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Abstract: The Segment Anything Model (SAM) has had a profound impact on deep learning applica-
tions in remote sensing. SAM, which serves as a prompt-based foundation model for segmentation,
exhibits a remarkable capability to “segment anything,” including building objects on satellite or
airborne images. To facilitate building segmentation without inducing supplementary prompts or
labels, we applied a sequential approach of generating pseudo-labels and incorporating an edge-
driven model. We first segmented the entire scene by SAM and masked out unwanted objects to
generate pseudo-labels. Subsequently, we employed an edge-driven model designed to enhance
the pseudo-label by using edge information to reconstruct the imperfect building features. Our
model simultaneously utilizes spectral features from SAM-oriented building pseudo-labels and edge
features from resultant images from the Canny edge detector and, thus, when combined with condi-
tional random fields (CRFs), shows capability to extract and learn building features from imperfect
pseudo-labels. By integrating the SAM-based pseudo-label with our edge-driven model, we establish
an unsupervised framework for building segmentation that operates without explicit labels. Our
model excels in extracting buildings compared with other state-of-the-art unsupervised segmentation
models and even outperforms supervised models when trained in a fully supervised manner. This
achievement demonstrates the potential of our model to address the lack of datasets in various remote
sensing domains for building segmentation.

Keywords: semantic segmentation; unsupervised building extraction; edge-driven model; pseudo-
label

1. Introduction

Remote sensing has been a prevalent method for building segmentation tasks, playing
a crucial role in urban planning, monitoring, and the development of smart cities. Tech-
nologies such as satellite or aerial photography enable image acquisition covering vast
areas without physical presence, significantly reducing the cost of building masks and
establishing remote sensing as a dominant method for building segmentation [1,2].

In recent years, the accumulation of very high-resolution aerial images and the launch
of sub-meter optical satellites have improved the accuracy and building segmentation.
Datasets such as ISPRS Potsdam [3], LoveDA [4], and SpaceNet [5]; building segmentation
challenge datasets have been widely used in both remote sensing and computer vision to
advance building segmentation algorithms. Recent progress in deep learning algorithms
has further enhanced the accuracy and efficiency of building segmentation. Unlike tra-
ditional methods that rely on unstable features such as spectral information or building
edges, a deep learning algorithm utilizes deep features for object segmentation. Encoder–
decoder-based convolutional neural networks (CNNs), such as U-Net [6], Feature Pyramid
Network [7], and DeepLab [8], have yielded breakthrough results in image segmentation.
The encoder–decoder structure enables the model to learn deep features and classify the
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pixels to corresponding labels based on these features. Transformer-based models [9,10],
adopting either the Vision Transformer (ViT) [11] or the Swin Transformer [12] on the model,
have also demonstrated state-of-the-art performance, although with high computational
cost and the requirement of large-scale datasets.

Despite the significant increase in dataset and technical resources, building segmenta-
tion remains challenging in various satellite or aerial images due to variations in spatial and
spectral resolution. Existing datasets often fail to capture all these variations, and creating
new datasets is often a labor-intensive task [13,14]. To address these limitations, training
models with limited image resources have been extensively investigated. Unsupervised
learning involves training models without labeled datasets [15–17], which is one such
approach. Invariant Information Clustering (IIC) [15] transforms images through weak
augmentation and segments them by maximizing mutual information between the features.
Recent methods include self-distillation with no labels (DINO) [18], which was trained in
a self-supervised manner. STEGO [16] used DINO as a backbone architecture to match
corresponding features for segmentation, whereas HP [17] created the models that learned
semantically similar pairs, known as global hidden positives, and used DINO as a feature
extractor. However, unsupervised learning often results in less control over the model, and
classification outcomes are highly dependent on the input data.

Another approach for training models with limited image resources is weakly super-
vised learning. This method typically involves generating pseudo-labels, initially through
low-cost labels and subsequently training the segmentation model with these pseudo-labels
in a fully supervised manner [19]. Pseudo-label refers to generating low-cost labels for un-
labeled data that have the maximum predicted probability and utilizing low-cost labels for
trainable input data as if they were true labels [20]. Low-cost labels in weakly supervised
learning can be categorized as image- [21] and pixel-level labels, including scribbles [22],
points [23], and bounding boxes [24,25]. Although image-level labels are cost-effective,
they cannot infer high-quality and dense locations. Pixel-level labels, on the other hand,
provide insufficient spatial information, often resulting in challenges related to recovering
dense label structures. Edge features are commonly used as guidance in these tasks, but
poor and insufficient edge-detection results can significantly degrade weakly supervised
learning performance [26]. Therefore, generating pseudo-labels and implanting proper
guidance to prevent overfitting is critical for weakly supervised segmentation.

