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Abstract: Change detection (CD) stands out as a pivotal yet challenging task in the interpretation
of remote sensing images. Significant developments have been witnessed, particularly with the
rapid advancements in deep learning techniques. Nevertheless, challenges such as incomplete
detection targets and unsmooth boundaries remain as most CD methods suffer from ineffective
feature fusion. Therefore, this paper presents a multi-scale gated fusion network (MSGFNet) to
improve the accuracy of CD results. To effectively extract bi-temporal features, the EfficientNetB4
model based on a Siamese network is employed. Subsequently, we propose a multi-scale gated fusion
module (MSGFM) that comprises a multi-scale progressive fusion (MSPF) unit and a gated weight
adaptive fusion (GWAF) unit, aimed at fusing bi-temporal multi-scale features to maintain boundary
details and detect completely changed targets. Finally, we use the simple yet efficient UNet structure
to recover the feature maps and predict results. To demonstrate the effectiveness of the MSGFNet, the
LEVIR-CD, WHU-CD, and SYSU-CD datasets were utilized, and the MSGFNet achieved F1 scores of
90.86%, 92.46%, and 80.39% on the three datasets, respectively. Furthermore, the low computational
costs and small model size have validated the superior performance of the MSGFNet.

Keywords: change detection; remote sensing images; multi-scale progressive fusion; gated weight
adaptive fusion

1. Introduction

The advance of satellite imaging technology has facilitated the acquisition of remote
sensing images (RSIs). Change detection (CD) is the process of identifying changes in the
ground within the same geographical area utilizing RSIs taken at two different times [1].
Due to its wide application in urban sprawl detection [2], urban green ecosystems [3],
damage assessment [4], etc., CD as a fundamental and important task has increasingly
gained attention in the remote sensing field.

During the early stages of CD research, numerous methods have been proposed by
researchers [5,6]. For example, image difference was one of the earliest CD methods for
subtracting bi-temporal images according to the corresponding pixels [7]. To address
spurious changes and counter positional errors, a robust change vector analysis method
was proposed by Thonfeld et al. [8], combining intensity information with the advantages
of change vector analysis (CVA). Researchers have made substantial progress through
extensive research on these traditional methods [9–11]. However, these traditional CD
methods face new challenges with the increased spatial resolution of remote sensing images.
On one hand, traditional CD methods are designed for medium- and low-resolution RSIs,
resulting in poor performance when dealing with rich information in high-resolution
RSIs [12]. On the other hand, these methods rely on handcrafted features that are sensitive
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to radiation differences and illumination changes [13,14]. Consequently, the application of
traditional CD methods is limited in scope.

Recently, with the advent of the big data era, deep neural networks have demonstrated
their strong feature extraction capabilities [15,16], with the end-to-end advantages of
convolutional neural networks (CNNs) being particularly notable. CNNs have been widely
employed in CD tasks and have spawned a number of promising CD methods [17,18]. For
example, Zhang et al. [19] integrated a CycleMLP block into a Siamese network, proposing
an MLP-based method for CD. However, it is important to note that this method incurs
a substantial inference time. Fang et al. [20] introduced a CD method that combines the
UNet++ architecture with a Siamese network. This method mitigates the loss of localization
feature information by establishing a dense connection between the encoder and decoder.

Although the methods mentioned above have achieved performance results, they do
not consider the characteristics of bi-temporal multi-scale features, thereby resulting in
incomplete detection targets and limited accuracy of results. Inspired by the widely used
multi-scale pyramid architecture for extracting multi-scale feature information in medical
image segmentation [21], several methods have been proposed to address these problems
by using multi-scale features [22–24]. For instance, Li et al. [23] proposed a multi-scale
convolutional channel attention mechanism to generate detailed local features and integral
global features. For capturing feature information on all scales, Xiang et al. [22] introduced
a multi-receptive field position enhancement module incorporating convolutional layers
with different kernel sizes. Despite the improvements achieved by the above methods
through the incorporation of multi-scale features, they still exhibit certain shortcomings.
On the one hand, these methods employ a simple concatenation strategy for fusing multi-
scale features without considering the interaction between them. On the other hand, they
extract multi-scale features after a simple feature fusion (i.e., feature difference) rather
than employing bi-temporal multi-scale feature fusion. Consequently, the simple feature
fusion often has restrictions that are not discriminative enough and result in unsmooth
detection boundaries.

To address such problems, this study investigates the multi-scale fusion of bi-temporal
features to detect complete change targets and improve the accuracy of results, and we
further propose a multi-scale gated fusion network (MSGFNet). In particular, we opt for a
lightweight model, namely EfficientNetB4 [25], as the encoder for constructing the Siamese
architecture. This architecture is utilized to extract multi-layer features from bi-temporal
images. Then, we propose a multi-scale gated fusion module (MSGFM) that has a multi-
scale progressive fusion (MSPF) unit and a gated weight adaptive fusion (GWAF) unit. This
module aims to obtain discriminative fusion features, improving the details of boundaries
and effectively detecting the complete change targets. To gradually reconstruct the results,
the decoder processes the fused multi-scale features in the end. The main contributions of
this study may be summarized as follows:

1. We propose a novel end-to-end CD network, namely the multi-scale gated fusion
network (MSGFNet). The MSGFNet is designed with a weight-sharing Siamese
architecture tailored to be compatible with the CD task;

2. To improve the details of boundaries and detect the complete change targets, we
propose an MSGFM comprising an MSPF unit and a GWAF unit. The MSGFM
adaptively fuses bi-temporal multi-scale features based on gate mechanisms to obtain
discriminative fusion features;

3. To confirm the efficacy of the MSGFNet, we employed the LEVIR-CD, WHU-CD, and
SYSU-CD datasets for our comparison experiments. The results demonstrate that the
MSGFNet outperforms several state-of-the-art (SOTA) methods. Additionally, the
MSGFM was validated through ablation studies.

