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Abstract: Lakes are an important component of global water resources. In order to achieve accurate
lake extractions on a large scale, this study takes the Tibetan Plateau as the study area and proposes
an Automated Lake Extraction Workflow (ALEW) based on the Google Earth Engine (GEE) and
deep learning in response to the problems of a low lake identification accuracy and low efficiency in
complex situations. It involves pre-processing massive images and creating a database of examples of
lake extraction on the Tibetan Plateau. A lightweight convolutional neural network named LiteCon-
vNet is constructed that makes it possible to obtain spatial-spectral features for accurate extractions
while using less computational resources. We execute model training and online predictions using
the Google Cloud platform, which leads to the rapid extraction of lakes over the whole Tibetan
Plateau. We assess LiteConvNet, along with thresholding, traditional machine learning, and various
open-source classification products, through both visual interpretation and quantitative analysis.
The results demonstrate that the LiteConvNet model may greatly enhance the precision of lake
extraction in intricate settings, achieving an overall accuracy of 97.44%. The method presented in this
paper demonstrates promising capabilities in extracting lake information on a large scale, offering
practical benefits for the remote sensing monitoring and management of water resources in cloudy

and climate-differentiated regions.

Keywords: Google Earth Engine; deep learning; Tibetan Plateau; lake; cloud computing

1. Introduction

As an important water resource, lakes are not only important information carriers that
reveal changes in the climate [1], environment [2], and hydrology [3], but also important
natural resources for human survival and development, and they play a vital role in
maintaining species, the environment, and ecological security [4].

Remote sensing is a critical method for obtaining lake-related information, and its
application began in 1974 [5]. With the rapid advancement of remote sensing [6], thresh-
old methods based on water indices have been introduced, such as the normalized dif-
ference water index (NDWI) [7] and modified normalized difference water body index
(MNDWI) [8]. Wang et al. [9] compared the accuracy of different indices for extracting lake
boundaries based on Landsat 8 OLI images with Dianchi Lake, Fuxian Lake, Yangzonghai

Remote Sens. 2024, 16, 583. https:/ /doi.org/10.3390/rs16030583

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs16030583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2987-0504
https://orcid.org/0000-0002-2120-434X
https://orcid.org/0009-0006-8273-8042
https://doi.org/10.3390/rs16030583
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030583?type=check_update&version=1

Remote Sens. 2024, 16, 583

20f18

Lake, Xingyun Lake, and Qicai Lake as samples. The MNDWI index, obtained through
analysis, proves to be more precise in extracting the water boundary of eutrophic lakes.
Deoli et al. [10] discerned diffusion area trends for Nainital Lake based on calculated NDWI
values, a study that aids governmental and policymaker decision making in crafting recla-
mation and restoration plans for Nainital Lake. Thresholding is a straightforward, intuitive,
easily implemented, and computationally efficient method. However, image classification
based on preset thresholds unavoidably requires human intervention and adjustment. To
address this issue, the Otsu method was introduced for lake extraction. The Otsu method
partially solves the problems associated with threshold segmentation by adjusting the
threshold to adaptively distinguish water from the background. Tran et al. [11] employed a
dynamic Otsu threshold based on Sentinel-1 images to ascertain the optimal threshold for
segmentation in the Mekong Delta region. This enabled the extraction of water and the
creation of time-series maps for the extensive mapping of surface water and monitoring of
floods. The use of the dynamic Otsu threshold algorithm involves scanning entire images,
which can result in a significant computational burden. Therefore, it may not always be
suitable for large-scale applications.

With the development of computer technology, traditional machine learning meth-
ods are gradually becoming a better choice for water body extraction. Sarp et al. [12]
employed support vector machine classification and spectral water indices, demonstrating
a substantial reduction in the surface area of water in Lake Bourdur between 1987 and
2011. Nhu et al. [13] applied machine learning techniques, including random forests and
MB5P, to investigate Lake Zrebar, one of Iran’s largest freshwater lakes, and also forecasted
daily water levels. Traditional machine learning methods overcome the problem of manual
threshold setting through the learning process; however, since these methods use the pixel
as a computational unit, the spatial information is not fully in use, resulting in a “salt and
pepper” effect in the results. The advent of deep learning technology introduces innovative
solutions for lake extraction. Convolutional neural networks, with their powerful feature
extraction capabilities, are able to make better use of the spatial-spectral information of the
image, which helps to improve the differentiation of targets such as water bodies, shadows,
and glaciers. Yu et al. [14] developed a convolutional neural network-based method for
delineating water bodies from Landsat images by taking into account information pertain-
ing to both spectral and spatial characteristics. Wang et al. [15] presented an end-to-end
trainable model named MSLWENet to improve the extraction results of small lakes. This
model specifically tackles the challenge of large intra-class variance and small inter-class
variance when it comes to lakes” water bodies.

