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Abstract: Ship detection has been an area of focus for high-frequency surface wave radar (HFSWR).
The detection and identification of ship formation have proven significant in early warning, while
studies on the formation identification are limited due to the complex background and low resolution
of HFSWR. In this paper, we first establish a spatial distribution model of ship formation in HFSWR.
Then, we propose a cascade identification algorithm of ship formation in the clutter edge. The
proposed algorithm includes a preprocessing stage and a two-stage formation identification stage.
The Faster R-CNN is introduced in the preprocessing stage to locate the clutter regions. In the first
stage, we propose an extremum detector based on connected regions to extract suspicious regions.
The suspicious regions contain ship formations, single-ship targets, and false targets. In the second
stage, we design a network connected by a convolutional neural network (CNN) and an extreme
learning machine (ELM) to identify two densely distributed ship formations from inhomogeneous
clutter and single-ship targets. The experimental results based on the factual HFSWR background
demonstrate that the proposed cascade identification algorithm is superior to the extremum detector
combined with the classical CNN algorithm for ship formation identification. Meanwhile, the
proposed algorithm performs well in weak formation and deformed formation identification.

Keywords: high-frequency surface wave radar (HFSWR); cascade identification algorithm; ship
formation identification; deep learning

1. Introduction

Because of its beyond-the line-of-sight monitoring and all-weather-continuous re-
mote sensing [1,2], high-frequency surface wave radar (HFSWR) has gained considerable
attention. HFSWR has been widely used for two dominant areas: real-time maritime
surveillance [3] and sea surface target detection [4,5]. Among these, ship detection has
been a focus of scholars and researchers [6,7]. The Range-Doppler (RD) image background
contains various clutter mainly composed of sea clutter, ionospheric clutter, and dense
targets’ interference [8]. The existing research mainly focuses on continuously improving
the target resolution ability.

The constant false alarm rate (CFAR) is a valuable point target detection technique
based on comparing the neighboring reference cells’ mean energy [9,10]. This technique
has been used in ship extraction by Hinz [11] and Liu et al. [12]. Dzvonkovskaya et al. [13]
analyzed the characteristics of sea clutter, meteor clutter, noise, and land reflection clutter
and proposed an adaptive thresholding estimation strategy for HFSWR ship detection. In
the case of two targets in the same cell, Rohling H [14] proposed ordered statistical CFAR
(OS-CFAR), which could effectively reduce the impact on the detection probability and
the false alarm probability caused by inhomogeneous spatial distribution in local regions.
Li et al. [15,16] improved the CFAR detector using spatial correlation as prior information.
Experiments based on the CFAR detector have shown that spatial information is beneficial
for improving the accuracy of dense targets detection.
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Jangal et al. [17] transformed the detection based on the spatial distribution character-
istics of targets and clutter into image processing based on the morphology and distribution
characteristics. They introduced the idea of wavelet-transform and proposed a target signal
extraction method based on image decomposition. Researchers have combined the image
processing technique with RD images of HFSWR and continuously improved them, achiev-
ing good results in target detection and clutter suppression. Baussard et al. [18] analyzed
the morphological features of the measured RD images and used curve analysis methods
to remove components that interfere with target detection in the images. Subsequently,
a ship detection technique based on the authentic RD images of HFSWR was proposed
by Baussard et al. [19], which exploits multi-scale variation and sparse representation
morphological component analysis and obtains correct target detection results. Li et al. [20]
proposed a target detection method based on discrete wavelet transform (DWT), which
automatically determines the optimal scale of wavelet transform instead of selecting based
on experience.

