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Abstract: Multi-moving-target imaging in a synthetic aperture radar (SAR) system poses a significant
challenge owing to target defocusing and being contaminated by strong background clutter. Aiming
at this problem, a new deep-convolutional-neural-network (CNN)-assisted method is proposed for
multi-moving-target imaging in a SAR-GMTI system. The multi-moving-target signal can be modeled
by a multicomponent LFM signal with additive perturbation. A fully convolutional network named
MLFMSS-Net was designed based on an encoder–decoder architecture to extract the most-energetic
LFM signal component from the multicomponent LFM signal in the time domain. Without prior
knowledge of the target number, an iterative signal-separation framework based on the well-trained
MLFMSS-Net is proposed to separate the multi-moving-target signal into multiple LFM signal
components while eliminating the residual clutter. It works well, exhibiting high imaging robustness
and low dependence on the system parameters, making it a suitable solution for practical imaging
applications. Consequently, a well-focused multi-moving-target image can be obtained by parameter
estimation and secondary azimuth compression for each separated LFM signal component. The
simulations and experiments on both airborne and spaceborne SAR data showed that the proposed
method is superior to traditional imaging methods in both imaging quality and efficiency.

Keywords: synthetic aperture radar (SAR); multi-moving-target imaging; ground-moving-target
indication (GMTI); clutter suppression; multicomponent LFM signal-separation network

1. Introduction

Ground-moving-target indication (GMTI) in a synthetic aperture radar (SAR) system
has attracted much interest from wide-area traffic monitoring, as well as military surveil-
lance activities due to its long-range, all-day, and all-weather imaging capability [1–4].
However, the SAR system is typically designed for imaging stationary scenes, so when
a target is in motion, it can cause the defocusing and misplacement of the target in the
SAR image. This is because the target moves during the synthetic aperture time, causing
a phase shift in the received signal [5–7]. Especially for adjacent multiple targets with
overlapping images, it brings additional difficulties to the imaging task in the SAR-GMTI
system. Furthermore, the moving-target signal may be corrupted by undesirable clutter
and noise, which is not conducive to target imaging.

An efficient method to solve this problem is time–frequency-representation (TFR)-
based methods, such as the Wigner–Ville distribution (WVD) [8,9], Chirplet decomposi-
tion [10,11], the fractional Fourier transform [12,13], and Lv’s distribution (LVD) [14,15],
where the signal of the moving target during the coherent processing interval (CPI) can
be represented as a linear frequency modulation (LFM) form. The refocused image can be
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generated through parameter estimation, as well as azimuth filtering. However, owing to
the corrupted moving-target signal due to the strong clutter and the cross-term induced
by the multiple LFM signal components, the imaging performance of TFR-based methods
is limited.

With the development of deep learning technology, deep neural networks have been
widely utilized in the SAR moving-target-imaging task [16–22]. In [19], a deep CNN-based
method was first explored and applied for multi-moving-target imaging in a SAR-GMTI
system. A SAR moving-target-imaging method based on the improved U-net network
was presented in [20]. An approach based on long short-term memory networks was
proposed for tracking moving targets with consecutive SAR images. Then, the refocusing
process could be optimized by utilizing the predicted trajectories [22]. However, the above
imaging networks may be sensitive to radar system parameters given that they are trained
on synthetic datasets under a specific SAR system, limiting the applicability of deep-
learning-based methods in practical systems. The imaging performance of the previously
trained networks might be compromised when handling new datasets with different system
parameters. Besides, in the ship-target-imaging application, a complex-valued channel
fusion U-shaped network was designed for ship target refocusing [23], and a complex-
valued convolutional autoencoder based on the attention mechanism was proposed to
improve the imaging of ship targets in the GEO SA-Bi SAR system [24]. A novel Omega-
KA-net based on sparse optimization was proposed to realize moving-target imaging [21].
The high-quality imaging results can be obtained under down-sampling and a low signal-
to-noise ratio (SNR). However, these methods mainly focus on ship target imaging and do
not take into account the interference of ground clutter in complex ground scenes.

The signal separation and the residual clutter removal are crucial for accurate parame-
ter estimation and high-quality imaging of multiple moving targets. Recently, deep learn-
ing has achieved superior performance for audio separation and chirp-signal-parameter-
estimation tasks [25–29]. Considering the multicomponent LFM signal characteristics of the
radar echo for the SAR-GMTI system, one might wonder whether this deep-learning-based
technique can be applied to multicomponent LFM signal separation and can bring huge
advancements for target imaging in both accuracy and efficiency. A complex-valued deep
neural network was designed for the parameter estimation of chirp signals [28]. Moreover,
a framework combining the fractional Fourier transform and the alternating direction
method of multipliers network was reported to achieve the parameter estimation of chirp
signals under sub-Nyquist sampling [29]. However, these methods are based on the as-
sumption that the component number is a priori known. Thus, they may not perform
optimally for practical imaging applications.