The following section outlines the organization of the remainder of the paper. A brief
review of the latest relevant works is given in Section 2. Section 3 details the overall frame-
work of the MSGFNet. Section 4 sequentially offers information on experimental datasets,
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evaluation metrics, comparison methods, experimental details, results, and ablation studies.
Section 5 concludes the paper.

2. Related Work

In this section, a brief review of the latest methods based on deep learning is given.
The current deep-learning-based CD methods can be categorized into three groups based
on network structure: CNN-based, transformer-based, and hybrid-based methods.

2.1. CNN-Based Methods

From the perspective of the fusion strategy, CNN-based methods can be further
categorized into single-stream and two-stream methods [26]. In detail, single-stream
methods take inspiration from semantic segmentation tasks. Researchers have proposed
some approaches to image-level fusion strategies that match the semantic segmentation
networks. For instance, Sun et al. [27] introduced conventional long short-term memory
into Unet for CD. Peng et al. [28] employed bi-temporal images that had been concatenated
into a UNet++ network. They further proposed a fusion strategy on multiple side outputs
to improve the accuracy of results. Nevertheless, the independent feature characteristics of
each bi-temporal image cannot be directly captured by single-stream CD methods based
on semantic segmentation networks.

In contrast to single-stream, two-stream methods leverage the Siamese architecture,
which consists of two streams that share weights to generate features of bi-temporal
images. Most existing CD methods [20,29–31] adopt the Siamese architecture because
it is appropriate for handling the input of RSIs. For instance, Dai et al. [29] introduced
a building CD method that comprises a multi-scale joint supervision module and an
improved consistency regularization module. Ye et al. [30] employed Siamese networks
to propose a feature decomposition optimization reorganization network for CD. The
edge and main body features were modeled using a feature decomposition strategy. Li
et al. [32] proposed a lightweight CD method composed of three modules: a neighbor
aggregation module (NAM), a progressive change identifying module (PCIM), and a
supervised attention module (SAM), to improve the accuracy of results. Zhou et al. [33]
introduced a context aggregation method utilizing a Siamese network. The multi-level
features were fed into a context extraction module in this method, enabling the acquisition
of long-range spatial-channel context features.

2.2. Transformer-Based Methods

Transformer-based methods, originally developed for natural language processing, are
now being applied to encode bi-temporal images for CD. For example, Bandara et al. [34]
introduced a CD method that combines a transformer with a Siamese architecture. This
method introduced a transformer feature encoder to extract coarse and fine features with
high and low resolution, respectively. Song et al. [35] introduced a progressive sampling
transformer network (PSTNet) by using the excellent modeling ability of the transformer.
In this method, the optimized tokens are iteratively mapped back to the original features to
establish enhanced spatial connections in the spatial domain. Fang et al. [36] introduced a
CD method, Changer, which uses a Siamese hierarchical transformer to extract multilayered
features and then designs a flow-based dual-alignment fusion module to fuse the two
branches’ features. Zhang et al. [37] introduced a CD method that used a pure Swin
transformer utilizing a Siamese network to extract long-term global features. However,
transformer-based methods face limitations in terms of computational complexity and
larger parameter sizes [38]. In addition, transformer-based methods often result in irregular
boundaries in the results due to their disregard for the subtle details of shallow features.

2.3. Hybrid-Based Methods

Hybrid-based methods combine CNN and transformer architectures, which aim to
improve feature extraction abilities [39]. For example, to couple the global and local fea-
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tures, Feng et al. [40] integrated a transformer and a CNN to design a CD method that
was composed of an inter-scale feature fusion module and an intra-scale cross-interaction
module, which were designed for obtaining discrimination feature maps and constructing
spatial–temporal contextual information, respectively. To address the issues of blurred
edges and neglect caused by sampling that is either too shallow or too deep, Song et al. [41]
introduced a simple convolutional network and a progressive sampling CNN to generate
fine and coarse features, respectively. Subsequently, a mixed-attention module was intro-
duced to merge coarse and fine features. Finally, the results were generated by feeding
the fused features into a transformer decoder. Chu et al. [42] proposed a dual-branch
feature-guided aggregation network for CD. This method employs a dual-branch structure
composed of a CNN and s transformer to extract both semantic and spatial features at
various scales. However, in this method, the feature extractor is not only complicated
but the network also has a large number of parameters. Tang et al. [43] introduced a
W-shaped dual Siamese network (WNet) for CD. In this method, a deformable convolution
was introduced into the CNN branch and transformer to mitigate the limited receptive
fields and regular patch generation, respectively. Similarly, this method also possesses a
significant number of parameters. Moreover, hybrid-based CD methods further require the
design of a complicated fusion module to fuse the CNN features and token features, which
are extracted from the CNN network and transformer network, respectively.