Pseudo-labels in this context are generally obtained from superpixel segmentation [27]
class activation map (CAM) [21,28] or pretrained models. Xu et al. [27] conducted an
image classification approach using label constraint and edge penalty based on a superpixel
algorithm. Li et al. [21] introduced a two-step segmentation network, which consisted
of generating pseudo-labels and training, applying CAM and threshold to obtain the
pseudo-label, and adopting CRF-loss [29] to enhance the pseudo-label. However, these
tasks require image-level labels, and it is also difficult to infer high-quality and dense
location information from image-level labels [30,31].

Meanwhile, the Meta AI research team, operating within the broader context of ar-
tificial intelligence at Meta (formerly known as Facebook), has proposed a foundation
segmentation model named the Segment Anything Model (SAM) [32]. Trained extensively
with a large amount of data, SAM demonstrates versatility in various domains, partic-
ularly in remote sensing applications. Ren et al. [33] conducted a comprehensive study,
assessing SAM performance on various remote sensing segmentation datasets, including
Solar [34], Inria [35], DeepGlobe and DeepGlobe Roads [36], 38-Cloud [37], and Parcel
Delineation [38]. Their findings indicated that SAM exhibits comparable performance to
the supervised model in building and cloud segmentation but faces challenges in road
segmentation and parcel delineation, primarily due to occlusion in partial objects such as
cars or buildings. SAM operates on a prompt-based mechanism, necessitating prompt or
additional class information for the accurate annotation of segmented masks. While the
model can automatically generate point prompts, the “segment anything” approach in
spreading points from the background often leads to false positive segmentation.
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Based on the segmentation results of SAM, our research aims to create an unsupervised
building segmentation framework using SAM and spectral index-based pseudo-labels cou-
pled with a lightweight edge-driven weakly supervised model. Our framework follows the
general weakly supervised learning structure for generating pseudo-labels and applying
a weakly supervised model. However, unlike other weakly supervised learning frame-
works, our approach generates pseudo-labels in an unsupervised manner, eliminating
the need for datasets for the entire process. Our framework begins by extracting features
using SAM and spectral indices. After extraction, these features are used as inputs for the
weakly supervised models. The model uses edge information derived from the Canny
edge detector [39] and generates a saliency map corresponding to classes based on this
edge information. The saliency map guides object boundaries, preventing the model from
overfitting to pseudo-labels. The results show that our model achieves greater accuracy in
extracting buildings than previous unsupervised models for building segmentation. The
overall process is shown in Figure 1.

Figure 1. Flowchart of the entire unsupervised building segmentation framework.

The subsequent content of this study is structured as follows: Section 2 introduces
the methodology used, Section 3 designs the experiment and exhibits experimental re-
sults, Section 4 discusses the experimental results and conducts further experiments, and
Section 5 concludes.

2. Materials and Methods

The overall process consists of two main subtasks: the unsupervised feature extractor
and weakly supervised learning. In the first subtask, the unsupervised feature extractor
extracts features from the image and generates pseudo-labels. This involves the use of
SAM, spectral indices, and the Canny edge detector. Given that SAM tends to yield over-
segmented results and that spectral indices necessitate thresholding for segmentation, a
combination of area and index value-based thresholding was employed to generate the
pseudo-label. Subsequently, in the weakly supervised learning phase, the pseudo-label and
edge map were used as inputs to the proposed model. This model strategically uses the
extracted edge features to prevent overfitting to the pseudo-label. To further enhance the
results, conditional random fields (CRFs) [40] were applied as a post-processing step. The
following subsections provide a detailed explanation of each step in the methodology.

2.1. Unsupervised Feature Extractor

The foundation of our unsupervised feature extractor lies in the SAM, a well-established
model for segmentation tasks. The structure of SAM can be seen in Figure 2. The model
generates image embedding from the image encoder and the decoder producing segmented
objects, queried by a variety of input prompts. The initial segmented objects obtained
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using the spreading point method are shown in Figure 3. The detailed inspection on initial
segmented objects in Figure 3 demonstrates that SAM encounters challenges, notably in
the omission and over-segmentation of objects. While SAM demonstrates proficiency in
extracting various objects, its criteria for extracting cars and roads exhibit instability, leading
to omission errors. In addition, although buildings are generally well-extracted, the model
tends to over-segment buildings, creating multiple masks instead of a singular one.

Figure 2. Structure of SAM with a point prompt and corresponding mask.

