning that the
mapping relationship between input and output is difficult to understand intuitively. This
makes the model’s decision-making process opaque to external observers. Therefore,
explaining the reasons for the model’s incorrect or correct estimates is challenging. In this
section, we attempt to analyze the reasons for the model’s inaccurate estimation of certain
TC intensities by visualizing the feature layers.

We identified two TC intensity estimation cases in the test set and analyzed the
decision-making process of their intensity estimates through feature layer visualization
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and activation heatmaps. The experimental results are shown in Figures 7 and 8, where
the former is a case of accurate TC intensity estimation, while the latter is a case of less
accurate estimation.

In Figures 7 and 8, (a–c) represent the input IR, T85, and T37 images. (f) shows
the comparison between the model’s output probability estimates and the ground truth,
indicating that the probability estimates in the case of Figure 7 are better than those in
Figure 8.

(e) represents the results of one channel after the first ViT feature extraction in the IFEM
module. It can be observed that the model starts to fuse features from different sources and
captures the essential core region of the cloud image. The stripes from the polar-orbiting
satellite are still clearly visible at this stage. (f) represents the results after the FFM module,
showing one channel of the feature map after the first feature extraction downsampling
in the decoder. At this point, features from multiple sources have completely fused and
focus on crucial areas such as the TC’s eyewall, spiral rainband, and mid-level cloud band.
(g) displays the visualized activation heatmap, indicating which content has a greater
impact on the image’s estimation result (red areas represent high impact, purple areas
represent low impact).
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Figure 7. An analysis of a successful case. (a–c) represent the input IR, T85, and T37 images,
respectively. (d) depicts the comparison between the TC intensity estimation result and the ground
truth. (e) represents a feature map in the dual-branch encoder, (f) represents a feature map in the
fusion module, and (g) represents the activation heatmap obtained by calculating gradients based on
the estimation results. We color the single-channel feature map according to the rainbow spectrum
(from red to purple).

From (f,g), we identified possible reasons for the model’s estimation errors. It can be
seen that the TC intensity in successful cases is not too high compared to failed cases; the
former’s cloud structure is relatively simple and the model focuses on the vicinity of the
eyewall. However, in failed cases, the cloud structure is more complex, with strong cloud
systems on the upper right side of the eyewall, causing a shift in the model’s attention and
resulting in significant estimation errors. Of course, this is just a preliminary analysis of
possible error causes, and further professional analysis and improvement measures are the
focus of our next research steps.
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Figure 8. An analysis of an unsuccessful case. (a–c) represent the input IR, T85, and T37 images,
respectively. (d) depicts the comparison between the TC intensity estimation result and the ground
truth. (e) represents a feature map in the dual-branch encoder, (f) represents a feature map in the
fusion module, and (g) represents the activation heatmap obtained by calculating gradients based on
the estimation results. We color the single-channel feature map according to the rainbow spectrum
(from red to purple).

4.2. Limitations

This study represents an initial attempt at the probabilistic estimation of TC intensity
using multi-source satellite images and, therefore, there are certain limitations. Here, we
briefly list a few for further exploration by other researchers.

• The quality and size of the dataset need improvement. The data obtained through
pairing are limited and there is a certain misalignment. Additionally, the dataset
distribution is highly uneven, displaying a significant long-tail effect. While data aug-
mentation measures alleviate this issue to some extent, more, higher-quality, balanced
data are still required.

• The estimation performance for high-intensity TCs is unsatisfactory. Although prob-
abilistic estimation enlarges uncertainty to constrain results within the estimated
range, improving both deterministic and probabilistic estimation can be achieved by
incorporating more data and expert knowledge on high-intensity TCs.

• Although the probabilistic estimation results cover a majority of real scenarios,
the estimated interval width is relatively large, leaving room for improvement in
practical applications.

5. Conclusions

In this paper, the uncertainty introduced by multi-source data input and the intrinsic
chaotic nature of TCs necessitate a model capable of quantitatively estimating uncertainty.
Therefore, we introduce the Multi-source satellite image-based TC Intensity Estimation
(MTCIE) model, representing the first known application of uncertainty in TC intensity es-
timation. By fully leveraging current multi-source satellite resources, we use TC’s infrared
and microwave images as inputs to a dual-branch network. The neural network extracts
TC features separately and, after feature fusion, provides probabilistic estimates of intensity.
In addition to deterministic intensity estimates, we also provide estimated standard devia-



Remote Sens. 2024, 16, 606 17 of 19

tions, which can be presented in the form of estimated intervals or confidence intervals in
practical applications.

Experimental results on the proposed Multi-source TC Intensity Estimation Dataset
(MTCID) show that the MTCIE model performs comparably well in deterministic forecast-
ing to current mainstream methods and outperforms comparative models in probability
estimation and interval prediction. Moreover, the study of two typhoon cases in 2009
indicates that our model’s probabilistic estimation intervals can almost perfectly cover
the actual values. In subsequent discussions, we utilize feature layer visualization and
activation heatmap visualization to briefly analyze the reasons for model estimation errors,
and present the current model’s limitations. In summary, the application of MTCIE in TC
intensity probabilistic estimation is expected to provide assistance in hurricane warnings,
disaster management, emergency decision making, and other operational areas. Future
research will explore the integration of transfer learning and physical mechanisms into
multi-source image-based TC intensity probabilistic estimation to enhance its performance.
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