3. Materials and Methods
3.1. Framework

As depicted in Figure 1, the MSGFNet follows a standard U-shaped [44] network
that employs a Siamese architecture. In particular, the MSGFNet comprises a Siamese
feature encoder, an MSGFM, and a decoder for result prediction. First, to preserve the
independence of features in bi-temporal images [45], each bi-temporal image is separately
fed into the shared-weight Siamese EfficientNetB4 to generate the multi-level features.
Subsequently, to effectively fuse multi-scale features aimed at improving the details of
changed boundaries, the MSGFM is designed to adaptively fuse the corresponding bi-
temporal features at the same feature level. The fused features are decoded following the
same skip connection method as in the classic UNet architecture [44], followed by a sigmoid
classifier to generate the results.
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3.2. Siamese Feature Encoder

Considering feature extraction abilities, network parameters, and computational mem-
ory, we chose EfficientNetB4 [25] as the backbone encoder for the Siamese architecture.
More specifically, we made use of the first four convolutional stages of EfficientNetB4
that have been pre-trained on ImageNet. In particular, the first stage is a common 3 × 3
convolutional layer. The second, third, and fourth stages are each composed of identical
MBConv blocks, with 2, 4, and 4 MBConv blocks, respectively.

The structure of the MBConv is depicted in Figure 2. In particular, the MBConv
is composed of two 1 × 1 convolutional layers, a k × k depthwise convolutional layer,
and a squeeze–excitation module. Within the MBConv block, the input features’ channel
dimension is increased by using the first convolutional layer. The kernel size k of the
depthwise layer in the fourth stage is 5, whereas in other stages, it is 3. Squeeze–excitation
is a specific attention mechanism that is able to suppress background feature information
and enhance significant information. The purpose of the final convolutional layer is to
reduce the channel dimension of the features to align them with the input features, allowing
for the utilization of a residual connection mechanism. More details can be found in the
literature [25].

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 2. The structure of the MBConv block. 

3.3. Multi-Scale Gated Fusion Module 
Generally, the changed objects in bi-temporal images often have significant size var-

iations [24], which leads to incomplete detection targets and unsmooth boundaries in the 
results. Consequently, it is imperative to explore multi-scale feature fusion strategies to 
smooth the boundaries and improve the accuracy of results. Hence, an MSGFM that is 
capable of adaptively fusing multi-scale features is proposed. More specifically, the 
MSGFM comprises an MSPF unit and a GWAF unit. 

3.3.1. Multi-Scale Progressive Fusion Unit 
Previous studies [46,47] have demonstrated that the local receiving field is insuffi-

cient for accurately detecting ground objects of various shapes and sizes. To better capture 
ground objects of different sizes, we propose the use of an MSPF unit (Figure 3). Specifi-
cally, there are four parallel atrous convolutions and a progressive connection strategy 
used by the MSPF unit to progressively fuse the multi-scale features. 

 
Figure 3. The structure of the proposed MSPF unit. 

Consider a pair of bi-temporal features of any stage generated from a Siamese feature 
encoder, denoted as 1f  and 2f . First, to effectively capture multi-scale feature infor-
mation about ground objects, we utilize four parallel atrous convolutions with the same 
kernel size but different atrous rates to generate features at different pyramid scales. In 
particular, the kernel size for all four convolutions is set to 3 3× , and the atrous rates of 
the four convolutions are 7, 5, 3, and 1, respectively. In addition, the output channels of 
the four convolutions are set to one-fourth of the channel of the input features. For in-
stance, the bi-temporal features 1f  and 2f  are inputted into the four parallel atrous 
convolutions, which can be denoted as follows: 

( )
( ) { }

1 1
3, 3,

2 2
3, 3,

     7,5,3,1i i

i i

f Conv f
i

f Conv f

 = ∈
=

  (1)

Figure 2. The structure of the MBConv block.

Given the bi-temporal images represented as I1, I2 ∈ RC×H×W , where H, W, and C de-
note the height, width, and image band numbers, respectively, the bi-temporal images are
then separately input into each branch corresponding to the first four stages of the Siamese
EfficientNetB4 to generate multi-level features. As a result, the multi-level features are rep-
resented as f 1

i , f 2
i , i ∈ {1, 2, 3, 4}, respectively, where i represents the i-th stage. The feature

depths of the four stages are 48, 24, 32, and 56, respectively. The spatial scales of the ex-
tracted multi-level features in the successive stages are

{
H
2 × W

2 , H
2 × W

2 , H
4 × W

4 , H
8 × W

8

}
.

3.3. Multi-Scale Gated Fusion Module

Generally, the changed objects in bi-temporal images often have significant size vari-
ations [24], which leads to incomplete detection targets and unsmooth boundaries in the
results. Consequently, it is imperative to explore multi-scale feature fusion strategies to
smooth the boundaries and improve the accuracy of results. Hence, an MSGFM that is
capable of adaptively fusing multi-scale features is proposed. More specifically, the MSGFM
comprises an MSPF unit and a GWAF unit.