To solve the difficulties of the obvious residual clutter and cross-term interferences,
the high sensitivity to the system parameters, as well as the unknown target number in
existing multi-moving-target-imaging methods, a deep CNN-assisted method is proposed
for multi-moving-target imaging in the SAR-GMTI system. The multi-moving-target-signal
model was first analyzed and formulated by a multicomponent LFM signal form with
additive perturbation after the basic SAR imaging processing and clutter suppression. The
SAR system parameters and target motion information are implicitly embedded within the
multicomponent LFM signal parameters, which means that the signal model is capable of
comprehensively representing multi-moving-target signals under different SAR systems.
Given the unknown target number, an iterative signal-separation framework based on a
deep CNN is proposed. In this framework, a network named MLFMSS-Net was designed
to extract the most-energetic LFM signal component from the multicomponent LFM signal
and iteratively applied multiple times until all the LFM signal component separation and
residual clutter suppression were achieved. The network MLFMSS-Net was designed based
on a convolutional encoder–decoder architecture and trained on the dataset with various
SAR system parameters, target information, and clutter types, which was generated by
the multicomponent LFM-signal model. This allows the network to exhibit strong robust-
ness and makes it a suitable solution for practical imaging applications. Consequently,
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a well-focused multi-moving-target image can be obtained by parameter estimation and
secondary azimuth compression for each separated LFM signal component. The signal
separation performance of MLFMSS-Net was explored by a simulated multicomponent
LFM signal. Simulations and experiments on both airborne and spaceborne SAR data
were further performed to verify the effectiveness of the MLFMSS-Net-assisted imaging
method. The experimental results showed that, compared with traditional imaging meth-
ods, the proposed method achieved high-quality and high-efficiency imaging without prior
knowledge of the target number in different SAR systems.

Overall, the main contributions of this paper are presented as follows:

(1) We designed the MLFMSS-Net based on a convolutional encoder–decoder architecture
to separate the most-energetic LFM signal component from the multicomponent LFM
signal with additive perturbation. The network exhibited strong robustness and
low dependence on the system parameters, making it more suitable for practical
imaging tasks;

(2) We propose a MLFMSS-Net-assisted multi-moving-target-imaging method for the
SAR-GMTI system. Given the unknown target number, an iterative signal-separation
framework based on the trained MLFMSS-Net is presented to separate the multi-
moving-target signal into multiple LFM signal components while eliminating the
residual clutter. Both the imaging quality and efficiency of the proposed method were
greatly improved.

The remainder of this paper is organized as follows. The multi-moving-target-signal
model for the SAR-GMTI system is first established in Section 2. On this basis, Section 3
proposes the MLFMSS-Net-assisted multi-moving-target-imaging method. The iterative
signal-separation framework based on MLFMSS-Net and the corresponding network details
are provided in this section. Section 4 discusses the experimental results and performance
analysis, including the results on the simulated multicomponent LFM signal and simula-
tions and experiments on both airborne and spaceborne SAR data. Finally, the discussion
and conclusion are given in Sections 5 and 6, respectively.

2. Multi-Moving-Target-Signal Model for the SAR-Ground-Moving-Target-
Indication System

The geometry of the 3D broadside SAR configuration with a ground moving target is
first established in Section 2.1. Then, the multi-moving-target-signal model is theoretically
derived and analyzed in Section 2.2.

2.1. Geometric Configuration

As depicted in Figure 1, the dual-channel SAR-GMTI system is installed on an airborne
or spaceborne platform that moves along a predetermined flight track on the X-axis.
The platform flies with a constant velocity V while maintaining a height of z = H in the
3D Cartesian coordinate system OXYZ. In the SAR-GMTI system, a phased-array antenna
transmitting the LFM signal is positioned along the movement direction of the platform.
The antenna is equally divided into two parts to receive radar echoes. According to the
equivalent principle of the antenna phase center (APC) [30], the bistatic transmitter–receiver
can be treated as a monostatic channel. The equivalent APC of the ith monostatic channel
can be represented by qi(tm) = [Vtm − (i− 1)d]⃗x + H⃗z, i = 1, 2, where tm is the slow time.
x⃗ and z⃗ represent the unit vectors of the X-axis and Z-axis, respectively. The spacing
between q1(tm) and q2(tm) is denoted as d.
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Figure 1. Geometry of the dual-channel SAR-GMTI system.

A ground target moves on the ground plane (z = 0) with the constant acceleration
within the CPI. The position vector of the moving target can be expressed as

p(tm) =

(
x0 + vxtm +

1
2

axt2
m

)⃗
x +

(
y0 + vytm +

1
2

ayt2
m

)⃗
y (1)

where y⃗ represents the unit vector of the Y-axis. At tm = 0, the target is located at x0
and y0, which correspond to the along- and across-track ground coordinates, respectively.
The along- and across-track ground velocities of the target are represented as vx and vy,
whereas the corresponding accelerations are denoted by ax and ay, respectively. Accord-
ing to the SAR-GMTI acquisition geometry, the radial velocity and acceleration can be,
respectively, expressed as vr = vysinϕ and ar = aysinϕ, where ϕ denotes the incident angle.
The instantaneous slant range from the ith channel to the moving target can be given by

Ri(tm) = ∥Ri(tm)∥ = ∥p(tm)− qi(tm)∥, i = 1, 2. (2)

The second-order Taylor series expansion of R1(tm) can be expressed by

R1(tm) =

√(
x0 + (vx −V)tm +

1
2

axt2
m

)2
+

(
y0 + vytm +

1
2

ayt2
m

)2
+ H2

≈RB + vr(tm − tac) +
(V − vx)

2 + arRB
2RB

(tm − tac)
2

(3)

where tac is the broadside time and RB = R1(tac). For the dual-channel SAR system where two
channels move along the same trajectory, it is observed that the second channel lags behind
the first channel by a time delay ∆t = d/V. According to the literature [31], the difference
between R2(tm + ∆t) and R1(tm) is mainly influenced by the radial velocity vr. Therefore,
R2(tm + ∆t) can be reasonably approximated as R2(tm + ∆t) ≈ R1(tm) + vr∆t.

