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Abstract: Due to the advantage of high spatial coverage, using satellite-retrieved aerosol optical depth
(AOD) data to estimate PM2.5 and PM10 mass concentrations is a current research priority. Statistical
models are the common method of PM estimation currently, which do not require the knowledge
of complex chemical and physical interactions. However, the statistical models rely on station data,
which results in less accurate PM estimation concentrations in areas where station data are missing.
Hence, a new hybrid model, with low dependency on on-site data, was proposed for PM2.5 and PM10

mass concentration estimation. The Gaofen-1 satellite and MODIS data were employed to estimate
PM2.5 and PM10 concentrations with 100 m spatial resolution in Beijing, China. Then, the estimated
PM2.5/10 mass concentration data in 2020 were employed to conduct a spatio-temporal analysis for
the investigation of the particulate matter characteristic in Beijing. The estimation result of PM2.5 was
validated by the ground stations with R2 ranging from 0.91 to 0.98 and the root mean square error
(RMSE) ranging from 4.51 µg/m3 to 17.04 µg/m3, and that for PM10 was validated by the ground
stations with R2 ranging from 0.85 to 0.98 and the RMSE ranging from 6.98 µg/m3 to 29.00 µg/m3.
The results showed that the hybrid model has a good performance in PM2.5/10 estimation and can
improve the coverage of the results without sacrificing the effectiveness of the model, providing more
detailed spatial information for urban-scale studies.

Keywords: AOD; Gaofen-1; PM2.5; PM10; remote sensing; urban air pollution

1. Introduction

Numerous health-related studies have shown that exposure to PM2.5 and PM10 in-
creases morbidity and mortality from a number of diseases, most of which are respiratory
and cardiovascular diseases [1–5]. There are even adverse effects on the weights and
lengths of newborns [6]. In 2010 and 2014, severe PM2.5 pollution caused over 1.2 million
and 1.6 million deaths, respectively [7,8]. As the economy and cities grow in China, PM has
become one of the most serious pollutants of air pollution and a widespread concern [9,10].

The existing studies using ground-based stations for air quality assessment can provide
high-precision results, but the ground-based monitoring methods inevitably face some
problems, such as limited spatial coverage and uneven station distribution [11–13]. To
overcome the above shortcomings, satellite remote sensing techniques are increasingly
being studied for estimating PM2.5/10 concentrations due to their high resolution and wide
spatial and temporal coverage [14–17]. The linear regression of aerosol optical depth AOD-
PM2.5 is employed to represent the correlation in many previous studies [18,19]. However,
several studies have demonstrated that there is a non-linear relationship between AOD and
PM2.5 [20,21]. In addition to this, there are several studies based on other methods such as
chemical transport simulation and physical correction for PM estimation [22–26]. Among
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these models, statistical models are the most popular in academia, which include mainly
empirical statistical models, such as multiple linear regression [21,27], the mixed effects
model [28,29], geographically weighted regression models (GWR) and their derivative
models [30–33], the generalized additivity model (GAM) [34–37], and machine learning,
such as random forest [38–40], support vector regression [41,42], and neural network
models [43–45]. Specifically, the GWR model is a spatial statistical technique used to explore
and model spatially varying relationships, which recognizes the variability in connections
between variables across geographical locations, enabling focused modeling and analysis.
Song et al. applied a specific satellite-based GWR model to obtain PM2.5 over the Pearl River
Delta region in China, and developed more accurate large-scale PM2.5 monitoring [46].
The improved geographically and temporally weighted regression (IGTWR) model is
developed based on the traditional GWR model, which incorporates both spatial and
temporal dimensions to improve the accuracy of predictions. He and Huang employed
the IGTWR model for estimating high-resolution PM2.5 over the Beijing–Tianjin–Hebei
region of China [47]. By combining temporal and spatial weights, the IGTWR model can
consider the geographical and temporal variations of PM2.5 concentrations. This approach
recognizes the temporal fluctuations in air quality and provides a more comprehensive and
accurate representation of the factors influencing PM2.5 levels over time.