Ocean surveillance using HFSWR is commonly performed in wide-range RD images.
The targets to be detected in the RD images are very tiny. Regarding target detection, simple
image processing methods rely on manual feature extraction and need more robustness.
According to the existing HFSWR research, a two-stage intelligent processing algorithm is
very suitable for the automatic extraction of an RD image’s optimal spatial features and
performs well [21–23]. In the first stage, many targets are quickly located, ensuring a high
detection rate. In the second stage, false targets are removed. Existing research assumes that
ships are independently distributed and treated as point targets. The information obtained
in the study of isolated targets is limited. In HFSWR, the echoes from a single large-sized
ship are concentrated in a single cell of the RD images and can be considered stable in
a short period [24]. Echo signals of ships sailing in a dense formation or group typically
occupy multiple adjacent cells and present a specific spatial geometric shape. Peng et al. [25]
established a narrowband coherent radar multi-aircraft formation (MAF) echo model. They
applied polynomial Fourier transform (PFT) to accurately identify the number of aircraft
and the motion parameters of each aircraft. The experiments in a clean background have
proven the effectiveness of the proposed method. Liang et al. [26] simulated the over-the-
horizon radar (OTHR) echo images of MAF with multipath effect using spectral color blocks
number and amplitude. They adopted a convolutional neural network (CNN) to recognize
the number of aircraft and conducted experiments in homogeneous clutter. In the complex
background of HFSWR, research on formation detection and identification is limited.

In this paper, we propose a novel cascade identification algorithm for ship formation
in the clutter edge. We first analyze the motion of HFSWR ship formation and establish
a matching ship formation spatial distribution model. There are two types of formations
with rigid structures that appear as extended targets with specific spatial shapes on the RD
images. Then, we introduce the Faster R-CNN to locate the clutter regions and propose
a two-stage formation identification algorithm. In the first stage, the extremum detector
based on the gray value is employed to find cells with suspicious targets, and the Seed-
Filling (SF) algorithm is introduced to connect multi-cell regions belonging to the same
ship formation. An extremum detector based on connected regions is proposed to avoid
duplicate detection of the same ship formation and reduce the data to be processed in
the second stage. In the second stage, a lightweight CNN is designed to extract the
convolutional features of suspicious targets. The highly abstract features extracted by CNN
are input into the extreme learning machine (ELM) for efficient classification. We propose
CNN-ELM to identify two densely distributed ship formations from inhomogeneous clutter
and single-ship targets. The experimental results based on the factual HFSWR background
demonstrate that our CNN-ELM model surpasses the classic Alexnet and Resnet18 in terms
of the detection accuracy (97.5%) and processing time (0.871 s). Our proposed cascade
identification algorithm performs excellently on datasets consisting of two types of ship
formations and single-ship targets. Meanwhile, the proposed algorithm is tested on weak
ship formation datasets (Weak set-1 and Weak set-2) and deformed formation datasets
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(Deformed set-1 and Deformed set-2). The proposed algorithm achieves an identification
accuracy of 82% with an average signal-to-clutter ratio (SCR) of 5–7.5 dB. The proposed
algorithm achieves an identification accuracy of 73.38% when the sub-targets deviate by
20% and an identification accuracy of 96.25% through transfer learning. Compared with the
extremum detector combined with the classical CNN algorithm, our proposed algorithm
performs excellently.

The rest of the paper is organized as follows. In Section 2, we describe the spatial
distribution model of ship formation. In Section 3, we describe the proposed cascade
identification algorithm. In Section 4, we provide the experimental results and discussion.
In Section 5, we conclude.

2. Spatial Distribution Model of Ship Formation

Figure 1 shows the two-dimensional geometric model of several ship formations with
multi-ships. The model discussed in this paper is universal and not limited to the following
types. The ship formation movement observed by HFSWR can be analyzed from two
perspectives: the formation center movement and sub-targets’ movement. The formation
center is consistent with the overall ship formation movement, which has an absolute
motion state. Sub-targets’ motion can be decomposed into absolute motion consistent with
the ship formation motion, and relative motion relative to the formation center.
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located at the origin O of the global coordinate system XOY. The X axis is tangent to the 
coast, and the Y axis is perpendicular to the X axis. The ships in formation are simplified 
as point targets, with one sub-target located at 1p . The formation center o′  is the refer-
ence point for measuring the position relationship of all sub-targets. The local coordinate 
system xo’y matches the distribution of ship formation, which is related to the control sys-
tem of the formation. There is counterclockwise rotation at an angle of α  from the global 
coordinate system XOY to the local coordinate system xo y′ . The coordinate of sub-target 

Figure 1. Two-dimensional geometric model of several ship formations: (a) Single-column formation;
(b) bias-column formation; (c) V-shaped formation; (d) centrosymmetric formation.