3.3.1. Multi-Scale Progressive Fusion Unit

Previous studies [46,47] have demonstrated that the local receiving field is insufficient
for accurately detecting ground objects of various shapes and sizes. To better capture
ground objects of different sizes, we propose the use of an MSPF unit (Figure 3). Specifically,
there are four parallel atrous convolutions and a progressive connection strategy used by
the MSPF unit to progressively fuse the multi-scale features.
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Consider a pair of bi-temporal features of any stage generated from a Siamese feature
encoder, denoted as f 1 and f 2. First, to effectively capture multi-scale feature information
about ground objects, we utilize four parallel atrous convolutions with the same kernel
size but different atrous rates to generate features at different pyramid scales. In particular,
the kernel size for all four convolutions is set to 3 × 3, and the atrous rates of the four
convolutions are 7, 5, 3, and 1, respectively. In addition, the output channels of the four
convolutions are set to one-fourth of the channel of the input features. For instance, the
bi-temporal features f 1 and f 2 are inputted into the four parallel atrous convolutions,
which can be denoted as follows:{

f 1
3,i = Conv3,i

(
f 1)

f 2
3,i = Conv3,i

(
f 2) i ∈ {7, 5, 3, 1} (1)

where Conv3,i is the convolution function with different atrous rates, the subscript 3 denotes
the kernel size of the convolution, and the subscript i represents the atrous rate of each
convolution. f 1

3,i and f 2
3,i are the pyramid features, respectively.

As described above, the proposed MSPF is a progressive process proposed to fuse
bi-temporal multi-scale features. Specifically, the features f 1

3,7 and f 2
3,7 are fed into the

GWAF to achieve weighted adaptive feature fusion. In addition, to mitigate the loss of
fused feature information, each set of fused features using the upper GWAF is inputted
into the next GWAF based on a progressive connection strategy, as depicted in Figure 3.
The specifics of the GWAF will be explained in the next section. The above process can be
formulated as follows:  f7 = GWAF

(
f 1
3,7, f 2

3,7

)
fi = GWAF

(
f 1
3,i, f 2

3,i, fi+2

) i ∈ {5, 3, 1} (2)

where GWAF denotes the weighted adaptive fusion operation and fi is the fused feature for
each scale. It is essential to note that the first GWAF fusion unit does not have a progressive
connection input. Subsequently, the four fused features are concatenated along the channel
dimension, followed by a 1× 1 convolutional layer employed to produce the discriminative
fusion features. The process is formulated as follows:

Fi = Conv1([ f1; f3; f5; f7]) i ∈ {1, 2, 3, 4} (3)

where Fi represents the fused multi-level features and Conv1 denotes a 1 × 1 convolu-
tional layer.
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3.3.2. Gated Weight Adaptive Fusion Unit

Previous studies [39,48,49] have generally fused the bi-temporal features using simple
summation or concatenation. Nevertheless, it is difficult for these direct fusion strategies to
effectively highlight the changed feature information and suppress the unchanged feature
information. Taking inspiration from the gate mechanism [50], which can learn to highlight
the contributions of changed regions, we propose a GWAF unit for bi-temporal multi-scale
feature weighted adaptive fusion. Figure 4 depicts the details of the GWAF unit.
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Given the same scale, bi-temporal features are represented as f 1
i and f 2

i , i ∈ {7, 5, 3, 1}.
In particular, the GWAF unit is roughly composed of three branches, the individual inputs
(i.e., f 1

i and f 2
i ) generated from the multi-scale atrous convolutional layer, and one fused

feature ( fi+2) obtained from the upper-scale GWAF unit. It is essential to note that the top-
scale GWAF unit does not contain the additional fused feature. For convenient illustration,
we simplified the subscripts of symbols.

To obtain the gated weight map Gi between bi-temporal features, the bi-temporal
features f 1

i and f 2
i are first concatenated along the channel dimension, and then a 3 × 3

convolutional layer is used to fuse the bi-temporal features. Subsequently, the fused feature
fi+2 obtained from the upper-scale GWAF unit is added to the current scale with a residual
connection strategy. After that, a sigmoid function is applied after a 1 × 1 convolutional
layer to further fuse the multi-scale feature information to obtain the gated weight map Gi.
The process can be formulated as follows:

f cat
i = Conv3

([
f 1
i ; f 2

i

])
(4)

Gi = Conv1
(

fi+2 + f cat
i

)
(5)

where f 1
i and f 2

i are the bi-temporal features, Conv3 is a 3 × 3 convolutional layer, f cat
i

denotes the concatenation features, and fi+2 is the fused feature generated from the upper-
scale GWAF unit. Conv1 is the function of 1 × 1 convolution followed by a sigmoid layer.
Gi denotes the gated weight map.