Improvements in lake extraction methods have not solved all the problems in large-
scale applications. How to quickly process and analyze images is a serious issue facing the
age of big data [16]. The development of high-performance cloud computing platforms
has provided new technical support. The Google Earth Engine (GEE) is a comprehensive
platform for remote sensing, science analysis, and the visualization of geospatial data [17].
The GEE has an extensive range of remote sensing resources that enable researchers to
synchronize with multiple remote sensor data sources and quickly process data online to
provide solutions for wide-ranging applications [18], such as global forest changes [19],
natural hazard assessments [20], land use/land cover mappings [21], urban studies [22],
disease risk assessments [23], and crop classifications [24]. Furthermore, the GEE offers
deep learning techniques, which are essential for enhancing the overall performance of
applications and are particularly important for processing remote sensing images and
analyzing data. Wang et al. [25] used remote sensing data-based indices and pixel-level
water detection algorithms on the GEE platform to calculate the flooding frequency. Sha
et al. [26] combined NDWI, MNDWI, and SVM methods to extract Tosu Lake. Wang
et al. [27] developed an Automatic Water Extraction Model in Complex Environments
based on the GEE to extract water in intricate surroundings. Chen et al. [28] generated a
glacial lake map of the TP region for 2015 based on the non-local active contour algorithm
and Landsat 8 images. Zhang et al. [29] developed a per-pixel composited method named
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the “multitemporal mean NDWI composite” to automatically extract the glacial lake area.
Recently, some scholars have combined deep learning with the GEE, which provides a new
solution for water extraction in large-scale regions, and progress has been made in model
design, deployment, and the automated creation of samples [30-32]. However, further
research in these areas remains to be explored.

At present, there are relatively few studies on lake extraction on a large regional
scale, and the research related to the combination of the GEE and deep learning needs
to be further deepened. And there are a large number of parameters available for deep
learning models for lake extraction, which makes it difficult to meet the need for real-time
prediction. How to construct a lightweight convolutional neural network (CNN) to ensure
inference efficiency under the premise of obtaining a better lake extraction is the current
problem. Therefore, this study combined deep learning and the GEE to identify lake
information based on a wide range of high-altitude areas. The objectives of this study were
as follows: (1) Propose an Automated Lake Extraction Workflow (ALEW) that integrates
a deep learning model and develops a lightweight CNN called LiteConvNet, specifically
designed to handle the complex conditions seen on the Tibetan Plateau; (2) Create a lake
extraction dataset on the Tibetan Plateau for LiteConvNet model training using the GEE
platform; and (3) Explore the LiteConvNet model within the ALEW process for the purpose
of identifying lakes.

2. Materials and Methods
2.1. Study Area

The Tibetan Plateau in China is situated centrally within the Asian continent, at an
average altitude of more than 4000 m. It spans a total area of over 2.5 million square
kilometers, which is 26.8 percent of the country’s entire geographical area [33]. It mainly
covers the entire province of Qinghai and the Tibetan Autonomous Region, as well as the
southwestern regions of Gansu Province, the northern region of Sichuan, northwestern
Yunnan, and the southern areas of the Xinjiang Uighur autonomous region [34,35]. The
geographic location of the Tibetan Plateau is shown in Figure 1. The Tibetan Plateau,
referred to as the Earth’s third pole and the Asian water tower, possesses distinctive
climatic and geographical characteristics that support an intricate and varied ecology. It
serves as a crucial ecological security barrier in China and the wider Asian region.
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Figure 1. The geographic location of the Tibetan Plateau.
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2.2. Data Sources

The Sentinel-2 Level-2A images available on the GEE platform were used for this
study. The data underwent radiometric calibration, atmospheric correction, and orthorec-
tification [36]. The Copernicus Programme of the European Space Agency encompassed
the deployment of Sentinel-2, a satellite equipped with advanced multispectral imaging
capabilities and capable of capturing high-resolution imagery. The Multispectral Imager
(MSI) is an advancement and continuation of both the US Land Satellite and China’s
High-Resolution Satellite programs [37]. The Sentinel-2 constellation revisits the same
location every 5 days and has a spatial resolution of 10 m. The Sentinel-2 constellation has
a shorter revisit duration and a higher spatial resolution, making it a more suitable option
for large-scale remote sensing classification applications [38].