Figure 3. Sequential masking of polygons: (a) Original image, (b) Initial SAM masks generated on
auto-prompt mode, (c) The result after applying area-based threshold, (d) The result after applying
NDVI and BAI-based threshold.

To address these issues, we incorporate spectral index-based thresholding algorithms,
which are known for being computationally straightforward [41] and for the independence
from prior information on imagery [42]. Spectral indices, which leverage bands such
as near-infrared (NIR), are widely used for classifying generated polygons. Given that
NIR exhibits distinct radiation characteristics in water, vegetation, shadows, and other
objects, it is frequently used for discrimination. One commonly used spectral index is the
normalized difference vegetation index (NDVI), which is renowned for its effectiveness
in emphasizing vegetation and is still applicable for dense vegetation detection. NDVI
is widely employed for vegetation detection due to its algorithmic simplicity and the
prevalent availability of the NIR band in remote sensing data; it is also known to be efficient
when used as a low-cost pseudo-label [43]. In our approach, we applied an area and
spectral index-based thresholding algorithm to annotate, mask out, and merge objects.
Predominantly segmented objects include buildings, cars, trees, and roads. To refine the
results, we implemented a heuristic thresholding algorithm, rejecting objects with sizes
exceeding 2500 m2 or falling below 10 m2. This strategic thresholding significantly reduces
the false-positive segmentation rate and enhances the Precision of the final results.

After applying area-based thresholding algorithm on polygons, we calculated the
mean value of the spectral indices on the extracted polygons to mask out unwanted objects.
NDVI and BAI [44] were sequentially applied to identify polygons in which vegetation and
road predominate. Each object was then classified based on the heuristically determined
threshold value. Recognizing that a heuristic approach to thresholding may introduce
human intervention and bias into the model, we mitigated this by setting the threshold as
low as possible, thereby minimizing commission errors. Given that our model operates on
weakly supervised learning and uses edge information to distinguish objects, it does not
entirely rely on pseudo-labels and is intrinsically robust to imperfect pixel label classes and
threshold values. Therefore, the bias introduced by pixel classes from the heuristic approach
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can be disregarded to some extent. Considering the performance of the spectral index,
building classes were first extracted, followed by the sequential removal of vegetation and
roads. The result of the generated pseudo-label is shown in Figure 4.

NDVI =
NIR − Red
NIR + Red

, (1)

BAI =
Blue − NIR
Blue + NIR

, (2)

where Blue, Red, and NIR refer to the brightness values of the corresponding bands: blue,
red, and near-infrared.

While misclassified polygons are eliminated through the application of spectral indices,
the pseudo-label results still exhibit various misclassifications. Consequently, although the
model incorporates the generated pseudo-label during training, it must not solely rely on
this information and requires additional data to prevent overfitting. To address this, we
used the Canny edge detector to extract edge information from objects. The resulting edge
information is used as guidance for reconstructing the building shapes. Compared with
other well-known edge detectors, such as Sobel or Laplacian edge detectors, the Canny
edge detector incorporates a Gaussian noise-filtering algorithm. This feature enhances the
robustness of the result to speckle noises or rough textures, rendering it more reliable for
guiding the identification of building structures [45]. Thus, the Canny edge detector was
considered suitable for the edge extraction module.

Figure 4. The results after unsupervised feature extraction: (a) Original image, (b) The result after
applying Canny edge detector, (c) Ground-truth for comparison, (d) Generated pseudo-label.

2.2. Weakly Supervised Learning

Drawing inspiration from the one-stage structure-aware weakly supervised network
(SAWSN) [26], we incorporated edge information into our model to prevent overfitting and
enhance shape accuracy. While the original model focuses on weakly supervised building
extraction using scribble and edge inputs, our approach uses pseudo-labels instead of
scribble. Moreover, our model is designed to be versatile and trainable in various domains,
implying the need to represent various remote-sensing image domains while maintaining
a lightweight structure that is suitable for training on a limited amount of data. Therefore,
substantial modifications were made to our model, as illustrated in Figure 5.
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Figure 5. The structure of our proposed edge-driven model.

Our model is designed with two major objectives, each associated with specific corre-
sponding loss functions. The first objective involves pixel classification to assign pixels to
corresponding objects, while the second focuses on generating object edges for the recon-
struction of a building structure. To address these objectives, we introduce two branches:
the Spectral Feature Extractor (SFE) and Edge Feature Extractor (EFE). The SFE is responsi-
ble for learning the classes of the objects at the pixel level and classifying each pixel. We
use a standard CNN encoder–decoder structure for SFE, given the model’s training on a
single remote-sensing image and the efficiency of CNNs with relatively small amounts of
images compared with recent Transformer-based models. The loss function of the SFE is
defined by Equation (3). Although most encoder–decoder structures use skip-connection
structures to obtain spatial information, the role of SFE is concentrated solely on spectral
features. Hence, we apply skip connection exclusively to the deepest convolution block,
thereby obtaining the required spatial information from the EFE branch:

LSFE = − 1
N

N

∑
i=1

log

(
eyi

∑C
i=1 eyi

)
, (3)

where yi and ŷi are the output and output after the sigmoid function, C is the number of
classes, and N is the batch size.