Referring to the inverse synthetic aperture radar (ISAR) imaging model [27,28], the
relative motion of sub-targets can be abstracted as a rotational motion around the formation
center. Figure 2 shows the motion model of the ship formation. The HFSWR is located at
the origin O of the global coordinate system XOY. The X axis is tangent to the coast, and
the Y axis is perpendicular to the X axis. The ships in formation are simplified as point
targets, with one sub-target located at p1. The formation center o′ is the reference point
for measuring the position relationship of all sub-targets. The local coordinate system xo′y
matches the distribution of ship formation, which is related to the control system of the
formation. There is counterclockwise rotation at an angle of α from the global coordinate
system XOY to the local coordinate system xo′y. The coordinate of sub-target p1 in the
local coordinate system xo′y is (x,y). The radar line of sight (RLOS) coordinate system ro′l
takes o′ as the coordinate origin, where the r axis is consistent with the RLOS direction.
The azimuth angle of the formation center o′ relative to the HFSWR varies between 0◦ and
180◦. The ship formation with a constant velocity vship sails along the X axis direction of
the global coordinate system. Their slowly changing heading can be assumed to be stable
during the coherent integration time (CIT).
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At time t1, the distance from the sub-target p1 to the HFSWR can be expressed as:

Rp1,t1 =
∥∥A∥, (1)

where

A = Rt1V + U
[

x
y

]
V = [cos θt1 , sin θt1 ]

T

U = [cos α,− sin α; sin α, cos α]T

, (2)

Rt1 is the distance between the formation center o′ and the radar at time t1, and θt1 is the
azimuth angle of the o′ relative to the radar at time t1. During the beyond-the line-of-sight
monitoring of HFSWR, the absolute coordinate value of p1 is much smaller than Rt1 . The
Rp1,t1 can be approximated as:

Rp1,t1 ≈ Rt1 + W
[

x
y

]
W = [cos(θt1 − α), sin(θt1 − α)]

. (3)

At time t2 = t1 +△t, where △t is the time interval, the azimuth angle of o′ relative
to the radar can be expressed as:

θt2 = θt1 +△θ, (4)

where △θ = arcsin
(
b1/

√
b1 + b2

)
is the azimuth change during the time △t, b1 = Rt1 sin θt1 ,

and b2 = Rt1 cos θt1 + vship △ t. Usually, △t and △θ are very small. At time t2, the distance
between p1 and the radar can be approximated as:

Rp1,t2 ≈ Rt2 + rt1 − lt1 · △θ, (5)

where (rt1 , lt1) is the coordinate of p1 in the ro′l coordinate system, and it can be expressed as:[
rt1

lt1

]
= H

[
x
y

]
H =

[
cos(θt1 − α) sin(θt1 − α)
− sin(θt1 − α) cos(θt1 − α)

] , (6)
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Rt2 = Rt1 + vr,t1 △ t is the distance between o′ and the radar at time t2, and vr,t1 = vship cos θt1

is the radial velocity of p1 relative to the radar.
The distance between the sub-targets and the HFSWR can be obtained through iter-

ation during the CIT. The transmission waveform of HFSWR is a frequency-modulated
interrupted continuous wave (FMICW). Assuming t1 = jTc is the end time of the jth sweep,
where Tc is the sweep width, the (j + 1)th sweep time can be represented by

t2 = t1 + kq +
t̂

T0
, (7)

where q is the pulse period, and T0 is the pulse width in seconds. The transmission
waveform can be expressed as:

st2 = A exp
(

j2π

(
fct2 +

B
2Tc

t2
2
))

, (8)

where A is the amplitude of transmission signal, fc is the carrier frequency, and B is the
bandwidth. The mixing output signal of the sub-target p1 can be expressed as:

sp1 = C exp
(

j2πφp1

)
, (9)

where C is the amplitude of the echo signal. The phase of the echo signal can be expressed as:

φp1 = f1(Rt1 , Rt2) + f2(rt1 , lt1), (10)

where the first item

f1(Rt1 , Rt2) =
2BRt1

cTc
t2 +

2 fcRt2

c
, (11)

is related to the distance between the formation center and the radar, and the second item

f2(rt1 , lt1) =
2Brt1

cTc
t2 +

2 fcrt1 −△θlt1

c
, (12)

is related to the coordinate of p1 in the ro′l coordinate system. The echo signal of the ship
formation can be expressed as:

sIF = C
N

∑
i = 1

exp
(

j2πφpi

)
, (13)

where N is the number of sub-targets in the formations. The main influencing factors of
amplitude C include the transmission power, radar cross section (RCS), and distance. The
echo amplitude of sub-targets is considered to be the same constant. The signal model is
related to sub-target distribution and the ship formation motion.

During the CIT, the ship formation spatial distribution model is obtained by imaging
the echo signal of multiple sweeps.

3. Proposed Cascade Identification Algorithm

In this section, we introduce the proposed cascade identification algorithm, which
detects and identifies ship formations sparsely injected into the real clutter edges.

3.1. Cascade Identification Algorithm Framework and Preprocessing

Figure 3 shows the framework of the proposed algorithm. In the preprocessing stage, the
Faster R-CNN is introduced to locate the clutter region of the collected RD images. In the first
stage, an extremum detector based on connected regions is proposed to extract targets. The
processing principle in this stage is to avoid losing targets, quickly obtain all suspicious targets,
and group the ship formation for output. In the second stage, a CNN-ELM is designed to
eliminate false targets and identify two densely distributed ship formations.
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Compared to color images, grayscale images are less space-consuming and retain
essential information, which is suitable for real-time processing. Before the preprocessing
stage, the color RD images are transformed into grayscale images, and the grayscale value
of each pixel can be expressed as

gx(i, j) = WRRx(i, j) + WGGx(i, j) + WBBx(i, j), (14)

where WR, WG, and WB are the weights of R, G, and B, respectively.
In the preprocessing stage, Faster R-CNN is merely used to distinguish the clutter

regions and locate them. Faster R-CNN is a target classifier in multi-region-based pro-
posals [29], and attention-oriented Region Proposal Networks (RPN) extract the interest
regions. Using convolutional image feature maps shared with RPN, the fully connected
layer can adopt a deep network and improve the quality of proposals.

The default feature extraction and target classification network of the Faster R-CNN is
the VGG-16. The VGG-16 consists of 5 convolutional layers and 13 shared layers, suitable for
large-volume datasets with over 104 images. The dataset composed of images mentioned
in Section 4.2 cannot meet the training requirements of VGG-16. We replaced the original
VGG-16 with Resnet50. The Resnet50 introduces residual modules to avoid the problems
of gradient vanishing and model degradation.

3.2. Extremum Detector Based on Connected Region

The grayscale values of target and sea clutter are lower than in the background. Ship
formation occupies more stable high-energy cells than the single-ship target, which appears as
an isolated point. In this stage, an extremum detector based on connected regions is adopted.

First, the discrimination criteria for the extremum detector are expressed as:

g(xtest) =

{
1, h(xtest) ≤ λk0
0, h(xtest) > λk0

, (15)
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where λ is the threshold factor, k0 is the average grayscale value of the reference cells, and h(xtest)
is the grayscale value of the tested cell xtest. 1 indicates the cell is a suspicious target, and 0
indicates the background. We adjust the threshold factor λ to ensure the extremum detector
detects all targets.

Then, the SF algorithm is introduced to connect the cells with suspicious targets. The
cells with g(xtest) = 1 are seeds, of which the grayscale value is set to 0. We traverse
the four adjacent cells around the seeds, including the top, bottom, left, and right, and
merge the cells with the grayscale value of the 0 value into a connected region. We search
for connected regions using the newly merged cells as seeds. The detection process will
continue until all the cells with suspicious targets have been traversed.