Urban structures are closely correlated with air pollution [48]. To further understand
the mechanisms of the models, validate modeling results, and improve modeling capabili-
ties, the particulate matter estimation for urban agglomerations requires high spatial and
temporal resolution observations [49]. The Gaofen-1 (GF-1) satellite is a high-resolution
Earth observation satellite developed by China. GF-1, launched on 26 April 2013, is part
of China’s high-resolution Earth observation system (Hi-ResEOS), and also represents a
significant milestone in China for enhancing satellite remote sensing capabilities. It can
improve its role in Earth observation with several key features and capabilities it possesses.
With advanced optical instruments, it can offer more detailed observations of Earth’s sur-
face features. Additionally, its wide swath coverage can efficiently monitor large areas in a
single pass and contribute to comprehensive Earth monitoring. Moreover, GF-1 supports
versatile imaging modes, including panchromatic and multispectral, enabling a range of
applications in environmental monitoring, pollution assessment, and various applications
related to Earth observation. These features collectively make GF-1 a valuable asset for
diverse remote sensing endeavors. Several studies have been conducted to retrieve AOD at
160 m spatial resolution and calculate PM2.5 using the Gaofen-1 satellite [50,51]. Further-
more, the AOD data from the moderate resolution imaging spectroradiometer (MODIS)
satellite have a high temporal resolution, global coverage, diverse spectral bands, special-
ized algorithms, rigorous validation, and long-term record advantages. In our previous
study, GF-1 wide field-of-view (WFV) and MODIS data were applied to retrieve AODs at a
spatial resolution of 100 m [52]. Then, these AODs were employed to estimate PM2.5 and
PM10 concentrations at this resolution using an IGTWR model incorporating a proportional
relationship formula. The spatial pattern and accuracy of GF PM2.5/10 estimates were
assessed using tenfold cross-validation, leave-one-out validation, and validation based on
in situ monitoring data. Finally, the limitations of GF PM2.5/10 in this study are discussed,
and future work is proposed to address the limitations in resolution and accuracy.

2. Study Area and Data
2.1. Study Region

The primary area of focus in this study is Beijing, centered at longitude 116◦20′ East
and latitude 39◦56′ North, a world-famous ancient capital and modern international city.
As illustrated in Figure 1, Beijing has 23 types of land use and 24 air quality stations. Due
to industrialization and urbanization in recent years, air pollution, especially PM2.5 and
PM10, has become a serious and urgent issue for Beijing [11,53,54].
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Table 1. The land-use types in China [55].

Number Designation Number Designation Number Designation

11 Paddy field 41 Channel 61 Sand
12 Dry land 42 Lake 62 Gobi
21 Woodland 43 Reservoir pond 63 Saline alkali soil
22 Shrub wood 44 Permanent glacier and snow 64 Swamp land
23 Sparse woodland 45 Tidal flat 65 Bare land
24 Other woodlands 46 Beach land 66 Bare rock texture
31 High-coverage grassland 51 Urban land use 67 Other
32 Medium-coverage grassland 52 Rural settlements 99 Undefined
33 Low-coverage grassland 53 Other construction land

2.2. PM2.5/10 Measurement Data

The PM2.5/10 ground-based measurement data employed in the present paper are col-
lected from the Chinese National Real-Time Air Quality Release Platform
(https://air.cnemc.cn:18007/, accessed on 2 December 2023). Figure 1 shows the geo-
graphical locations of the national air quality monitoring stations within the Beijing region
in 2020. The monitoring stations measure air pollutant parameters including PM2.5, PM10,
and ozone. In this study, PM2.5/PM10 at 10:00 and 14:00 are adopted to correspond to the
AOD data. In the section on results validation, monitoring data from 40 stations in and
around the Beijing city area were used.