2.2. Signal Model

Assume that an LFM signal with the carrier frequency f0 is transmitted as follows:

s(t̂) = rect
(

t̂
Tp

)
exp

[
j2π

(
f0 t̂ +

1
2

µt̂2
)]

(4)
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where t̂ is the fast time. Tp and µ denote the pulse duration and the frequency modula-
tion rate, respectively. The received signal of the moving target for the ith channel after
demodulation can be represented by

sit(t̂, tm) = Atrect
(

tm

Ta

)
rect

(
t̂− 2Ri(tm)/c

Tp

)
exp

[
jπµ

(
t̂− 2Ri(tm)

c

)2
]

exp
[
−j

4π

λ
Ri(tm)

]
(5)

where At denotes the reflection coefficient of the moving target. Ta is the synthetic aperture
time. λ and c represent the wavelength and the light speed, respectively. Then, the range
compression matched to µ is implemented to obtain the moving-target signal as follows:

sit(t̂, tm) = Atrect
(

tm

Ta

)
sinc

[
B
(

t̂− 2Ri(tm)

c

)]
exp

[
−j

4π

λ
Ri(tm)

]
(6)

where B = µTp denotes the transmitted signal bandwidth. According to Equation (6), it
can be seen that the unavoidable range cell migration is introduced by the system velocity
and target motion. The Keystone transformation, an effective and widely used method, is
employed to correct the arbitrary range migration without prior knowledge of the target
motion information [32]. After the range cell migration correction (RCMC), the moving-
target signal can be expressed as

sit(t̂, tm) = Atrect
(

tm

Ta

)
sinc

[
B
(

t̂− 2RB
c

)]
exp

[
−j

4π

λ
Ri(tm)

]
(7)

It is widely acknowledged that the SAR echo consists of the desired moving-target
signal and the unwanted background clutter, as well as the unavoidable noise as follows:

si
(
t̂, tm

)
= sit

(
t̂, tm

)
+ sic

(
t̂, tm

)
+ ni

(
t̂, tm

)
(8)

where sic
(
t̂, tm

)
is the strong background clutter and ni

(
t̂, tm

)
denotes the inevitable noise.

According to Equation (8), it is a challenging task to directly extract the moving-target
signal from the SAR echo. To overcome this difficulty, clutter suppression is required to
reduce the clutter signal while preserving the desired moving-target signal, leading to a
high signal-to-clutter plus noise ratio (SCNR). One commonly used technique for clutter
suppression is the displaced phase center antenna (DPCA) method, which has been proven
to be effective and simple to implement [1,33]. The DPCA technique is performed by
subtracting the second channel signal obtained at the delay time (tm + ∆t) from the first
channel signal acquired at tm, and the clutter-suppressed signal can be expressed by

s12(t̂, tm) =s1
(
t̂, tm

)
− s2(t̂, tm + ∆t)

=s1t
(
t̂, tm

)
[1− exp(j2π fdt∆t)] + cn12

(
t̂, tm

) (9)

where fdt = −2vr/λ denotes the Doppler centroid frequency of the moving target. cn12
(
t̂, tm

)
represents the additive perturbation, which is the sum of the residual clutter and the noise.
It cannot be completely eliminated owing to the channel imbalance induced by small
errors in the fabrication and excitation of the antenna. Considering the unknown motion
parameters of the target, azimuth compression matched to stationary target parameters is
performed to obtain the SAR image as follows:

s(t̂, tm) = A · rect
(

tm + ∆tm − tac

∆Ta

)
sinc

[
B
(

t̂− 2RB
c

)]
exp

[
jπγ(tm − tac)

2
]
+ cn12

(
t̂, tm

)
(10)

where A = At[1− exp(j2π fdt∆t)] and ∆tm = fdt/γdt is the azimuth shift caused by the
radial velocity of the target. As can be seen from Equation (10), the moving-target signal in
the SAR image can be formulated as the form of an LFM signal, where the Doppler chirp
rate is γ = γdcγdt/(γdc − γdt) and the signal length is denoted as ∆Ta = Ba/γ. Ba is the
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Doppler bandwidth. The Doppler chirp rates of the stationary and moving targets can be,
respectively, represented by

γdc = −
2V2

λRB
, γdt = −

2(V − vx)
2 + 2arRB

λRB
(11)

Due to the γ induced by the motion parameter of the target, the moving-target image
appears defocused in the azimuth direction. It is important to note that multiple moving
targets may appear in the SAR imaging scenario. SAR is a linear system, which means that
the multi-moving-target signal can be generated by the linear superposition of the signal
contributions from each target. Therefore, the azimuth signal for each range cell can be
described as a multicomponent LFM signal as follows:

s(tm) =
K

∑
k=1

sk(tm)

=
K

∑
k=1

Akrect

(
tm + ∆tk

m − tk
ac

∆Tk
a

)
exp

[
jπγk

(
tm − tk

ac

)2
]
+ cn12(tm)

(12)

where sk(tm) is the LFM signal contributed by the kth moving target. Ak, ∆tk
m, tk

ac, ∆Tk
a ,

and γk denote the parameters of the kth moving target, respectively. K is the number
of targets. The multicomponent LFM signal can be also modeled in the discrete domain
as follows:

s(n) =
K

∑
k=1

sk(n) =
K

∑
k=1

Akrect

(
n + ∆nk − nk

ac
∆Nk

a

)
exp

[
jak
(

n− nk
ac

)2
]
+ cn12(n),

n = −N/2,−N/2 + 1, ..., N/2− 1

(13)

where n = tmPRF, ∆nk = ∆tk
mPRF, nk

ac = tk
acPRF, ∆Nk

a = ∆Tk
a PRF, and ak = πγk/PRF2.

sk(n) represents the discrete form of the kth moving-target signal. PRF denotes the pulse
repetition frequency of the SAR system. N is the sampling number and is assumed to be
even. As can be seen from Equation (13), the SAR system parameters (including λ, v, PRF,
and RB) and target motion information are implicitly embedded within the multicomponent
LFM signal parameters. Therefore, signals from different SAR systems (including airborne
SAR and spaceborne SAR) and moving targets can be obtained by adjusting various
signal parameters. This means that the signal model provided by Equation (13) possesses
the capacity to comprehensively represent multi-moving-target signals under different
SAR systems.