In our study, June to October 2021 was selected as the study period because of the
plentiful water supply of lakes in the Tibetan Plateau during the abundant season. We
directly accessed the Sentinel-2A images by writing code online on the GEE platform. We
filtered 4977 images within the study area based on the acquisition date and a cloud cover
of less than 20%. The image coverage of the study area is shown in Figure 2. As the QA60
band of Sentinel-2A contains the cloud mask information, we used it for cloud removal.
The next step was to mosaic all the images. Finally, the image was clipped according to the
vector boundary of the Tibetan Plateau that we uploaded to obtain the high-quality image.
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Figure 2. The coverage of Sentinel-2 images in the study area.

2.3. Methodology

To enable the real-time extraction of lakes on the Tibetan Plateau through deep learning
technology, we propose a process termed ALEW (Automated Lake Extraction Workflow)
designed for implementation on the GEE cloud platform. The entire procedure comprises
three primary components. First, the GEE cloud platform is employed to perform pre-
processing tasks such as Sentinel-2 data screening and cloud removal. Secondly, the
generation of a training sample dataset is achieved through automated sample collection
and slicing. Thirdly, a lightweight CNN model is constructed and trained using the Google
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Colab platform. On the GEE platform, we employed trained models to make real-time
inferences on lakes situated across the Tibetan Plateau. Finally, the results were compared
to different algorithms and open-source water products. The overall workflow diagram is
shown in Figure 3.
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Figure 3. Overall workflow diagram.

2.3.1. Preparation of Sample Data

The representativeness of the samples used for deep learning significantly affects the
results of lake identification. From one perspective, in the process of creating the dataset,
we used only lakes as positive samples and other water bodies, such as river areas, as
negative samples. We aimed to make the model concentrate on learning the morphological,
textural, and spectral features of lakes by it training on these selected samples. This
strategy was designed to enhance the model’s accuracy in extracting lakes while effectively
distinguishing them from other categories like rivers and glaciers with the help of the
CNN'’s powerful learning capability. On the other side, if the sample points are randomly
chosen within the region of interest, it tends to result in an imbalance between positive and
negative samples. Some hard samples that could impact the classification of lakes are easily
overlooked. Our suggested solution to this issue was a segmented method of sampling.
Firstly, we used the existing water products to obtain the initial lake boundary. Secondly,
samples were taken from both sides of the lake’s edge. Thirdly, sample labels of 256 x 256
pixels were created centered on the sampling points. A schematic of using the edge of the
lake to take sample points is shown in Figure 4.

This approach offers the following benefits. First of all, it enhances the assurance of
maintaining an equilibrium between positive and negative examples. Secondly, there is an
increased likelihood that the examples contain both water and non-water, rendering the
examples more informative than single-water or -land examples. Thirdly, the inclusion
of partially mixed target examples enhances the model’s capacity to accurately detect
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and classify targets, such as ice lakes. Subsequently, we amalgamated all the examples,
allocating 70% for model training and 30% for validation. Training data samples are shown
in Figure 5. We used the Google Colab platform to push examples in TFRecord format to
Google Cloud Storage for subsequent investigation and analysis.
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Figure 4. Schematic of using the edge of the lake to take sample points.
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Figure 5. Training data samples.

2.3.2. Deep Learning Model and Training
Model Architecture

Deep learning plays a crucial role in the field of computer vision and is extensively
used in the analysis of remote sensing images [39,40]. The CNN is a powerful network
architecture that demonstrates excellent performances in image recognition tasks [41].

To achieve real-time computation on the GEE platform, we propose a lightweight
CNN named LiteConvNet to minimize model parameters. The LiteConvINet consists of
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7x7xC mmp

multiple convolution, batch normalization, dense, and activation layers. The architecture
of the model is shown in Figure 6. The sizes of each convolutional kernel and feature map
in the model are shown in Table 1. In addition, a 7 x 7 patch was used as input to obtain
more spatial information and reduce the salt and pepper noise. Each 256 x 256 image
was segmented into 7 x 7 patches before being fed into the model, and the category of
the central pixel of each patch was considered the ground truth. The complete calculation
process of LiteConvNet is described as follows.
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Figure 6. The architecture of the lightweight convolutional neural network (LiteConvNet).