To use the gated weight map Gi to refine the changed feature information, the feature
f 1
i is inputted into a 3 × 3 convolutional layer to extract more abstract semantic feature

information. Then, the residual connection strategy is employed to add the features before
and after convolution. Subsequently, the gated weight map Gi is element-wise multiplied
with the newly added features to generate the discriminate fused features. In addition, the
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inverse gated weight map 1 − Gi is used for f 2
i to generate the enhanced feature f 2

G. The
process can be formulated as follows:{

f 1
G = Gi ∗

(
f 1
i + Conv3

(
f 1
i
))

f 2
G = (1 − Gi) ∗

(
f 2
i + Conv3

(
f 2
i
)) (6)

where f 1
G and f 2

G represent the adaptively fused bi-temporal features corresponding to f 1
i

and f 2
i , respectively. After that, the enhanced features are concatenated along the channel

dimension. Finally, a 1 × 1 convolutional layer is utilized to obtain the fused features of the
i-th GWAF unit. The above process can be formulated as follows:

fi = Conv1

([
f 1
G; f 2

G

])
(7)

where fi represents the features generated from the i-th GWAF unit. By combining the
GWAF unit with the MSPF unit, this approach is capable of efficiently fusing the bi-temporal
features to highlight the changed feature while suppressing the unchanged feature in bi-
temporal images.

3.4. Decoder

A decoder is employed to reconstruct the multi-level fused features to produce the
results [23]. UNet is a widely used semantic segmentation network that uses skip connec-
tions to transmit detailed feature information from the encoder to the decoder [44]. As
a result, many researchers have incorporated UNet into CD tasks and proposed a series
of CD methods [51–53]. Following this, we use UNet, which has a simple yet effective
architecture, to generate the change maps.

Generally, the fourth-level fused bi-temporal features (i.e., F4) are up-sampled to the
spatial size of the third-level fused features (i.e., F3). After that, the features up-sampled
from F4 and F3 are concatenated in the feature direction. Subsequently, a convolutional
block is utilized to project the concatenated features to obtain the corresponding features
with the same channel numbers as the F3. The convolutional block comprises a 3 × 3
convolutional layer, a BN layer, and a ReLU layer. The above process can be formulated
as follows:

F3 = ReLU(BN(Conv3([F3; Up2(F4)]))) (8)

where Up2 is the up-sampled operation and F3 represents the generated features that
have the same channel numbers as F3 The above steps are repeated until we obtain the
features F1 Finally, the last 1 × 1 convolutional layer is employed to map the features
F1 to the predicted maps, which have two channels (i.e., representing the changed and
unchanged classes).

3.5. Details of Loss Function

In classification tasks, the cross-entropy (CE) function is frequently employed, and the
CD can be regarded as a unique two-label classification. Consequently, the loss function is
the CE function, which is employed as the loss function and expressed as follows:

Lce = − 1
H × W

H×W

∑
i=1

[ti log(pi) + (1 − ti) log(pi)] (9)

pi =

{
p if ti = 1
1 − p otherwise

(10)

where H and W are the image height and weight, respectively, p is the probability of the
prediction results, and ti represents the corresponding truth map.
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4. Results

The three public building datasets that were used in the experiments are first described.
Next, the evaluation metrics, comparison methods, and experimental details are introduced
in turn. Finally, the results of the experiment are carefully investigated.

4.1. Datasets
4.1.1. WHU-CD

The WHU-CD dataset [54] is a dataset for detecting building changes. This dataset
contains a pair of aerial images with 32, 507 × 15, 354 pixels that were obtained in 2012 and
2016, respectively, and has a spatial resolution of 0.2 m. The bi-temporal images in this
study were cropped into 256 × 256 non-overlapping sub-images (Figure 5a), which were
then divided into training, validation, and testing at an 8:1:1 ratio.

4.1.2. LEVIR-CD

The LEVIR-CD dataset [55] is a large-scale CD dataset that was collected using Google
Earth from 2002 to 2018. This dataset includes 637 pairs of the size 1024 × 1024, with a
spatial resolution of 0.5 m. Limited to the graphics processing unit (GPU) memory and
following the division setting of the official study [55], the bi-temporal images were cropped
into 256 × 256 non-overlapping sub-images (Figure 5b), and 7120/1024/2048 pairs were
obtained for training, validation, and testing.

4.1.3. SYSU-CD

The SYSU-CD dataset [56] comprises a total of 20,000 pairs of aerial images with a
resolution of 0.5 m and a spatial size of 256× 256. This dataset encompasses various change
types occurring in complex scenarios, such as building dilation, vegetation change, and
sea construction. Following the official settings [56], the pairs in this dataset were divided
into training, validation, and testing, with 12,000, 4000, and 4000 pairs, respectively. Some
examples are illustrated in Figure 5c.
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4.2. Evaluation Metrics

The four common evaluation measures that we used to thoroughly assess the MS-
GFNet were precision, recall, F1, and intersection over union (IoU). In these evaluation
indicators, precision and recall denote detection error and omission error, respectively. F1
is a more comprehensive metric that could be computed by taking the harmonic mean of
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recall and precision [17]. Therefore, this paper selects F1 and IoU as the main evaluation
measures. These measures described above are defined as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 = 2 × Precision × Recall
Precision + Recall

(13)

IoU =
TP

TP + FP + FN
(14)

where TP represents the pixel numbers of true positives, TN represents the pixel numbers
of true negatives, FN represents the pixel numbers of false negatives, and FP denotes the
pixel numbers of false positives.