3. MLFMSS-Net-Assisted Multi-Moving-Target Imaging

To realize the simultaneous refocusing of multiple moving targets, a MLFMSS-Net-
assisted multi-moving-target-imaging method is proposed in this section. In the following,
the overall scheme is presented in Section 3.1. In Sections 3.2–3.4, the dataset, the archi-
tecture, and the training procedure of the designed network named MLFMSS-Net will be
discussed in detail, respectively.

3.1. Overall Scheme

The flowchart of the proposed MLFMSS-Net-assisted multi-moving-target-imaging
method is illustrated in Figure 2. In the preprocessing procedure, basic SAR imaging
processing (including demodulation, range compression, RCMC, and azimuth compres-
sion) and clutter suppression are performed on the SAR raw data. Then, a constant false
alarm rate (CFAR) detector is utilized to detect and extract the defocused moving-target
image, each range cell of which can be modeled as a multicomponent LFM signal form
given by Equation (13). Considering that different motion parameters of targets lead to
different values of ak in Equation (13), it is difficult to directly perform the parameter esti-
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mation and the azimuth compression matched to each target parameter on s(n). Therefore,
the multicomponent LFM signal separation during the residual clutter elimination, i.e., s(n)
separation into sk(n), k = 1, . . . , K and cn12(n) elimination from s(n), is a critical step for
the multi-moving-target imaging before the parameter estimation and secondary azimuth
compression. However, the unknown target numbers pose significant challenges for the
signal-separation task. To address this problem, an iterative signal-separation framework
based on a deep CNN is proposed. In this framework, a network named MLFMSS-Net
is designed to extract the most-energetic LFM signal component from the multicompo-
nent LFM signal, iteratively applied multiple times until all LFM signal components are
successfully separated.

SAR raw data 

Demodulation, range 

compression and RCMC 

Clutter suppression

Defocused image

Multicomponent 

LFM Signal

MLFMSS-Net

Signal 

separation 

module

Encoder

Refocused image

Predicted LFM signal 

component 

Loss function 

Update parameters

Secondary azimuth 

compression

i = i + 1

k = k + 1

Azimuth compression

Select the ith range cell

i = 1

                  k = 1, 

  Multicomponent LFM

   residual Signal 

Iterative signal separation framework 
based on MLFMSS-Net

Imaging procedure

Training procedurePreprocessing

YesNo
k > Kmax or 

YesNo

ri N

Decoder
Ground truth 
LFM signal 
component 

Parameter estimation

( ) ( )krs n s n=

( )ks n

1( )krs n+

2
( )krs n 

Moving target detection

Figure 2. Flowchart of the MLFMSS-Net-assisted multi-moving-target-imaging method.

The most-energetic LFM signal-component-extraction task can be formulated as a
regression problem, i.e., sk(n) = fϕ(s(n)), which can be solved by MLFMSS-Net. fϕ(.) is
the network with parameters ϕ. Utilizing a set of training data, MLFMSS-Net is trained
through the minimization of the loss function. This training process enables the determi-
nation of optimal network parameters ϕ, leading to improved performance of the model.
The network details will be discussed in subsequent subsections. Then, the well-trained
MLFMSS-Net is applied in the iterative signal-separation framework. Specifically, the num-
ber of iterations and the residual are first initialized by k = 1 and rsk(n) = s(n), respectively.
At each iterative step, the well-trained MLFMSS-Net is employed to rsk(n) for the most-
energetic LFM signal component sk(n) extraction. Then, the new signal component sk(n) is
eliminated from rsk(n) to obtain the updated residual as follows:

rsk+1(n) = rsk(n)− sk(n) = s(n)−
j=k

∑
j=1

sj(n) (14)

The number of iterations is updated by k ← k + 1. The aforementioned steps are
repeated to extract a new LFM signal component from the residual rsk(n) until k either
exceeds the maximum number Kmax of moving targets or the average power of the residual
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∥rsk(n)∥2
2 is less than an empirical threshold value ε. Given that ε is feasible for a new

LFM signal component declaration, it is advisable to set the value of ε equal to the average
power of the background clutter surrounding the moving targets for the residual clutter
suppression. Then, let the target number K ← k− 1. As a consequence, all LFM signal
components’, sk(n), k = 1, . . . , K, separation and residual clutter cn12(n) suppression from
s(n) have been achieved based on the proposed framework.

To realize K-moving-target imaging, in the imaging procedure, WVD is applied for
the quadratic coefficient âk estimation of sk(n). Secondary azimuth compression matched
to âk is further performed on the corresponding signal component sk(n) to generate the
well-focused kth moving-target image as follows:

sok(n) = F−1{F [sk(n)] · F [sa(n)]} (15)

where F (·) and F−1(·) denote the Fourier transform and the inverse Fourier transform, re-
spectively. The azimuth matching function is expressed as sa(n) = rect(n) exp

(
−jπâkn2

)
.