Table 1. LiteConvNet model parameters.

Layer Kernel Size Output Shape Param
Input Layer 7,7,8) 0
Conv2D 5x5 (3,3, 16) 3216
Batch Normalization (3,3, 16) 64
ReLU (3,3,16) 0
Conv2D 3x3 1,1,32) 4640
Batch Normalization (1,1, 32) 128
ReLU 1,1,32) 0
Dense 1,1, 16) 528
Dense 1,1,2) 34
Softmax 1,1,2) 0

Firstly, the 7 x 7 x 8 input data were processed into a 3 x 3 X 16 feature map by
a 5 x 5 convolutional layer with 16 filters, and then a batch normalization layer and a
ReLU activation layer were employed to increase the nonlinear fitting ability of the model.
Secondly, a 3 x 3 convolutional layer with 32 filters was used to repeat the first step’s
operation on the result, resultingina 1 x 1 x 32 feature map. Finally, two fully connected
layers followed, generating new feature representations through linear combinations, and
the output was transformed into a probability distribution using a Softmax activation layer.

This CNN model effectively captures the intricate details and structural characteristics
of the image. To enhance feature extraction and realize real-time prediction, the approach
involved dividing the input data into 7 x 7 patches. Compared to methods based on
individual pixels, LiteConvNet uses 7 x 7 inputs, which results in a larger receptive field.
This allows for a more comprehensive consideration of information from surrounding
pixels, effectively capturing the pixel-level differences between lakes and other categories
like rivers. The input data size and number of channels were also reduced, which effectively
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reduced the number of parameters in the model, avoided overfitting problems, and reduced
the computational complexity. In addition, the batch normalization layer enhances the
stability and convergence speed of the model by normalizing the output of the convolu-
tional layer. The activation function layer incorporates a non-linear modification, hence
enhancing the network’s expressiveness. The developed LiteConvNet model offers notable
benefits in feature extraction, parameter optimization, stability, and expressiveness for
image processing tasks. The model possesses the ability to autonomously acquire abstract
concepts from unprocessed input and generate precise classification predictions based on
these abstract notions.

Model Training and Deployment

Based on the TensorFlow framework, the LiteConvNet model was trained on Google
Colab’s Tesla P100 GPU. The experiment used the Adam optimizer and the categori-
cal_crossentropy loss function. Training was performed for 30 epochs. In the process of
building the model, we took full advantage of the Google Cloud Platform. Not only did
we efficiently use the data stored in Cloud Storage to provide reliable data support for the
model training, but also by leveraging the excellent environment provided by the Google
Cloud Platform, we achieved the online training, deployment, and management of the
models. Once the models were trained, we pushed them to the AI Platform to further
improve the availability and deployment efficiency of the models. In the next step, we were
able to launch the trained model directly on the GEE platform, which provided us with the
conditions for lake extraction on the Tibetan Plateau.

2.3.3. Evaluation Metrics

The primary model employed in the ALEW process of the study’s experimental setup
was the LiteConvNet model, which was used to accurately extract lakes across the Tibetan
Plateau. To assess the reliability of the LiteConvINet model in identifying lakes on the
Tibetan Plateau, we employed precision assessment measures to analyze the outcomes. The
measures encompass the Precision, Recall, F1-score, Intersection over Union (IoU), Overall
Accuracy (OA), and mean Intersection over Union (MIoU). The formulas for these metrics
are as follows:

TP
Precision = ————— 1
recision = TP D
TP
Recall = m (2)

2 X Precision x Recall
Fl = score = Precision + Recall 3)

TP

U= —— 4
U= o N+ P @)
TP + TN
OA = 5
TP + TN + EN + FP ©®)
TP + TN
MioU = TP+FEN-+FP 5 TN+EN+FP (6)

These metrics provide a comprehensive assessment of model performance, measuring
the accuracy and error of classification results from different perspectives. Among them, TP
represents true positive, FP represents false positive, FN represents false negative, and TN
represents true negative. These metrics offer a thorough evaluation of model performance
and quantify the precision of categorization outcomes from several viewpoints. We also
conducted a full evaluation of the LiteConvNet model’s performance by comparing it
with other common threshold segmentation methods, traditional machine learning, and a
number of open-source classification products. This was accomplished through both visual
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(¢)Zhari Namco

(b) Namtso Lake

and quantitative evaluation methods. Additionally, we analyzed the efficacy of several
approaches on the task of identifying lakes.