3.3. Lightweight CNN-ELM

CNN performs well in extracting image features and identifying real targets contami-
nated with clutter [21]. ELM is a feedforward network with a single hidden layer, which
has a simple and effective training method and can quickly obtain local optimal solutions.
We design a CNN-ELM classifier to identify ship formations in the clutter edge. The
structure of the lightweight CNN is based on Alexnet and was determined after extensive
debugging. To accelerate the network speed, the designed CNN is shallower than Alexnet.
The lightweight CNN consists of three convolution layers, two pooling layers, and two
fully connected layers. A dropout layer was added to the third convolution layer to prevent
overfitting. The network structure is given in Table 1. Compared to Alexnet, the proposed
lightweight CNN has fewer pre-training parameters.

Table 1. Whole CNN structure of the lightweight CNN.

Layer Layer Name Parameter

1 Convolution 32 × 3 × 3 convolutions, stride [1 1]
2 ReLu ReLu
3 Convolution 32 × 3 × 3 convolutions, stride [1 1]
4 ReLu ReLu
5 Maxpooling 2 × 2 max pooling, stride [2 2]
6 Convolution 64 × 3 × 3 convolutions, stride [1 1]
7 ReLu ReLu
8 Maxpooling 2 × 2 max pooling, stride [2 2]
9 DropoutLayer 0.5 dropout probability

10 Fully Connected 64 fully connected layers
11 ReLu ReLu
12 Fully Connected 128 fully connected layers

4. Experiment and Discussion

In order to demonstrate the effectiveness of the proposed cascade identification algo-
rithm, experiments are conducted using simulated targets and measured RD image back-
grounds. We present the experimental parameters including the measured background and
different types of formations, in Section 4.1. The RD data structure and multiple datasets
are introduced in Section 4.2. The model training and formation identification are presented
in Section 4.3. We also evaluate the performance of the proposed algorithm in the case of
weak and deformed formation identification in Section 4.4.

4.1. Experiment Parameters

The origin RD data, composed of various clutter and targets, are obtained through the
HFSWR system located in the city of Weihai. The HFSWR system parameters are given in
Table 2. The real targets are artificially removed from the measured data, and simulated
targets, including two types of ship formations shown in Figure 4 and single-ship targets,
are injected into the clutter edge position of RD images.
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Table 2. HFSWR system parameters.

Parameter Name Parameter Symbol Parameter Value

Carrier frequency fc 4.5 MHz
Bandwidth B 40 KHz
Pulse width T0 0.35 ms

Sampling frequency f0 24 MHz
Range resolution / 1.88 km

Doppler resolution / 0.0039 hz
CIT Ttotal 249.98 s
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Figure 4. Geometric models of two ship formations: (a) geometric models of single-column formation;
(b) geometric models of V-shaped formation.

The geometric parameters of the single-column formation and the V-shaped formation
are shown in Table 3. Figure 5 shows the spatial distribution model of the two forma-
tions without clutter. Figure 6 shows the distribution of the single-column and V-shaped
formation in the RD images. The constructed RD images cover widely in the range and
Doppler domains. The images have been cropped for ease of display in Figures 5 and 6.
The two types of ship formations have the same parameters, except for the formation
shape. For the single-column formation, the maximum difference between the sub-targets
and the formation center in the range and Doppler domains is 1.03 km and 0.0022 Hz,
respectively. For the V-shaped formation, the maximum distance of the sub-targets and
formation center in the range domain is 1.75 km, and the gap between p1 and p3 in the
Doppler domain is 0.0019 Hz. There is less difference between sub-targets in the range
domain and Doppler domain than in the HFSWR resolution given in Table 2. Formations
are presented as extended targets with slight differences in outline.

Table 3. Simulation parameters of ship formations.

Parameter Name Parameter Symbol Parameter Value

Initial distance R0 100 km
Initial azimuth angle θ0 60◦

Sailing speed vship 8 m/s
Distance between formation

center and sub-target d 2 km

Deflection angle β1 120◦

Deflection angle β2 30◦
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We also analyze the distribution feature of the weak formation and deformed formation.
The target energy is measured by the SCR, and the SCR is expressed as:

SCR = 10 · log10

(
Ps

Pac

)
, (16)

where Ps is the amplitude of the target center, and Pac is the average amplitude of the
reference clutter. Figure 7 shows ship formations with low SCR. Moreover, the ship
formations with SCR of 5 and 7.5 dB almost blend into the background.
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Figure 7. Spatial distribution model of ship formations with low SCR: (a) single−column formation
with SCR of 7.5 to 10 dB; (b) single−column formation with SCR of 5 to 7.5 dB; (c) V−shaped
formation with SCR of 7.5 to 10 dB; (d) V−shaped formation with SCR of 5 to 7.5 dB.