The azimuth multi-moving-target image of each range cell can be generated by the linear
superposition of each target image as follows:

so(n) =
k=K

∑
k=1

sok(n) (16)

Therefore, the iterative signal-separation framework based on MLFMSS-Net, as well
as the imaging procedure are implemented on each of the range cell data containing
multiple targets to obtain the whole well-refocused moving-target image. The specific
implementation procedures of the proposed method can be summarized in Algorithm 1.

Algorithm 1: The MLFMSS-Net-assisted multi-moving-target-imaging method

1 Preprocessing: Implement the basic SAR imaging processing and clutter
suppression to obtain the defocused image of multiple moving targets

2 Input: Defocused multi-moving-target image
3 Output: Refocused multi-moving-target image
4 for i← 1 to Nr do
5 select the signal s(n) from the ith range cell;
6 initialize k← 1 and rsk(n)← s(n);
7 while k ≤ Kmax or ∥rsk(n)∥2

2 ≥ ε do
8 sk(n)← fϕ(s(n)) by the well-trained MLFMSS-Net;

/* design MLFMSS-Net fϕ, where the network parameters ϕ are
optimized by minimizing the loss function through the
training data */

9 rsk+1(n)← rsk(n)− sk(n);
10 k← k + 1;
11 end
12 K ← k− 1;
13 for k← 1 to K do
14 estimate âk of sk(n) by WVD;
15 sok(n)← F−1{F [sk(n)] · F [sa(n)]};
16 end
17 so(n)← ∑k=K

k=1 sok(n);
18 end

3.2. Dataset Description

Data pairs consisting of the multicomponent LFM signal and the corresponding
most-energetic LFM signal component are required for the training of MLFMSS-Net. The
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multicomponent LFM signal from different SAR systems can be simulated according to
Equation (13). It is worth mentioning that this network primarily focuses on refocusing the
moving targets, rather than imaging the SAR observation scene. If all the large-sized SAR
data are directly utilized as the network input, it would require a large amount of memory
and computation time for training. Moreover, many clutter areas without moving targets
are not useless for training. Instead of all the SAR data, therefore, numerous small-sized
data patches with the length N = 512 containing moving targets should be extracted
from the SAR data and processed by the proposed MLFMSS-Net-assisted imaging method.
The number of LFM signal components is a random integer from 0 to 5 for each signal
sample. The signal parameters, respectively, obey the following uniform distributions:
|Ak| ∼ U(0, 1), ∆nk ∼ U(0, N), nk

ac ∼ U(0, N), ∆Nk
a ∼ U(0, N). Given that the SAR

system parameters are implicitly embedded within the ak of s(n), ak follows a uniform
distribution over the reasonable range U(−0.05, 0.05). This ensures that the dataset contains
multicomponent LFM signals from various SAR systems.

Because of the terrain’s heterogeneity, according to the analysis in [34], the additive
perturbation cn12(n) was simulated under the assumption of a compound clutter model.
This model accounts for heterogeneity in the data by assuming that each sampling cell is
the product of a speckle random variable (RV) X and a statistically independent texture
RV ∆ ∈ [0, ∞), i.e., Y = ∆× X. X is characterized by a complex Gaussian distribution
NC(0, (1− ρ)

(
σ2

c + σ2
n
))

, where ρ is the correlation coefficient between two channels. σ2
c

and σ2
c are the clutter and noise powers, respectively. It is convenient to normalize X to

its expectation, i.e., X = X/
(
(1− ρ)

(
σ2

c + σ2
n
))

. ∆ can be physically interpreted as the
fluctuating variance (power) of the speckle. It is independent of the radar position and
depends on the spatial distribution, orientation, and type of clutter under measurement. ∆
obeys the following distribution [34]:

f∆(δ) =
2(ν− 1)ν

Γ(ν)
δ−(2ν+1) exp

(
(1− ν)

δ2

)
(17)

where ν represents the texture parameter indicating the level of clutter heterogeneity in
the imaging scene. A higher value of ν suggests a more-homogeneous scene, while a
lower value indicates a more-heterogeneous scene. The density function of cn12(n) can be
calculated by Bayes rule as follows [35]:

fY(y; ν) =
Γ(ν + 1)
πΓ(ν)

(ν− 1)ν

(|y|2 + ν− 1)(ν+1)
(18)

According to the aforementioned distribution, cn12(n) can be simulated with a given
ν. To obtain the dataset containing the clutter with various heterogeneity levels, ν should
follow the uniform distribution ν ∼ U(3, 50). Consequently, the multicomponent LFM
signal can be obtained by summing the LFM signal components and the additive perturba-
tion with different input SCNRs obeying the uniform distribution U(−5 dB, 15 dB) in the
dataset. The real and imaginary parts of the multicomponent LFM signal are divided into
two independent channels as the network input I ∈ RN×2.

In addition, the most-energetic LFM signal component in the multicomponent LFM
signal will be adopted as the output of MLFMSS-Net. Similarly, the real and imaginary
parts of the signal component are treated as two independent channels, i.e., O ∈ RN×2.

Therefore, thousands of data pairs with diverse SAR system parameters, target motion
characteristics, and clutter types have been generated for training and testing. It is worth
noting that the minimax normalization strategy is utilized to normalize the dataset into the
range [0, 1] for better network training and performance optimization.