3. Results
3.1. Lake Extraction Results

ALEW demonstrates notable benefits in the task of identifying lakes on the Tibetan
Plateau by integrating cloud computing, deep learning, and remote sensing big data. The
model can effectively handle extensive remote sensing data by invoking the previously
trained CNN model on the Al platform within the GEE platform. It is worth mentioning
that it only takes less than 5 min to obtain the lake extraction results for the entire Tibetan
Plateau using the ALEW process. The model was applied to predict on Sentinel-2 images
and generate the probability value of a lake. By establishing an appropriate threshold,
we converted the probability values into binary results, where a value of one signifies
extraction as a lake. The map of lake extraction results on the Tibetan Plateau is shown
in Figure 7. Using the LiteConvNet model, we could see that by accurately extracting the
shapes of various lakes, the model learns complex features from the images, enhancing its
ability to generalize between different lakes throughout the Tibetan Plateau.

(d)Yamdrok Lake (e) Qinghai Lake

- Lake

[ Tibetan Plateau 0 1150300 km

Figure 7. Maps of lake extraction results on the Tibetan Plateau.

The diversity and complexity of lakes on the Tibetan Plateau can be seen through the
results. The large number of lakes and their wide distribution create conditions for the
formation of rich lake ecosystems. The percentage of lake areas on the Tibetan Plateau in
different ranges is shown in Figure 8. The results show that there are a large number of
small lakes on the Tibetan Plateau, especially lakes smaller than 5 square kilometers, which
occupy more than half of the total number of lakes. However, the major proportion of lake
area is occupied by lakes with an area range of (100.0 < Area < 250.0, 250.0 < Area < 1000.0,
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Area > 1000.0), which accounted for about 70% of the average total area of the lakes. It
shows the unevenness of the distribution of lake area. Small lakes form the basis of
the number of lakes, while large lakes dominate the total area. In addition, using the
data on the same region published by the National Tibetan Plateau Data Center [42] for
comparison, there is a high degree of consistency in the range of area distribution. The
statistical difference in the area of lakes over 1 square kilometer between the two is about
2%. In terms of details, we chose to investigate four lakes, which are as follows: Namtso
Lake, Qinghai Lake, Yamdrok Lake, and Zhari Namco. The lakes” extraction outcomes
show off the LiteConvNet model’s robustness in the lake extraction task as well as its
precision in capturing the lakes’ contours and intricate details. It shows off the model’s
superb detail-capturing capabilities. The convolutional layer automatically captures the
abstract features of the lake by learning the spatial hierarchy in the image, while the pooling
layer helps to reduce the dimensionality of the feature map, improving computational
efficiency while retaining key information. The hierarchical feature learning process helps
to better understand the morphology and distribution of lakes. The LiteConvNet model
exhibits strong learning and generalization capabilities through distributed computing on
the GEE platform, allowing it to adapt to lake extraction tasks under varying geographical
environments and data characteristics. Simultaneously, the model effectively employs
high-performance computing resources to automate the extraction process of lakes, thereby
offering dependable support for lake surveillance and ecological environment studies.
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Figure 8. Percentages of lake areas on the Tibetan Plateau in different ranges.

3.2. Results of Ablation Experiments

In convolutional neural networks, the size of the convolutional kernel determines the
receptive field of the neuron on the input image, which affects the ability of the model to
capture spatial information. This work set up two sets of ablation experiments with input
3 x 3and 1 x 1 image sizes for comparison in order to demonstrate the impact of different
input sizes on the model results.

LiteConvNet (3 x 3) contains only one 1 x 1 convolutional layer. While this setup re-
duces the amount of computation and number of parameters, it also reduces the expressive
power and overall performance of the network, with an accuracy of 0.9688 and a mloU
of 0.9377. On the other hand, LiteConvNet (1 x 1) uses the 1 x 1 size directly, with an
accuracy of 0.9619 and an IOU of 0.9288. A comparison of accuracy for different extraction
methods in LiteConvNet is shown in Table 2. In contrast, LiteConvNet (7 X 7) captures
more spatial information, and the model determines the class of the central pixel from
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the 7 x 7 surrounding pixels. This reduces the false positive rate by determining more
accurately whether the target is a body of water than the pixel calculation. This means
that LiteConvNet (7 x 7) can improve on the pretzel effect of traditional machine learning
methods based on pixel classification. By using a 3 x 3 convolutional kernel, it can further
extract features, which improves the accuracy of feature classification and contributes to
the better recognition of fine-grained features. The 5 x 5 and 3 x 3 convolutional kernels
used in LiteConvNet (7 x 7) enable more efficient image processing compared to relatively
large convolutional kernels, especially when resources are limited. The size of the con-
volutional kernel affects the feature extraction and model representation of the network.
Larger convolutional kernels can capture more complex image patterns and abstract feature
representations, but too large a convolutional kernel may also lead to model overfitting or
over-reliance on global data. In contrast, smaller convolutional kernels can be stacked mul-
tiple times to extract the same range of features, which allows the model to better perceive
local features. In addition, larger convolutional kernels have better nonlinear expressive-
ness due to having more free parameters, whereas smaller convolutional kernels may limit
the expressiveness of the model due to the smaller number of parameters. Therefore, in
order to ensure that the convolutional neural network can adequately fit the training data
and, at the same time, have a better generalization performance, the relationship between
the number of parameters and the expressive ability needs to be balanced.