Figure 8 shows the deformed formation. Based on the original values, the distance between
the formation center and the sub-targets is increased by 5% and 20%. Ship formations change
very little at the deviation of 5%. At the deviation of 20%, the single-column formation is
stretched, and the sub-targets of the V-shaped formation can be distinguished.
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4.2. Data Structure and Dataset

The size of the RD images constructed in Section 4.1 is 4480 × 300 pixels. The color RD images
are transformed into grayscale images and fed into the pre-trained Faster R-CNN to extract clutter
regions. The extremum detector processes the clutter region images captured from the RD images.
The first stage output consists of multiple connected regions, each represented by a set of cells from
the same ship formation or a single-ship target. In the second stage, a fixed-size 2D sliding window
is selected to capture target data from the images, with the center of the sliding window located at
the center of the connected regions. Considering the size criteria of the window in detectors [15,16]
and the characteristics of our data, the range and Doppler direction of the sliding window are set to
20 cells. The output of the CNN-ELM classifier is the identification results.

The preprocessing stage focuses on quickly extracting clutter regions rather than a profound
study on the Faster R-CNN algorithm. We create a Faster R-CNN dataset containing 20 RD images
and label the sea clutter. In the first stage, 20 RD images are selected as test samples, each with
45 targets at the edge of the clutter. The sample set is used to determine the threshold factor λ of
the extremum detector. In the second stage, the dataset consists of equal proportional single-ship
targets, single-column formations, V-shaped formations, and backgrounds. The SCR of the targets
ranges from 5 dB to 25 dB. The dataset contains 4000 images and is randomly split into three parts:
three-fifths of which is used as a training set, one-fifth of which is used as a validation set, and
one-fifth of which is used as a testing set.

We also construct datasets for the weak and deformed formation identification separately. Each
dataset contains 20 RD images, each with 45 targets at the edge of the clutter. The proportion of
single-ship targets, single-column formations, and V-shaped formations is consistent. In the “Weak
set-1” and “Weak set-2”, the SCR of the targets is 7.5 to 10 dB and 5 to 7.5 dB, respectively. In the
“Deformed set-1” and “Deformed set-2”, the sub-targets are deviated by 5% and 20%, respectively.

4.3. Experimental Results

Faster R-CNN is pre-trained on ImageNet. According to the size of the clutter regions
in multiple RD images, the anchors of the Faster R-CNN are adjusted to three scales
(642,1282, and 2582 pixels) and three aspect ratios (0.5, 1.0, and 2.0). The anchors match
the real target box with an overlap of more than 0.5. Figure 9 shows the clutter detection
results of the Faster R-CNN. The bright vertical bar regions in the images are identified as
sea clutter regions. The scores on the top indicate that the network has good recognition
performance for sea clutter and meets the requirements of the preprocessing stage.

Figure 10 shows the grayscale distribution of single-ship target and single-column formation.
The closer the cell is to the center regions, the lower the grayscale value and the higher the energy.



Remote Sens. 2024, 16, 577 11 of 16

Ship formation occupies more stable high-energy cells than the single-ship target, which appears
as an isolated point.
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Figure 10. Grayscale distribution: (a) grayscale distribution of a single−ship target; (b) grayscale
distribution of a ship formation.