3.3. Architecture of Multicomponent Linear Frequency Modulation Signal-Separation-Net

As shown in Figure 3, MLFMSS-Net consists of the encoder, the signal-separation
module, and the decoder. The notation k16n32s8 represents a 1D convolutional layer with
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a kernel size of 16, a filter number of 32, and a stride of 8. A convolutional layer without
zero padding is utilized as the encoder to transform short segments of the network input
I ∈ RN×2 into their corresponding representations F ∈ RN̂×512 in an intermediate feature
space. The signal-separation module is then implemented by estimating a weighting
function (mask) M ∈ RN̂×512, which is elementwise multiplied with the encoder output,
i.e., S = M ⊙ F, where ⊙ denotes the elementwise multiplication. Finally, a transposed
convolutional layer as the decoder is exploited to transform the masked encoder feature
into the LFM signal component with the highest energy Ô ∈ RN×2. We describe the details
of the signal-separation module in the following.
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Figure 3. Architecture of MLFMSS-Net.

3.3.1. Signal-Separation Module

For the separation mask M estimation, the global layer normalization (gLN) is first
exploited to normalize the feature over both the channel and time dimensions [36]. A convo-
lutional layer of kernel size 1 is added as a bottleneck layer to adaptively fuse the effective
features and stabilize the training of the deeper network. Inspired by the network for audio
separation, the mask can be generated by a temporal convolutional network (TCN) [26,37].
This TCN is composed of multiple 1D dilated convolutional blocks (1D Convs), which
enable the network to capture long-term dependencies within the input signal while main-
taining a compact model size. The 1D Conv with an exponentially increasing dilation factor
ensures a sufficiently large temporal context window to take advantage of the long-range
dependencies of the signal. In the signal-separation module, eight 1D Convs with dilation
factors d = 1, 2, . . . , 27 are repeated 3 times. A residual path and a skip-connection path
of each 1D Conv are applied: the residual path of the current 1D Conv is directly fed into
the next block, while the skip-connection paths for all blocks are summed up and utilized
as the output of the TCN, which is passed to a parametric rectified linear unit (PReLU)
activation function [38]. Finally, a convolutional layer with a Sigmoid function is applied to
estimate the mask.

3.3.2. One-Dimensional Dilated Convolutional Block

In each 1D Conv, as shown in Figure 3, a convolutional layer with a kernel size of 1 is
first added to increase the complexity and richness of the features. The PReLU activation
function is utilized to introduce nonlinearity and is followed by a gLN. Subsequently,
to further reduce the number of parameters while maintaining a certain level of feature rep-
resentation capability, the depthwise separable convolution can be employed as a substitute
for the standard convolutional operation [39]. The depthwise separable convolution opera-
tor decouples the standard convolution operation into a depthwise convolution (D-Conv)
with dilation factor d and a pointwise convolution. Besides, a PReLU activation function
together with a normalization operation is added after the D-Conv. Each 1D Conv consists
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of a residual path and a skip-connection path, which improve the flow of information and
gradient throughout the network.

3.4. Training Procedure

To achieve the desired signal separation performance of MLFMSS-Net, the network is
required to be trained by minimizing a signal separation loss, denoted as Lsp(Ô, O). Here,
Ô represents the predicted output of the network fϕ(I) and O is the ground truth LFM
signal component with the highest energy. The signal-separation task can be formulated as
a regression problem, where the goal is to minimize the difference between the predicted
and ground truth signals. This is typically achieved by applying the pixelwise squared
Euclidean distance as the loss function:

Lsp
(
Ô, O

)
= ∥Ô−O∥2

2 (19)

An NVIDIA GeForce GTX3090 GPU was utilized to train the MLFMSS-Net model.
The model was trained with 500,000 training samples and 150,000 validation samples.
Then, 150,000 samples were used for testing. The batch size was configured to 32 during
the training process. Furthermore, Adam [40] was exploited as the optimization algorithm
to update ϕ at each step. The learning rate of the network was initially set to 5× 10−4

and decayed by 0.5 for every 5 epochs. This allowed the network to gradually adjust its
parameters towards the optimal values that minimize the loss function.

During training, MLFMSS-Net underwent 125,000 backpropagation iterations within
1.46 h, resulting in a good fitting performance. The well-trained network is capable of
achieving accurate predictions of outputs for unseen inputs. It has learned and captured
the mapping relationship between its input and output, allowing it to generate the LFM
signal component by simply calculating Ô = fϕ(I).

4. Experimental Results and Performance Analysis

In this section, the signal separation performance of the trained MLFMSS-Net is
analyzed by the multicomponent LFM signal simulation in Section 4.1. Moreover, the
imaging results on both the simulated and real SAR data are further presented to verify the
feasibility and effectiveness of the proposed MLFMSS-Net-assisted multi-moving-target-
imaging method in Sections 4.2 and 4.3.

4.1. Results on Simulated Multicomponent Linear Frequency Modulation Signal

In this subsection, the signal separation performance of the trained MLFMSS-Net is
explored by a three-component LFM signal, the parameters of which are listed in Table 1.
The additive perturbation with ν = 5 was added with the SCNR = 10 dB. The real and
imaginary parts of the three-component LFM signal are shown in Figure 4a,b, respectively.
The three LFM signal components overlap with each other and are contaminated by the
additive perturbation, which makes the signal separation more challenging. Utilizing
the iterative signal-separation framework based on MLFMSS-Net, the separation results
of the three LFM signal components are given in Figure 4c–h. It can be seen that the
separated signal components are similar to the ground truth signals. Therefore, MLFMSS-
Net achieved a good signal separation performance.

Table 1. Parameters of simulated three-component LFM signal.