4.3. Comparison Methods

We conducted a comparative analysis using eight SOTA CD methods to assess the
performance of the MSGFNet. A brief description of these methods is provided below:

1. FC-EF [57]: FC-EF stands as a milestone method, utilizing a classic U-Net architecture.
In this method, the bi-temporal images are concatenated along the feature direction
before being input into the network.

2. FC-Siam-Diff [57]: FC-Siam-diff is a CD method with a Siamese CNN architecture.
This network first extracts multi-level features from bi-temporal images and then uses
the feature difference as the feature fusion module to generate change information.

3. STANet [55]: STANet is a metric-based method. This method suggests using a spa-
tiotemporal attention module based on self-attention mechanisms to model the spatial
and temporal relationships to obtain significant information about changed features.

4. DSIFNet [58]: DSIFNet is a deeply supervised image fusion method. This method
proposes an attention module to integrate multilevel feature information and employs
the deep supervision strategy to optimize the network and improve its performance.

5. SNUNet [20]: SNUNet is a combination of the NestedUNet and Siamese networks.
This method alleviates the localization information loss by using a dense connection
between the encoder and decoder. Furthermore, an ensemble channel attention
module is built to refine the change features at different semantic levels.

6. BITNet [59]: BITNet is a combination of a transformer and a CNN. This network first
extracts semantic features by using the CNN, and then uses the transformer to model
the global feature into a set of tokens, strengthening the contextual information of the
changed features.

7. ChangeFormer [34]: ChangeFormer is a purely transformer-based change detection
method. This method uses a Siamese transformer to build the bi-temporal image
features and then uses the multi-layer perceptual to decode the difference features.

8. LightCDNet [60]: LightCDNet employs a lightweight MobileNetV2 to extract mul-
tilevel features and introduces a multi-temporal feature fusion module to fuse the
corresponding level features. Finally, deconvolutional layers are utilized to recover
the change map.

To achieve a fair comparison, all the different comparison methods were evaluated
under the same experimental setting. If the comparison methods and the proposed MS-
GFNet used the same dataset, we utilized the pre-trained weight models provided by the
respective comparison papers. Otherwise, we employed the provided code and default
parameters of the comparison methods.
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4.4. Experimental Details

In this study, NVIDIA GeForce RTX 3080Ti graphics cards with 12 GB of RAM were
used for training and all experiments were carried out using the PyTorch framework.
During the training process, the AdamW optimizer was employed with a weight decay
equal to 1 × 10−4, and an initial learning rate of 1 × 10−3. In addition, all experiments
utilized a batch size of 8 and each dataset underwent training for 100 epochs.

4.5. Results

We analyzed the MSGFNet using the six SOTA methods on the two datasets in this
part. We categorized the six SOTA methods into three classes: CNN-based, transformer-
based, and hybrid-based. To enhance readability in the visualization comparisons, we
depict the false positives in red, the false negatives in green, the true negatives in black,
and the true positives in white.

4.5.1. Experimental Analysis on the WHU-CD Dataset

The experimental results on the WHU-CD dataset are displayed in Table 1. Notably, it
can be observed that the proposed MSGFNet shows outstanding performance, with an F1
of 92.46% and an IoU of 85.98%. Furthermore, the hybrid-based BITNet and transformer-
based ChangeFormer secure the second and third positions, respectively, with F1 scores of
91.25% and 89.82%. The proposed MSGFNet exhibits a superior F1 compared to BITNet
and ChangeFormer, surpassing them by 1.21% and 2.64%, respectively. In addition, the
BITNet and ChangeFormer outperform other CNN-based methods except for LightCDNet.
However, despite the utilization of a CNN-based architecture, the MSGFNet achieved opti-
mal results compared to the SOTA methods. This can be attributed to the effectiveness of
the proposed MSGFM in capturing discriminatively changed feature information between
the bi-temporal images.

Table 1. Quantitative evaluation of the MSGFNet and the SOTA methods on the WHU-CD dataset.
The best scores are marked in Bold.

Methods Pre Recall F1 IoU

CNN-based

FC-EF 79.33 74.58 76.88 62.45
FC-Siam-Diff 67.55 63.21 65.31 48.75

STANet 86.11 88.14 87.11 77.17
DSIFNet 85.89 91.31 88.52 79.40
SNUNet 82.63 90.33 86.31 75.92

LightCDNet 92.00 91.00 91.50 84.30

Transformer-based ChangeFormer 89.36 90.28 89.82 81.60

Hybrid-based BITNet 92.71 89.83 91.25 84.30

CNN-based MSGFNet 91.88 93.06 92.46 85.98

An intuitive visual comparison of all the methods is shown in Figure 6. It can be
observed that both the STANet and FC-Siam-Diff not only exhibit a significant number
of false negatives but also have rough boundaries in changed regions. Additionally, the
boundary detection results reported by both the SNUNet and DSIFN are unsatisfactory.
Compared to the second-ranked LightCDNet, the MSGFNet not only has more accurate
boundary details but also has few false positives and false negatives. In summary, the
MSGFNet achieves the best visualization performance on the WHU-CD dataset.
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Figure 6. Visual comparisons between the MSGFNet and the SOTA methods on the WHU-CD dataset.