Table 2. Comparison of accuracy for different extraction methods in LiteConvNet.

Precision Recall F1-Score IoU OA MIoU

LiteConvNet (7 x 7) 0.9730 0.9739 0.9735 0.9483 0.9744 0.9483
LiteConvNet (3 x 3) 0.9688 0.9669 0.9678 0.9377 0.9688 0.9377
LiteConvNet (1 x 1) 0.9619 0.9642 0.9630 0.9288 0.9643 0.9288

The results of the experiments show that the LiteConvNet (7 x 7) model works well
for finding lakes, which also shows that the right choice of convolutional kernel sizes is
important. The 5 X 5 and 3 x 3 convolutional kernels used in LiteConvNet (7 x 7) help to
improve the performance of remote sensing image processing tasks. LiteConvNet (7 x 7)
works better at remote sensing image processing tasks. It can improve the accuracies in
remote sensing image classification and segmentation tasks by improving the sensing field,
feature extraction, and model representation. This is accomplished using settings and
different convolutional kernel sizes and dimensions that fit the needs of the task. At the
same time, it can be adapted to various computational and storage requirements. As a
result, the LiteConvNet (7 x 7) model performs better at identifying lakes.

4. Discussion
4.1. Comparison of Different Extraction Methods

To assess the efficacy of the GEE platform and the ALEW method in this domain
and enhance the precision and efficiency of lake extraction, we employed the LiteCon-
vNet model in a comparative analysis against the conventional approach. Utilizing the
GEE platform, we employed the LiteConvNet model’s remote sensing images as input.
By applying the NDWI index and conducting a visual observation, we performed lake
extraction through the selection of an appropriate threshold. Machine learning techniques
have become extensively employed for the purpose of water body extraction in recent
times. Random forest (RF) is a common remote sensing image classification method that
has a higher accuracy and stability than the traditional threshold segmentation method. By
constructing multiple decision trees, RF can automatically learn the features and thresholds
to reduce the interference of human factors [43].

Following extensive testing, the LiteConvNet model successfully produced favorable
outcomes in the extraction of lakes in the Tibetan Plateau region. Figure 9 illustrates
that the LiteConvNet model achieves an OA of 0.9744 and an Fl-score of 0.9730. This
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is a significant increase when compared to the RF and NDWI methods. In this region
characterized by intricate topography and diverse weather patterns, the conventional
threshold segmentation method employing the NDWI index, as well as traditional machine
learning techniques such as RF, encounter specific challenges in accurately extracting
lakes and distinguishing them from their surrounding areas. Compared to the traditional
threshold segmentation method, the deep learning algorithm is able to analyze the image
based on its information and no longer relies on a fixed threshold. Thus, LiteConvNet is
more effective in handling areas with significant variations in spectral characteristics and
prevents the inadequate capture of lake shapes in the threshold segmentation approach.
LiteConvNet possesses the ability to adjust to the complex terrain and changes in the
features of remote sensing images. It can efficiently make use of the informational attributes
of remote sensing images to uncover underlying patterns within the image and identify
distinguishing features that separate lakes from other elements.

Precision
0.98

MIoU Recall

OA F1-score

ToU
LiteConvNet ==Random Forest NDWI

Figure 9. Comparison of the accuracies for extraction methods LiteConvNet, Random Forest, and
normalized difference water index (NDWI).