2.3. AOD Data

GF-1 combines high resolution with large bandwidth, and accommodates multiple
spatial resolutions, multiple spectral resolutions, and integrated multi-source remote sens-
ing data requirements. It has 16 m spatial resolution and four days’ temporal resolution [56].
MODIS is a medium-resolution imaging spectrometer that carries two satellites, Terra and
Aqua. It is a crucial instrument in the U.S. Earth Observing System (EOS) program and is
primarily used to observe global biological and physical processes. Numerous research
fields already make extensive use of the MODIS sensors on Terra and Aqua. They can offer
up to two observations of visible light each day. In order to further improve the spatial
resolution of the AOD data and to enhance the ability to study air pollution in small areas,
Bai et al. combined two sets of satellite data to obtain a high-resolution AOD [52]. First, they
collected 52 high-coverage images from the GF-1 wide field-of-view (WFV) cameras within
the study area in 2020, along with corresponding MODIS data captured during the same

https://air.cnemc.cn:18007/


Remote Sens. 2024, 16, 604 4 of 18

period. The 1 km resolution 1B level data (MOD/MYD02) from MODIS were downscaled
with the help of GF-1 WFV data using the mutual information (MI) algorithm [52]. In this
process, MI quantifies the statistical dependence between two variables by measuring the
amount of information one variable provides about the other, and computes the entropy of
each variable and their joint entropy for capturing the uncertainty and information shared
between them [57,58]. Then, the downscaled TERRA and AQUA satellite data are used
to retrieve AOD by the synergetic retrieval of aerosol properties algorithm (SRAP) [59,60].
Finally, high spatial resolution AOD data of the Beijing area with 100 m spatial resolution
are obtained [52]. The AOD data used in this study are those calculated in our previous
study, and the validated correlation coefficient is approximately 0.88 in Beijing, which
shows promising relationships [52].

2.4. Meteorological Data

Boundary layer height (BLH) data were provided through the ERA-5 from the Eu-
ropean Centre for Medium-Range Weather Forecasts (http://www.ecmwf.int/, accessed
on 4 December 2023). The meteorological data used in this study were provided in the
database at a spatial resolution of 0.25◦ × 0.25◦. The temporal resolution has various
options, and to correspond to the hourly sampling frequency of PM2.5/10, the temporal
resolution of the products selected in this study was hourly. To correspond to the sam-
pling times for PM2.5 and PM10, BLH values were obtained at 10:00 and 14:00 from the
previous day.

Relative humidity (RH) data were obtained from the China regional multi-source
fusion live analysis at 1 km resolution product (ART_1 km, ground). The 1 km-resolution
product of China’s regional multi-source fusion real-time analysis was developed by
using ground station observations, satellites, numerical models, and other data, and in-
cludes four elements, such as hourly 2 m humidity. The product was provided by the
China National Meteorological Operational Intranet (http://data.cma.cn/weatherGis/
web/weather/weatherFcst/index, accessed on 4 December 2023).

2.5. Land-Use Variables

PM2.5/10 concentrations are influenced by the subsurface of the land. Land-use data
for Beijing in 2020 were collected from the Resource and Environment Data Cloud Plat-
form (http://www.resdc.cn/, accessed on 4 December 2023). The data have a temporal
resolution of years and are raster data with a spatial resolution of 1 km generated based
on the 2015 land-use remote sensing monitoring data with Landsat TM imagery. The data
include 6 primary types of land use (arable land, forest land, residential land, unused
land, grassland, water) and 25 secondary types. The legend codes and their corresponding
land-use types are listed in Table 1. Compared to China, Beijing lacks three land-use types:
permanent glaciers and snow, Gobi, and others.

2.6. Simulation Data Fields

AOD and PM2.5/10 simulation data were obtained from the CAMS (ECMWF Atmospheric
Composition Reanalysis 4) global reanalysis (https://ads.atmosphere.copernicus.eu/, accessed
on 7 December 2023). The PM2.5, PM10, and AOD data used in the present study have
a horizontal resolution of 0.75◦ × 0.75◦ at 3 h temporal resolutions. Data were collected
at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 local time and then the 10:00
and 14:00 values were obtained by linear interpolation to make them correspond to the
sampling times for PM2.5 and PM10. To begin with, the interval in which the unknown
points are located was determined based on the eight known data points. Afterward,
the weights were calculated using the distance between the unknown and known points.
Assuming there is a linear relationship between the data points, the linear model was
established based on the known values and the obtained weights. Two unknown moments
as independent variables were substituted into the above linear model to calculate the
estimations of the required moments.