Components |Ak| ∆nk nk
ac ∆Nk

a ak

1 1 100 100 100 −0.008
2 0.8 100 200 80 0.01
3 0.5 50 0 100 0.002
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Figure 4. Three-component LFM signal separation results based on MLFMSS-Net. (a,b) The real and
imaginary parts of the three-component LFM signal, respectively. (c,d) The real and imaginary parts
of LFM signal component 1, respectively. (e,f) The real and imaginary parts of LFM signal component
2, respectively. (g,h) The real and imaginary parts of LFM signal component 3, respectively.

The correlation coefficient between the ground truth and predicted signal components
was utilized to numerically evaluate the separation accuracy in various SCNR scenarios
as follows:

ρ =

N
∑

i=1

∣∣Ô(i)O∗(i)
∣∣√

N
∑

i=1

∣∣Ô(i)
∣∣2 N

∑
i=1
|O∗(i)|2

. (20)

where O∗ is the conjugate of O. The correlation between the two signals becomes stronger
as the value of ρ approaches 1. A total of 500 trials were conducted for each input SCNR
within the range [−5 dB, 10 dB]. The Chirplet decomposition method [10,11] was utilized
to compare the separation accuracy of MLFMSS-Net.

As depicted in Figure 5, the correlation coefficient rose as the SCNR increased. Com-
pared with Chirplet decomposition, it was evident that MLFMSS-Net exhibited superior
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accuracy in signal separation. Notably, when the SCNR exceeded 0 dB, MLFMSS-Net
achieved a correlation coefficient exceeding 95%. This is because MLFMSS-Net was trained
by minimizing the squared Euclidean distance, i.e., min ∥ fϕ(I)−O∥2

2. Once this training
process was complete, the optimal parameters ϕ could be obtained. The trained MLFMSS-
Net was capable of generating the predicted signal component Ô = fϕ(I) that had the
minimum difference from the ground truth signal component O.
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Figure 5. Correlation coefficients of three LFM signal components versus input SCNR using different
methods for the simulated three-component LFM signal.

4.2. Results on Simulated SAR Data

To effectively analyze the imaging quality of the proposed MLFMSS-Net-assisted
method in different SAR systems, two relatively complicated imaging scenarios were
simulated in airborne and spaceborne SAR systems for testing, respectively. The parameters
of the airborne and spaceborne SAR systems are listed in Table 2 and Table 3, respectively.

Table 2. Parameters of airborne SAR system.

Parameter Notation Value

Wavelength λ 0.03 m
Platform velocity V 150 m/s

Pulse repetition frequency PRF 800 Hz
Slant range RB 10 km

Table 3. Parameters of spaceborne SAR system.

Parameter Notation Value

Wavelength λ 0.03 m
Platform velocity V 7068 m/s

Pulse repetition frequency PRF 4560 Hz
Slant range RB 700 km

The first scenario containing four moving point targets and the additive perturbation
with the input SCNR = 5 dB was simulated in the airborne SAR system, as shown in
Figure 6a. It can be observed that the responses of moving targets are defocused in
azimuth and overlap with each other in the SAR image. Chirplet decomposition [10,11]
was utilized to separate the multi-moving-target signal and estimate the corresponding
Doppler chirp rate. The refocused target image can be obtained by the secondary azimuth
compression matched to the estimated Doppler chirp rate. As shown in Figure 6b, all
targets are refocused in azimuth with some residual clutter around them. In Figure 6c,
the well-refocused SAR image can be generated by the proposed MLFMSS-Net-based
imaging method. Moreover, it provided better residual clutter suppression performance
than Chirplet decomposition. Besides, the correlation coefficients of targets MT2-MT4 with



Remote Sens. 2024, 16, 605 14 of 20

different methods are observed in Figure 7. It can be seen that MLFMSS-Net achieved
better separation accuracy than Chirplet decomposition, especially in the low SCNR case.
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Figure 6. Multiple moving target simulation for airborne SAR system. (a) Original image. (b,c) Imaging
results based on Chirplet decomposition and MLFMSS-Net, respectively.
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Figure 7. Correlation coefficients of three LFM signal components versus input SCNR using different
methods for the simulated airborne SAR data.

Furthermore, another scenario with the input SCNR = 0 dB in the spaceborne SAR
system is simulated in Figure 8a. The imaging results based on Chirplet decomposition
and MLFMSS-Net are, respectively, depicted in Figure 8b,c. The moving-target image
obtained by the Chirplet-decomposition-based imaging method is submerged in the strong
background clutter, which brings difficulty to target detection. In comparison, the MLFMSS-
Net-based imaging method realizes image focusing and residual clutter suppression in a
strong clutter environment. Therefore, the proposed MLFMSS-Net-based imaging method
is capable of achieving multi-moving-target imaging with different radar system parame-
ters, moving target characteristics, and clutter types.
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Figure 8. Multiple moving target simulation for spaceborne SAR system. (a) Original image.
(b,c) Imaging results based on Chirplet decomposition and MLFMSS-Net, respectively.

The image focusing performance of the proposed method was quantitatively eval-
uated by the image entropy [41], with smaller values indicating better focus and clarity.
In addition, the output SCNR was utilized to numerically measure the clutter suppression
performance. As listed in Table 4 for the two scenarios, the imaging quality of the Chirplet-
decomposition-based imaging method is greatly enhanced compared with the original
image. The MLFMSS-Net-based imaging method achieves the best image focusing and
clutter suppression performance, which further verifies the effectiveness of the proposed
method. In addition, MLFMSS-Net costs a much shorter running time of 6.876 s compared
with the 273.6 s required by Chirplet decomposition. Therefore, the proposed imaging
method based on MLFMSS-Net achieves great improvements in both imaging quality
and efficiency.