While RF can effectively identify lakes, it may mistakenly identify shadows as water
bodies in challenging terrain. Additionally, it is also unable to distinguish lakes and rivers,
and there is a certain amount of noise interference in the classification results. Compared
to the RF model, LiteConvNet performs better in separating lake and river boundaries
and is able to more accurately delineate the boundaries of lakes and rivers by effectively
integrating multiple layers of information, including features in multiple dimensions such
as spectra, texture, and shape. Compared to the traditional threshold segmentation method,
the deep learning algorithm is able to analyze the image based on its information and no
longer relies on a fixed threshold. Therefore, LiteConvNet can better deal with regions
with large spectral differences and avoid the incomplete extraction of lake morphology
in the threshold segmentation method. A comparison of LiteConvNet, RF, and NDWI
extraction methods is shown in Figure 10. LiteConvNet has the ability to adapt to the
complex terrain and changes in the features of remote sensing images, and it can effectively
use the information features of remote sensing images to dig into the deeper laws of the
image and find effective features to distinguish water bodies from other features.
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Time:2021.6—2021.10

Figure 10. Comparison of the LiteConvNet, Random Forest, and NDWI extraction methods. Subfig-
ures (a—d) are detailed representations of the different lakes on the Tibetan Plateau. The red circles
stand for regions where the extraction performance is not optimal.

4.2. Comparison of Different Water Products

In this study, considering the inadequacy of existing lake extraction products on the
Tibetan Plateau, we selected the JRC Monthly Water History dataset (JRC) as well as water
products from Dynamic World and ESRI 10 m Annual Land Use Land Cover (ESRI) for
comparison [44—46]. It is of great significance for evaluating the LiteConvNet model in
the ALEW process for lake identification. The introduction of different water products is
shown in Table 3.

Table 3. The introduction of different water products.

- Dataset . Spatial
Dataset Abbreviation ID in GEE Images Time Range Resolution
JRC Monthly Water JRC/GSW1_4/ .
History dataset JRC MonthlyHistory Landsat5.7.8 June-October 2021 30m
Dynamic World Dynamic World ~ GOOGLE/DYNAMICWORLD/V1 = Sentinel-2  June-October 2021 10 m
ESRI 10 m Annual projects/sat-io/open-
Land Use Land ESRI datasets/landcover/ESRI_Global- ~ Sentinel-2 2021 10 m
Cover LULC_10 m

We choose four regions on the Tibetan Plateau. Figure 11 illustrates LiteConvNet’s ex-
traction results and water products in comparison with the label. Blue represents the same
regions, red represents deficient regions, and green represents excessive regions. The exper-
imental results demonstrate the excellent performance of the LiteConvNet model when
dealing with the task of lake extraction in complex situations. The results of LiteConvNet
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are in good agreement with the existing three types of water products, but the LiteConvNet
model has a more obvious advantage in the accurate extraction of lakes. As the complete
dataset covers a variety of lake scenarios, it allows the model to comprehensively learn and
extract key features of lakes. At the same time, the model was specifically optimized to
discriminate between lakes and rivers. This enables it to exhibit better adaptability and
accuracy in large-scale lake monitoring, providing a new perspective on lake monitoring
research. The model is significantly enhanced in its ability to analyze and process multi-
band image data through its lightweight convolutional network architecture, making it
possible to identify the spectral information of lakes and accurately define the extent of
lakes. Although the results on the Dynamic World data are acceptable on a large scale, the
accuracy of the extraction at the edges of the lake is relatively low, and in some areas there
may be missed identifications. We observed that the ESRI classification results expand the
lake’s extent in a circular manner. LiteConvNet demonstrates an extremely high level of
detail in the handling of lake edge features, as can be seen in its performance in accurately
capturing lake shorelines and subtle changes. By effectively using high-resolution data,

LiteConvNet shows significant superiority in spatial resolution, which captures the fine
features of lakes in greater detail.

Label LiteConvNet JRC Dynamic World ESRI
(2021.6-10) (2021.6-10) (2021.6-10) (2021.6-10) (2021)

Region2 Region3 Region4

Regionl

(R B0 L e B L e 0 | AR TPV ﬂ/.’
I Same regions [l Unextracted regions [ Wrongly extracted regions

Figure 11. LiteConvNet extraction results and water products in comparison with the label.