http://www.ecmwf.int/
http://data.cma.cn/weatherGis/web/weather/weatherFcst/index
http://data.cma.cn/weatherGis/web/weather/weatherFcst/index
http://www.resdc.cn/
https://ads.atmosphere.copernicus.eu/
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2.7. Data Integration

In the present study, parameters from different categories were data integrated to
ensure the spatial consistency of the data before being incorporated into the model. Meteo-
rological data were resampled to 100 m spatial resolution using bilinear interpolation to
obtain the same spatial and temporal resolution as AOD. Simultaneously, the land-use data
were reprojected and resampled, and then stored as raster data in tiff format so that they
had the same projection and spatial resolution as the AOD data. Furthermore, the AOD
and PM data from CAMS were interpolated to have the same temporal resolution as the
GF-1 AOD, allowing them to be used as input data in the proportional relationship formula
method. Because the data in the large grid center was sampled as point data, the spatial
interpolation was not performed on the CAMS data. Thereafter, the geographic location of
the PM concentrations calculated by the proportional relationship formula method was
assumed to be the center of each raster cell and then entered as supplemental site data.
Finally, a grid with a spatial resolution of 100 m based on the AOD grid was created to
integrate all PM data into records for the model.

3. Methods

The workflow of the present study is shown in Figure 2. Firstly, a proportional relationship
formula was built to establish the refined PM2.5/10 observation network combined with PM2.5/10
measurements (Figure 3). Secondly, an IGTWR model that considers the main parameters,
including the AOD, RH, and BLH, was developed to estimate ground PM2.5 and PM10 concen-
trations [61]. The general distance was defined by latitude, longitude, and land-use classification
data. The GTWR model had an encouraging performance with uniform and densely distributed
input site observation data [62]. In the developed model, the site-measured PM data were
replaced by the refined PM observation network. Finally, cross-validation and ground station
validation were used to validate the model performance.
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3.1. Proportional Relationship Formula

Due to the vertical distribution and propagation properties possessed by AOD, a
method for estimating PM2.5 based on chemical transport models with AOD was proposed.
The scaling factor was obtained from the AOD obtained from satellite remote sensing and
the model-simulated AOD, and the actual PM2.5 mass concentration was calculated using
the scaling factor and the simulated PM2.5 mass concentration [63]. In the present study,
the scaling relationship equation was constructed as follows:

GF PRF PM2.5/10 Concentration
=

Simulated Surface Level PM2.5/10 Concentration
Simulated Column AOD × GF AOD

(1)

The PM2.5 or PM10 concentrations derived from this simple model were referred
to as GF PRF PM2.5/10 concentrations in the present study. The terms of particle mass
concentrations employed in this analysis are summarized in Table 2.

Table 2. Definitions of terms used in this analysis.

Term Unit Definition

Simulated PM2.5
concentration mg/m3

PM2.5 or PM10 provided by CAMS, verification results
with the 12 monitoring stations of the Ministry of
Environmental Protection (MEP) within Beijing in 2020
show that the average R values are 0.59 and 0.43,
respectively (https://cams2-82.aeroval.met.no/, accessed
on 27 January 2024).

Simulated AOD unitless

AOD provided by CAMS, verification results with the
AeronetL1.5-d of Beijing station in 2020 show that the R
and R2 values are 0.80 and 0.89, respectively
(https://cams2-82.aeroval.met.no/, accessed on
27 January 2024).

GF AOD unitless
The TERRA and AQUA satellite MODIS data were first
downscaled by GF-1 WFV data, then calculated the AOD
by the SRAP algorithm.

GF PRF PM2.5/10
concentration µg/m3 PM2.5 or PM10 concentrations at 10:00 or 14:00 local time.