The threshold factor λ is experimentally determined to be 0.9, and the extremum detector
can detect all targets. Figure 11 shows an example of the target detection results, and the
connected regions shown in black contain potential targets. From the detection results, targets
are hit without any omissions. Taking Figure 11 as an example, the output of a pure extremum
detector is separate cells with a quantity of 65, and the output of the connected region extremum
detector is cell sets with an amount of 23. The two types of extremum detectors obtain the
same cells but different output forms. The pure extremum detector extracts RD region images
with 65 separate cells as the image center. In contrast, the extremum detector proposed extracts
images with the cell set center as the image center. The RD region images to be classified in the
second stage are reduced by 182.61% using the proposed first stage detector. From the above
analysis, we have concluded that the proposed extremum detector can improve the efficiency of
the cascade identification algorithm.
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Figure 11. An example of the detection results in first stage: (a) RD images; (b) the output of the
connected region extremum detector.

We train the CNN-ELM step by step, and the process is as follows:

• Train the lightweight CNN using labeled datasets, and adjust the parameters until the
training accuracy reaches 80%;

• Replace the output layer of the CNN with the ELM, and train the ELM using highly
abstract features extracted by the CNN until the expected results are achieved;

• Obtain a hybrid CNN-ELM model.

Based on the features of the input and empirical data, the parameters, including the
initial learning rate and batch size, are adjusted to minimize training losses. The batch
size of 128 and initial learning rate of 0.001 are finally applied to the CNN-ELM model,
considering the training effectiveness and the running time.

The proposed CNN-ELM is compared with the classical Alexnet and the Resnet18
used in [26]. The Alexnet consists of five convolution layers and three fully connected
layers, with activation functions for ReLU and Dropout layers to enhance the model
generalization ability. The Resnet18 has a shallow depth and contains four stacked residual
blocks. Precision, recall, accuracy, and processing time are used as the network evaluation
metrics. The precision and recall can be expressed as:

Precision = TP
TP+FP

Recall = TP
TP+FN

(17)

where TP is the number of true targets detected, TN is the number of true targets missed, and FN
is the number of false targets detected. The multi-category problem is transformed into a binary
classification problem, where the precision and recall of each category are calculated separately.
The accuracy is expressed as the ratio of the number of correctly classified samples to the total
number of samples, used to describe the global accuracy of the model. The processing time refers
to the average processing time of each image, expressed as the ratio of the testing set processing
time to the number of test samples. Table 4 shows the performances of the three networks.

Table 4. Performances of the three networks.

Class Evaluation Metrics CNN-ELM Alexnet Resnet18

Single-column
Formation

Precision
Recall

97.01% 97.46% 95.45%
97.50% 96.00% 94.50%

V-shaped
Formation

Precision 98.02% 98.03% 96.04%
Recall 99.00% 99.50% 97.00%

Single-ship
Target

Precision 97.46% 96.50% 92.61%
Recall 96.00% 96.50% 94.00%

/ Accuracy 97.50% 97.33% 95.17%

/ Processing Time 0.871 s 1.302 s 1.188 s
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Table 4 shows that the three networks can distinguish single-ship targets, two types of dense
ship formations, and backgrounds, with a classification accuracy of over 90%. From the first seven
rows of Table 4, both our proposed network and Alexnet are on the level of precision and recall
parameters and are superior to Resnet18. In addition, the proposed network achieves a slightly
better performance in accuracy than Alexnet. The reason is that the lightweight CNN met the
feature extraction requirements of the target morphology and energy, and the ELM improved the
generalization ability and noise resistance. Regarding training and processing time, our proposed
network is significantly better than Alexnet and Resnet18. This is due to the CNN-ELM having a
shallower network structure. In summary, the designed CNN-ELM performs well.

We compare the proposed cascade identification algorithm with the extremum
detector−Alexnet and extremum detector−ResNet18. The targets and identification results
are annotated in the RD images. In Figure 12, the single-ship targets are marked by boxes,
circles mark the single-column formations, and triangles mark the V-shaped formations.
The results indicate that the proposed algorithm can correctly identify ship formations
and single-ship targets contaminated with clutter. The extremum detector−Alexnet and
extremum detector−Resnet18 could only identify part of the targets.
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4.4. Weak Formation and Deformed Formation Identification Results

Tables 5 and 6 show the accuracy of the proposed cascade identification algorithm,
extremum detector−Alexnet, and extremum detector−Resnet18. The average accuracy of
the targets with SCR of 5 and 7.5 dB is around 78%. In the case of deficient target energy,
deep learning networks can still extract local spatial features. The proposed algorithm
achieves better accuracy than others on the same dataset. The accuracy of the three
algorithms slightly decreases at the deviation of 5%. At the deviation of 20%, the shape and
energy changes in the target regions cause interference with the deep learning networks,
and the accuracy of the three algorithms is greatly reduced.