We assessed the accuracy of the extraction results obtained by the LiteConvNet model
compared with different water products in terms of visual interpretation and quantitative
analysis. The results indicate that the LiteConvNet model demonstrates a higher accuracy
in extracting data from a lake’s border. It efficiently captures water bodies across various
time intervals, thereby avoiding any erroneous extraction of a river. The ALEW approach is
an ideal solution for accurately extracting lakes in difficult terrain. This is of crucial practical
value for investigating, monitoring, and conserving water resources in the Tibetan Plateau.
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4.3. Limitation

In order to achieve the accurate extraction of lakes on a wide range of scales, this paper
took the Tibetan Plateau as the study area and proposed the Automated Lake Extraction
Workflow by combining deep learning, and the LiteConvNet model in ALEW has a strong
recognition ability in lakes. The method can effectively extract lakes on a wide-area scale,
but there are still some aspects that need further research and improvement in this study.
(1) Efforts to mitigate the exorbitant expenditure. Given the constraints of the Google Cloud
Platform, utilizing it for an extended period of time incurs significant costs. One way to
further investigate this issue is by attempting to modify the network architecture of deep
learning in order to minimize the reliance on computational resources, thereby decreasing
the overall expenses. (2) Further optimization of the deep learning model to improve its
capacity for distinguishing lakes from other aquatic formations. Although the LiteConvNet
model can effectively partition water bodies from lakes, it now does not possess the capacity
to fully distinguish between them. Subsequent investigations could explore the integration
of the semantic segmentation model with the GEE platform to enhance the model’s ability
to acquire novel characteristics and generate precise images that capture intricate contextual
details. This integration has the potential to enhance precision in differentiating aquatic
bodies from lakes. (3) Study of changes in lakes on the Tibetan Plateau over a long time
series. Recently, due to climate warming and increased humidity, there have been incidents
such as the sudden eruption of Zhuonai Lake and the overflowing of the Salt Lake on the
Tibetan Plateau. These events have had a significant impact on human life and ecological
balance. Therefore, it is crucial to maintain a continuous monitoring of the lakes. It is
necessary to expand the entire procedure to a lengthy time series in order to monitor the
lakes on the Tibetan Plateau. This will offer technical support in advancing the conservation,
management, and disaster prevention of these lakes.

5. Conclusions

The innovation of this article is that we propose the ALEW process based on the GEE
cloud platform and deep learning, which aims to extract lake information from images over
a wide area. The ALEW process utilizes the GEE platform, eliminating the need for the
extensive pre-processing and downloading of images. By just writing appropriate code, the
image data may be swiftly processed and analyzed. With the powerful computing power
and rich data collection of the GEE platform, the remote sensing inversion work becomes
more efficient and accurate. It took less than 5 min to obtain the lake extraction results
for the entire Tibetan Plateau using the ALEW process. Furthermore, by leveraging the
formidable capabilities of the Google Cloud Platform in conjunction with deep learning,
the proposed workflow can rapidly identify targets across a vast expanse and provide
strong support for research work.

In this study, we constructed the LiteConvNet model to ensure inference efficiency un-
der the premise of obtaining better lake extraction results, and we innovated the segmented
sampling method, which provides a new solution for setting sampling points for lakes
on a large scale. A lake extraction dataset was created on the Tibetan Plateau to train the
LiteConvNet model using the GEE platform. The results demonstrate that the LiteConvNet
model may greatly enhance the precision of lake extraction in complex situations, achieving
an overall accuracy of 97.44%. The LiteConvNet model demonstrates a superior accuracy
in identifying lake information from images when compared to the threshold segmentation
method and RF results. This demonstrates the effectiveness of the method in extracting
precise and reliable information about lakes across a wide geographical region. In order
to ascertain the superiority of the recognition findings, we conducted a comparison using
the JRC dataset, Dynamic World, and ESRI’s categorization products. The method clearly
demonstrates superior accuracy in extracting lake boundaries, as well as possessing a
greater spatial resolution. Additionally, it is capable of precisely identifying water bodies
across various time scales while effectively avoiding any misidentification of rivers.
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The ALEW method, proposed in this paper, offers a means to dynamically monitor
lakes in a wide range of areas. This method aids in analyzing the patterns and causes of
spatial and temporal changes in lake areas. It also facilitates the automation and intelligence
of monitoring plateau lakes over extended time periods. Moreover, it provides technical
and data support for studying the ecological environment of plateau lakes. It also holds
significant theoretical and practical importance in developing the response model for lake
changes in relation to climate change, the regional water balance model, and the forecast
of climate change. In addition, it can elucidate the influence of worldwide alterations on
local ecological transformations and provide a scientific foundation for ensuring ecolog-
ical and environmental security, socio-economic progress, administration, and strategic
decision making.
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