The study area was divided into a standard raster based on simulated AOD data
resolution. The centroid position of each raster is used as the latitude and longitude of the
fictitious station, and the simulation data are assigned to it.

https://cams2-82.aeroval.met.no/
https://cams2-82.aeroval.met.no/
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3.2. IGTWR

Geographic data are affected not only by geographic location but also by time. Given
this, a geographically time-weighted regression model was proposed [64]. Xue et al. [61]
improved the GTWR model by redefining the generalized distance using land-use data,
and the model obtained better performance. In the present study, the IGTWR model was
used to estimate the mass concentrations of PM2.5 and PM10 in the study area. The model
is shown in (2):

yi = β0(u0, v0, d0, h0, l0) +
d

∑
k=1

βk(u0, v0, d0, h0, l0)xik + εi, i = 1, 2, . . . , n (2)

where u0 and v0 denote the longitude and latitude data, d0 and h0 denote the day and hour
data, l0 denotes land-use data, and d represents the number of independent variables. In this
model, the independent variables are AOD, relative humidity, and boundary layer height;
therefore, d is equal to 3 in this equation. i denotes the count of observation points in the
refined observation network; yi represents the estimated PM2.5 or PM10 mass concentration.
The EVI (enhanced vegetation index) can reflect the extent of capturing particulate matter
on plant leaves [65], and NDVI can also be considered in the IGTWR model [66]. Because
the study was conducted during the summer months, EVI and NDVI were not considered
in the final model. The same fixed bandwidth is used in the present study.

4. Results and Validation
4.1. Results of the Model Fitting and Validation

A virtual monitoring network was established based on the proportional relationship
formula in Beijing. PM2.5 and PM10 were estimated using the refined PM2.5/10 measurement
network with GF AOD data.

Table 3 shows the coefficient (R2), RMSE, and the coverage of the results for the
different methods. The hybrid method of IGTWR and the chemical transport model-based
proportional relationship formula was called GWC in this paper. A 1-year dataset was
available for modeling in Beijing to obtain as much coverage as possible. In Beijing, PM2.5/10
is positively proportional to AOD, due to PM2.5/10 playing a major role in atmospheric
extinction [67]. Higher planetary boundary layer height (PBLH) expands the near-surface
atmosphere and promotes vertical convection [68], which means PBLH has a negative
correlation with PM2.5/10 mass concentration. As the PM2.5/10 concentration measurement
represents dry particles [21], higher air humidity leads to an increase in the value of AOD for
the same PM2.5/10 value [24]. Drying the sampling air stream at ground stations eliminates
the influence of moisture on particulate mass concentrations when measuring particulate
concentrations. Since it is obvious that atmospheric humidity also has a considerable impact
on airborne contaminants, relative humidity is also included in the model’s independent
variables. That is, RH has a negative correlation with ground-level PM2.5/10.

Table 3. Model performance using refined and unrefined site networks modeled separately, and
coverage of results by different methods.

Method R2/RMSE Coverage

PM2.5 GWC 0.778/34.702 µg/m3 92.91%
PM2.5 GWR 0.660/25.434 µg/m3 40.73%
PM10 GWC 0.741/49.757 µg/m3 92.95%
PM10 GWR 0.550/38.052 µg/m3 40.93%

A linear regression is performed to fit the PM2.5/10 estimation to the monitored
PM2.5/10 concentration. Table 3 shows the R2 and coverage of the improved and orig-
inal models in this paper. These results indicated that PM2.5/10 estimated by the hybrid
model combined with GF AOD is in good agreement with PM2.5 measurements on the
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ground. Moreover, with the inclusion of the “virtual site” data, the GWC model allows for
the calculation of PM2.5/10 concentrations using AOD data that do not cover the ground
monitoring stations. Therefore, the hybrid model significantly improves the coverage of
valid results.