Table 5. Performances of the three algorithms for weak formation identification.

Dataset Cascade Identification
Algorithm

Extremum
Detector−Alexnet

Extremum
Detector−Resnet18

Weak set-1 88.44% 84.22% 81.67%
Weak set-2 82.11% 79.89% 74.33%

Table 6. Performances of the three algorithms for deformed formation identification.

Dataset Cascade Identification
Algorithm

Extremum
Detector−Alexnet

Extremum
Detector−Resnet18

Deformed set-1 93.11% 92.89% 91.33%
Deformed set-2 73.33% 73.78% 71.67%

The networks of the three algorithms are improved to meet the needs of deformable for-
mation identification. The transfer learning can overcome the dependence on data and borrow
generic features from pre-trained models for the target task [30,31]. The shallow layers of the CNN
tend to extract generic features in the source domain, which could be transferred into the target
domain. The features extracted by deep layers have specificity and cannot be transferred. The
layer-by-layer freezing method is introduced to improve the training efficiency and robustness of
the model by adjusting only the deep layer parameters. The training process is as follows:

• Label the trained CNN-ELM model as S-model;
• Freeze the first layer parameters of the S-model, adjust the parameters of the rest layers

to achieve good performance for the target task, and label the trained CNN-ELM model
as S-model1;

• Freeze the first two layers with fixed parameters of the S-model, retrain, and label the
model as T-model2;

• Freeze the CNN parameters in the S-model, retrain the ELM, and label the model as
T-model3;

• Compare T-model1, T-model2, and T-model3, and determine the model with the best
performance as the transfer learning model.

The datasets “Deformed set-1” and “Deformed set-2” are split into three parts, respec-
tively, three-twentieths of which is used as a training set, one-twentieth of which is used as
a validation set, and four-fifths of which is used as a testing set.

Table 7 shows the three algorithm identification results after transfer learning. The
accuracy of each model has been improved. The CNN-ELM transfer learning model on the
same dataset is better than Alexnet and Resnet18 in identification accuracy.

Table 7. Performances of the three algorithms after transfer learning.

Dataset
Cascade

Identification
Algorithm

Extremum
Detector−Alexnet

Extremum
Detector−Resnet18

Deformed set-1 97.22% 96.78% 95.63%
Deformed set-2 96.22% 95.89% 95.25%
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5. Conclusions

In this paper, we first investigate the spatial distribution model of ship formation for
high-frequency surface wave radar (HFSWR) and propose a novel cascade identification
algorithm for ship formation in the clutter edge. Taking single-column and V-shaped
formations as examples, we analyze the distribution feature of the normal formation, weak
formation, and deformed formation. Then, we introduce the Faster R-CNN to locate the
clutter regions and propose a two-stage formation identification algorithm. In the first stage,
an extremum detector based on connected regions is employed to achieve rapid detection.
The proposed extremum detector reduces the number of images classified in the second
stage, improving the cascade algorithm’s efficiency. In the second stage, the CNN-ELM is
proposed to classify the targets. Compared with the classical Alexnet and Resnet18, the
proposed CNN-ELM can deal with the impact of clutter and single-ship targets well and
obtain higher identification accuracy with lower computation and memory. Meanwhile,
the experimental results based on the factual HFSWR background demonstrate that the
proposed cascade identification algorithm is superior to the extremum detector combined
with the classical CNN algorithm for ship formation identification. The proposed algorithm
achieves an identification accuracy of 82% with an average signal-to-clutter ratio (SCR)
of 5–7.5 dB. At the deviation of 20%, our proposed algorithm achieves an identification
accuracy of 96.25% with limited samples through transfer learning. The future work will
mainly focus on tracking and positioning of ship formation.
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