Table 4. Imaging quality for simulated SAR data.

Platform Metric Original Chirplet MLFMSS-Net

Airborne Entropy 9.849 6.682 4.200
SCNR (dB) 5.000 31.46 41.07

Spaceborne Entropy 9.859 8.249 5.095
SCNR (dB) 0.000 18.29 38.42

4.3. Results on Real SAR Data

In this subsection, real airborne SAR data and satellite TerraSAR-X data are both
utilized to further demonstrate the effectiveness of the proposed imaging method. The pa-
rameters of the two SAR systems were the same as those of the simulations, as listed in
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Tables 2 and 3. Figure 9a shows the original image containing six moving targets MT1-MT6
in the airborne SAR system. All moving targets are defocused owing to the target motion
and obscured by the background clutter. MT3-MT6 are close in distance and overlap with
each other, making it difficult to distinguish them. The imaging results based on Chirplet
decomposition and MLFMSS-Net are shown in Figure 9b,c, respectively. Six moving targets
can be well refocused, making them easy to distinguish. Compared with Chirplet decom-
position, the MLFMSS-Net-based imaging method obtains few virtual targets and provides
superior imaging performance in azimuth.

Moreover, the imaging results of TerraSAR-X data containing three moving targets
were obtained as shown in Figure 10. As shown in Figure 10b,c, the moving targets are
well refocused while the background residual clutter is suppressed based on Chirplet
decomposition and MLFMSS-Net. The entropy and SCNR for TerraSAR-X data are listed
in Table 5. Compared with other methods, the imaging method based on MLFMSS-Net
has lower image entropy and a larger SCNR, which achieves better refocusing and clutter
suppression performance.

Table 5. Imaging quality for real SAR data.

Platform Metric Original Chirplet MLFMSS-Net

Airborne Entropy 9.233 6.333 5.570
SCNR (dB) −0.671 29.28 34.88

TerraSAR-X Entropy 8.418 4.867 4.485
SCNR (dB) 5.036 31.20 47.83
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Figure 9. Airborne SAR data imaging results. (a) Original image. (b,c) Refocused images based on
Chirplet decomposition and MLFMSS-Net, respectively.
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Figure 10. TerraSAR-X data imaging results. (a) Original image. (b,c) Refocused images based on
Chirplet decomposition and MLFMSS-Net, respectively.

5. Discussion

In Section 4.2, two simulated data acquired by the airborne and spaceborne SAR
systems were both utilized to verify the applicability of the proposed imaging method.
The results showed that the trained MLFMSS-Net realizes the separation of multicom-
ponent LFM signals from different SAR systems. With the assistance of MLFMSS-Net,
the proposed imaging method achieves high-quality and high-efficiency imaging with-
out prior knowledge of the system parameters. The reason behind this success lies in
the fact that the training dataset was generated based on a multicomponent LFM signal
model, the parameters of which implicitly embed the radar system parameter information.
By training MLFMSS-Net on this abundant dataset containing different signal parameters,
the network becomes adaptable to various radar systems. In Section 4.3, experiments
on two sets of real data acquired from airborne SAR systems and the TerraSAR-X satel-
lite further confirmed the ability of the proposed method to improve the robustness of
moving-target imaging, while reducing sensitivity to the system parameters. This is of
great significance for the application of the proposed method in real-world scenarios.

Meanwhile, experiments with different target numbers in Section 4 demonstrated that
the proposed method is capable of achieving the multi-moving-target imaging without prior
knowledge of the target number, exhibiting its suitability for practical imaging scenarios.

However, it is worthwhile to remark that the length of the separated signals in the
experiments was fixed owing to the fixed training sample length in the dataset, limit-
ing the flexibility of moving-target imaging processing. Therefore, our future work will
focus on how to improve the adaptability of the network model to the separated sig-
nals with different lengths, such as more-diverse data sample generation and multi-scale
model building.
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6. Conclusions

In this paper, we propose a MLFMSS-Net-assisted multi-moving-target-imaging
method for the SAR-GMTI system. The network MLFMSS-Net was designed to extract
the most-energetic LFM signal component from the multicomponent LFM signal and
trained on the dataset with various SAR system parameters, target information, and clutter
types, which was generated by the multicomponent LFM signal model. The well-trained
MLFMSS-Net was iteratively applied multiple times to realize all LFM signal component
separation and residual clutter suppression. Without prior knowledge of the target num-
ber, compared with other methods, the target imaging and residual clutter suppression
performance were improved with high processing efficiency, especially in low-input SCNR
scenarios. It provides further potential to implement the subsequent image interpretation
including target classification and recognition. Meanwhile, the proposed method enhances
the robustness of moving-target imaging, while reducing sensitivity to the system parame-
ters, preliminarily addressing a significant challenge faced by deep-learning-based imaging
methods. This allows the deep-learning-based imaging method to be a suitable solution for
practical imaging applications.

In future work, we will further investigate how to incorporate the parameter estimation
and pulse compression tasks into the deep network, aiming to overcome the limitations
of the inherent resolution on estimation accuracy for traditional TFR-based methods and
the signal bandwidth on imaging resolution for matched filtering methods. Additionally,
the proposed method focuses on the imaging of ground moving targets with accelerated
motions, the radar echoes of which can be characterized as the multicomponent LFM
signal model. However, this signal model and the corresponding imaging method are not
suitable for maritime targets with complex motions. A multicomponent higher-order phase
signal model needs to be established. Subsequent research will explore how to fully utilize
the powerful feature extraction and signal separation capabilities of MLFMSS-Net and
generalize its applications to complex signal models.
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