4.2. PM Estimation Using Satellite Remotely Sensed Data

Figure 4 shows the seasonal PM2.5/10 concentrations at a 100 m resolution. Figure 5
shows the annual mean PM2.5/10 concentrations estimated by the IGTWR model at a 100 m
resolution in 2020, respectively. Figure 6 shows PM2.5/10 concentrations estimated by the
IGTWR model at a resolution of 100 m for days with light pollution, heavy pollution, and
pollution with prominent spatial characteristics. The polluted weather of PM2.5 and PM10
in Beijing is mainly concentrated in winter, while spring and summer are mostly clean. In
contrast, the distribution of PM values in the central and eastern urban areas is relatively
stable, and the seasonal characteristics are relatively insignificant. Estimates of PM2.5/10 in
the eastern fringe were missing due to insufficient matching of the GF data. The results show
that the spatial variation in the mass concentration of PM2.5 is weaker in Beijing during the
study time of this study, while the spatial variation in the mass concentration of PM10 is
stronger. Particulate matter pollution is more severe in the urban and southeastern suburbs
of southern Beijing, where the land has lower vegetation cover and higher population cover.
The south-central part of the Beijing region is urban land, and this small area has lower and
more stable PM2.5 and PM10 concentrations compared to its neighboring regions. Relatively
lighter pollution is found in the mountainous areas of northern and western Beijing, where
estimated PM10 concentrations are typically below 40 µg/m3. Highly polluted areas
correspond to areas with poor vegetation cover and large populations. Conversely, clean
areas are routinely characterized by thick vegetation, poor populations, and high altitudes.
As industrial emissions and population density gradually increase from northwest to
southeast in Beijing, PM10 also rises along the geographical gradient.
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mated by the model are shown for spring/summer/autumn/winter, (a), (b), (c), and (d), respectively.
The monthly mean PM10 mass concentration distribution levels for spring/summer/autumn/winter
are shown at 100 m resolution for the model estimates, (e), (f), (g), and (h), respectively. Estimates of
PM2.5/10 are missing at the eastern margin component due to insufficient matching of GF data.
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Figure 6. Distribution of PM2.5 and PM10 mass concentrations (µm/m3) at hourly resolution for clear
and high pollution dates. The first row is PM2.5 and the second row is PM10, from left to right. Each
column has the same time parameter, 14:00 on 12 April 2020 (a,e), 10:00 on 28 April 2020 (b,f), 14:00
on 28 April 2020 (c,g), and 10:00 on 5 June 2020 (d,h). The times are local standard time.
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In addition, pollution in the study area is also influenced by pollutants from outside
the region. For example, the southern suburbs are affected by pollution from polluted Hebei
Province, south of Beijing [69]. In addition, previous studies have shown that the spatial
characteristics of particulate matter in the Beijing area are similar to this study [51,69,70].
However, most of the PM2.5/10 estimations are lower than the observations. This is primarily
attributable to the fact that most air quality monitoring stations are located in the center of
cities or counties with high pollution levels, while most data in remote mountainous areas
are reflected in the estimation results with sparse pollution [69]. In addition, in the study
area with large water coverage (such as Miyun Reservoir located northeast of Beijing), the
calculated results of PM2.5 and PM10 concentration levels are missing or low, which is the
reason for the sudden change in data.

5. Discussion
5.1. Effects of the Refined PM2.5/10 Measurement Stations

Three experiments were conducted to compare the performance impact of the measure-
ment network before and after refining the model. The first way is to use the proportional
relationship formula to refine the monitoring network and then use the IGTWR model to
estimate PM2.5/10. The second method of using the site data for IGTWR was called GWR
in this paper. The third way is to use the proportional relationship formula method to
obtain the PM concentration data as the virtual monitoring network to estimate PM2.5/10.
It was referred to as the PRF method. All three methods use the same bandwidth when
calculating with the IGTWR model. Figures 7 and 8 show the validation results using the
first two methods. Since there is no ground site as a training set, Figure 9 only shows the
results obtained using the PRF method with the validation of the ground site (R2 = 0.829,
RMSE = 48.58 µg/m3 and R2 = 0.818, RMSE = 69.04 µg/m3).
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Figure 9. Validation of PM2.5 mass concentrations calculated using the RPF against ground
stations (a). Validation of PM10 mass concentrations calculated using the RPF against ground sta-
tions (b). The solid black line is the 1:1 reference line.