4.5.2. Experimental Analysis on the LEVIR-CD Dataset

The quantitative results of all methods on the LEVIR-CD dataset are displayed in
Table 2. From the table, it is evident that the FC-Siam-Diff obtained the poorest performance.
This may be attributed to the utilization of a simple Siamese UNet in the FC-Siam-Diff
model; consequently, which leads to poor feature extraction and fusion ability. Corre-
spondingly, other CNN-based methods, such as STANet, DSIFNet, and SNUNet, introduce
various attention mechanisms that enhance the discriminative features of bi-temporal
images. Consequently, these methods have shown varying degrees of improvement in
the accuracy of results. ChangeFormer obtained the second-highest level of performance,
achieving F1 and IoU of 90.40% and 82.48%, respectively. The MSGFNet has demonstrated
improvements of roughly 0.46% in F1 and 0.77% in IoU when compared to ChangeFormer.
In addition, the proposed method also achieved the highest precision, with a score of
92.12%. In conclusion, the quantitative analysis presented above validates the effectiveness
of the MSGFNet.

Table 2. Quantitative evaluation of the MSGFNet and the SOTA methods on the LEVIR-CD dataset.
The best scores are marked in Bold.

Methods Pre Recall F1 IoU

CNN-based

FC-EF 85.87 82.22 83.35 72.43
FC-Siam-Diff 88.59 80.72 85.37 74.48

STANet 83.81 91.00 87.30 77.40
DSIFNet 87.30 88.57 88.42 78.09
SNUNet 90.55 89.28 89.91 81.67

LightCDNet 91.30 88.00 89.60 81.20

Transformer-based ChangeFormer 92.05 88.80 90.40 82.48

Hybrid-based BITNet 89.24 89.37 89.31 80.68

CNN-based MSGFNet 92.12 89.63 90.86 83.25

Figure 7 shows an intuitive visual comparison of all the methods on the LEVIR-CD
dataset. For the first densely built case, the changed buildings in the results of the FC-Siam-
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Diff, STANet, DSIFNet, and SNUNet are clustered together to some extent. The results of
the proposed MSGFNet show better detail and boundaries for the small ground objects. For
the case featuring buildings of different scales in Figure 7, there are illumination changes
and building shadows present between the bi-temporal images. The results of the proposed
MSGFNet show that it has fewer false positives and false negatives than several SOTA
methods while also preserving the integrity of small ground targets.
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4.5.3. Experimental Analysis on the SYSU-CD Dataset

The experimental results on the SYSU-CD dataset are displayed in Table 3. Notably,
the FC-Siam-Diff exhibits the least favorable performance, with an F1 value of 70.17% and
an IoU of 55.11%. SNUNet slightly outperforms FC-Siam-Diff, which may be attributed
to SNUNet’s employment of the dense connection strategy that can alleviate the loss of
feature information [20]. Among these comparative methods, STANet, DSIFNet, and
ChangeFormer exhibit comparable performances. Specifically, the above three methods
obtained F1 scores of 77.75%, 77.46%, and 77.83%, respectively. Correspondingly, LightCD-
Net and BITNet were the second- and third-ranked methods, with F1 values of 78.52% and
78.72%, respectively. It is evident that the proposed MSGFNet outperforms the compara-
tive methods in all evaluation metrics, except recall. Specifically, the proposed MSGFNet
outperforms the second-ranked LightCDNet method by over 1.64% in F1. Despite the fact
that STANet obtains the highest recall value, its F1 and IoU values are 2.64% and 3.63%
lower than those of the proposed MSGFNet, respectively. In conclusion, the quantitative
analysis presented above validates the effectiveness of the MSGFNet.
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Table 3. Quantitative evaluation of the MSGFNet and the SOTA methods on the SYSU-CD dataset.
The best scores are marked in Bold.

Methods Pre Recall F1 IoU

CNN-based

FC-EF 80.16 70.69 75.13 60.17
FC-Siam-Diff 78.34 66.13 70.17 55.11

STANet 73.33 82.73 77.75 63.59
DSIFNet 79.32 73.85 77.46 62.94
SNUNet 82.16 71.33 76.36 61.76

LightCDNet 83.01 74.90 78.75 64.98

Transformer-based ChangeFormer 77.16 78.51 77.83 63.71

Hybrid-based BITNet 80.40 77.09 78.72 64.90

CNN-based MSGFNet 83.34 77.65 80.39 67.22

An intuitive visual comparison of all the methods is shown in Figure 8. Different from
the WHU-CD and LEVIR-CD datasets, which only contain building changes, the SYSU-CD
dataset is more challenging because it encompasses various change types occurring in
complex scenarios [56]. For the building changes in the first case, the results of FC-EF
and FC-Siam-Diff contain many missed detections (e.g., false negatives). However, the
results of other comparative methods, such as DSIFNet and ChangeFormer, have many
false detections (e.g., false positives). For the second case, which is a vegetation change
sample, all the comparative methods have a large area of missed detection. For the two
different change cases, compared to the comparative SOTA methods, only the proposed
MSGFNet could detect the complete change ground objects and has the best visualization.
Compared to the second-ranked LightCDNet method, the proposed MSGFNet not only
has few false positives and false negatives but also maintains better boundary details. In
summary, our method achieves optimal performance on the SYSU-CD dataset.
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4.5.4. Model Size and Computational Complexity