One of the characteristics of the GWR model is the need for uniform stations [62].
When the generalized distance is defined by both time and space, a uniform distribution of
site data in time and space leads to better model results. The comparison of coverage is
due to the uneven distribution of stations for the same bandwidth parameters, resulting
in different coverage before and after the refined monitoring network. In areas far from
the measurement sites, valid calculations could not be derived. The improved method in
this study effectively improves the coverage calculated by the model without significantly
reducing its effectiveness. The improved method in this study improved the 50% coverage.

The model performance was poor without ground stations, which means site data are
indispensable in model calculations. However, the various verification results of GWR and
GWC are similar, so refining the PM monitoring network by the virtual monitoring network



Remote Sens. 2024, 16, 604 14 of 18

will not cause much negative impact on the model fitting. In summary, the new model
method can effectively improve the model performance under the optimal bandwidth.

The model estimated PM2.5 with small seasonal differences, with R2 above 0.9 in
all cases. The model estimated PM10 with relatively large seasonal differences, mainly
reflected in the R2 below 0.9 in spring and fall, but the R2 in winter was 0.97.

After refining the observation stations, the IGTWR model was tested for its ability
to estimate PM2.5/10 mass concentrations. Directly measured PM2.5/10 data from the air
quality monitoring sites within the study area (Figure 1) were used to perform validation
analyses with the corresponding estimates. Regarding model fitting, the R2 value of both
PM2.5 and PM10 models reached 0.94. The results showed that the IGTWR model performs
well in hourly PM2.5/10 estimation.

5.2. Comparisons with Other Studies

In previous studies, the cross-validation (CV) R2 values for satellite-based ground-
based PM2.5/10 estimates ranged from 0.36 to 0.82 [16,71–75]. Among these studies, the
hourly PM2.5 estimates model (CV R2 = 0.80) was found to perform significantly better than
the daily PM2.5 estimates model (CV R2 = 0.61) due to its higher temporal matching charac-
teristics.

In the present study, terrestrial sites were encrypted using the proportional relationship
formula, thereby expanding the level of data coverage. In previous studies, average daily
AOD associated with daily PM2.5 and a seasonal linear regression model were used to
estimate missing AOD and expand the level of data coverage [69]. Data discontinuities
have a detrimental effect on model accuracy levels [69].

Figure 10 illustrates the monthly PM2.5 mass concentration in this study compared
to the monthly PM2.5 mass concentration at 0.01◦ resolution published by Aaron van
Donkelaar et al. [76]. The spatial distribution of PM2.5 is characterized similarly in both
datasets, proving the reliability of the PM distribution in this study.
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6. Conclusions

In this study, a virtual monitoring network for PM2.5/10 was established by a pro-
portional relationship formula. The IGTWR model and refined measurement network
were applied to AOD. Then a hybrid model was proposed, which was applied to AOD,
meteorological data, time and space data, and land-use data to estimate PM2.5/10 mass
concentrations in the study area at a spatial resolution of 100 m. The model results showed
a reasonable spatial pattern similar to previous studies, with high values of PM2.5/10 oc-
curring mainly in urban and southeastern suburbs, and lower values in the northern and
western mountainous regions in Beijing. The estimation result of PM2.5 was validated by the
ground stations with R2 ranging from 0.91 to 0.98 and the RMSE ranging from 4.51 µg/m3

to 17.04 µg/m3, and that for PM10 was validated by the ground stations with R2 ranging
from 0.85 to 0.98 and the RMSE ranging from 6.98 µg/m3 to 29.00 µg/m3. This demon-
strates the usability of the new hybrid model in the absence of sufficient AOD-monitoring
data counterparts and provides a basis for future urban-scale PM estimates.

Despite these reliable results, some aspects of the model in this study could be im-
proved. Firstly, the results of the model are influenced by the accuracy of the input AOD
data, while the coverage of the results is also related to the AOD coverage. AOD data and
meteorological field data with higher accuracy and resolution would benefit our model
performance. Secondly, the temporal resolution of PM2.5/10 data affects the model per-
formance [69]. Therefore, more time continuity in the AOD data was needed to improve
model performance. Finally, as the association between ground-level PM2.5/10 and AOD
is influenced by many different factors, more variables will be considered in our future
studies (such as population density, road length, and emission information).
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