On the other hand, we conducted a comparative analysis of model size (number
of parameters) and computational efficiency (number of floating-point operations) of all
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the methods, as presented in Table 4. It is evident that the MSGFNet not only has the
best performance in terms of F1 but also has the smallest model size in terms of network
parameters. Specifically, the model parameters of the MSGFNet are just 0.58 M, which
is lower than the FC-Siam-Diff and BITNet methods. Additionally, our method has the
smallest FLOPs. The model size and computational complexity demonstrate that the
MSGFNet more successfully obtains a compromise between performance and model size.
For an intuitive visualization, the scatterplot between parameters and F1 of all methods is
shown in Figure 9.

Table 4. Comparison of model size and computational complexity on the WHU-CD dataset.

Methods Params/M FLOPs/G F1

CNN-based

FC-EF 1.35 3.58 76.88
FC-Siam-Diff 1.35 4.73 65.31

STANet 16.89 6.43 87.11
DSIFNet 50.46 50.77 88.52
SNUNet 12.03 54.83 86.31

LightCDNet 10.75 21.54 91.50

Transformer-based ChangeFormer 29.75 21.18 89.82

Hybrid-based BITNet 3.04 8.75 91.25

CNN-based MSGFNet 0.58 3.99 92.46
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4.6. Ablation Studies

We conducted ablation studies on the LEVIR-CD dataset to demonstrate the effective-
ness of the MSGF. Specifically, the proposed multi-scale gated fusion module consists of two
units: a multi-scale progressive fusion unit and a gated weight fusion unit. Therefore, we
performed individual corresponding ablation studies on both units. To begin with, “Base”
refers to a Siamese encoder in the absence of any further modules, the multi-scale progres-
sive fusion unit is denoted as “MSPF”, and the gated weight fusion unit is represented
as “GWAF”. More specifically, we removed the MSPF unit to validate its effectiveness. In
this scenario, we utilized only the GWAF to fuse the bi-temporal features. It is essential to
point out that there is no additional input branch generated from the upper-scale GWAF
unit. We replaced the GWAF unit with the general difference fusion mode to validate the
effectiveness of the GWAF unit. In addition, we set up an additional control group. In this
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control group, the network employs the same architecture as the FC-Siam-Diff to produce
the change map.

Table 5 lists the quantitative results of the ablation studies. It can be observed that
the mode “Base” without the MSPF and GWAF units generates the lowest performance.
The results generated from each GWAF and MSPF unit are significantly better than the
“Base” mode. Specifically, the utilization of the GWAF unit results in a 1.99% improvement
in F1 and a 2.66% improvement in IoU. With the help of the MSPF unit, F1 and IoU are
enhanced by 2.71% and 4.40%, respectively. Furthermore, the best results are produced
when both the GWAF and MSPF units are combined at the “Base”. In particular, there is
an enhancement of 1.35% in F1 and 2.78% in IoU when the GWAF unit is added. On the
other hand, when using the MSPF unit alone, F1 and IoU are both improved, by 0.63%
and 1.04%, respectively. In general, these improvements indicate the effectiveness of the
proposed GWAF and MSPF units.

Table 5. Quantitative evaluation results of ablation studies on the LEVIR-CD dataset. The best scores
are marked in Bold.

Methods Pre Recall F1 IoU

Base 90.14 85.05 87.52 77.81
Base + GWAF 90.66 88.39 89.51 80.47
Base + MSPF 91.69 88.83 90.23 82.21

Base + MSPF + GWAF 92.12 89.63 90.86 83.25

Some examples of the results are shown in Figure 10. It is evident that the results
of the “Base” mode have many false positives and false negatives. When the GWAF and
MSPF units are added, respectively, the results improve slightly. Furthermore, when the
GWAF and MSPF are both added, we achieve optimal visualization results. Specifically, the
results have fewer false negatives and false positives, and the boundary details are more
precise. The visual results validate the effectiveness of the GWAF and MSPF units.
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5. Conclusions

This paper proposes a CD method, namely the MSGFNet. To capture useful feature
information, the MSGFNet combines EfficientNetB4 with a Siamese structure to extract
the multi-level features. An MSGFM that comprises an MSPF unit and a GWAF unit
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is proposed to progressively and adaptively fuse bi-temporal multi-scale features. This
module can obtain discriminative fusion features to smooth the details of changed object
boundaries and improve the accuracy of results. Finally, the results obtained from three
publicly available datasets show that the MSGFNet outperforms several SOTA methods in
terms of both effectiveness and complexity. On the WHU-CD, LEVIR-CD, and SYSU-CD
datasets, the MSGFNet achieved improvements of 1.21%, 0.46%, and 1.64% in F1 and 1.68%,
0.77%, and 2.24% in IoU, respectively, compared to the SOTA methods that produced better
values. Additionally, it is evident that the Params and FLOPs for the proposed MSGFNet
are 3.99 G and 0.58 M, respectively. Both values are lower than those of several SOTA
methods. In summary, the proposed MSGFNet outperforms several SOTA CD methods.
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