The EFE branch’s primary role is to extract edge information from the features gener-
ated by SFE. To achieve this, EFE receives deep and shallow features from SFE and passes
these features through a pooling block, consisting of 1 × 1 and 3 × 3 convolution blocks,
and a scale adjustment layer to standardize features in terms of size and channels. After
the pooling block, the layers are concatenated and further adjusted by passing through
1 × 1 and 3 × 3 convolution layers.
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The EFE branch integrated attention mechanism is used to reduce the weight of
unwanted edge features. The attention mechanism enhances the model’s performance by
gaining information on key elements. There are two general types of attention mechanisms,
which are channel attention (CA) and spatial attention (SA). CA refers to the channel
dimensions of the input features and assigns different weights according to the importance
of each channel. Similarly, SA refers to giving different weights to different spatial locations
in a feature map. The Convolutional Block Attention Module (CBAM) [46] integrates both
attention mechanisms. CBAM consists of two sequential channel and spatial sub-modules,
using max and average pooling on both channel and spatial dimensions to generate an
attention map (Figure 6). The CBAM module plays a fundamental role in the EFE branch
of our model, emphasizing important features and de-emphasizing unimportant edge
features, thereby making the model robust to the edges of small objects.

Figure 6. Structure of CBAM.

After passing through an additional pooling block and sigmoid function, the result is
compared to the edge label generated by the Canny edge detector. The loss function for
EFE and Ltotal are defined in Equations (4) and (5), respectively:

LEFE = − 1
N

N

∑
i=1

(ti log(ŷi) + (1 − ti) log(1 − ŷi)), (4)

Ltotal = LSFE + λLEFE, (5)

where yi, ŷi are the output and output after the sigmoid function, C is the number of classes
number, ti is the value of the true label, N is the batch size, λ is the weight for adding the
loss function.

The EFE branch induces edge information, generating sharper building segmentation
results and preventing overfitting to pseudo-labels. However, this method also incorpo-
rates point edge noises on the results and makes the model susceptible to edge noises. We
implement dense conditional random fields (CRFs) for enhancing the building edges while
reducing noises. The objective of applying dense CRFs in our model is to enhance the
pseudo-label without requiring additional human-annotated labels, resulting in improved
sharpness and accuracy of the edges in the segmentation results. CRFs are a class of proba-
bilistic graphical models that have proven to be effective in various machine learning tasks,
particularly in image segmentation. CRFs model the relationships between pixels through
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two types of potentials: unary and pairwise. Unary potentials capture the individual likeli-
hood of each pixel belonging to a particular class, which is often derived from pre-trained
classifiers or deep neural networks. Pairwise potentials encode the interactions between
neighboring pixels by considering the pixel-to-pixel relationship. The total energy function
E could be defined as the summation of unary and pairwise potential, and our goal could
be defined as the minimization problem of the energy function E:

x∗ = argminxE(x), (6)

E(x) = ∑
i

ψu(xi) + ∑
i,j

ψp
(
xi, xj

)
, (7)

where ψu is unary potential calculated from our model, ψp is pairwise potential, x represents
the set of binary building labels, and i and j represent the pixel location.

The equation for unary potential and pairwise potential can be defined using
Equations (8) and (9). Unary potential is calculated from our trained model and pairwise
potential is calculated from the relationship between nearby pixels:

ψu(xi) = − log P(xi)︸ ︷︷ ︸
model result

, (8)

ψp
(
xi, xj

)
= µ

(
xi, xj

)
k
(
xi, xj

)
, (9)

k
(

xi, xj
)
= w1 exp

[
−
∣∣pi − pj

∣∣2
2σ2

α
−
∣∣Ii − Ij

∣∣2
2σ2

β

]
︸ ︷︷ ︸

appearance

+w2 exp

[
−
∣∣pi − pj

∣∣2
2σ2

γ

]
︸ ︷︷ ︸

smoothness

, (10)

µ(xi, xj) is the binary term that penalizes the nearby pixels with different labels:
µ(xi, xj) = 1 if xi = xy, and otherwise zero. The term k(xi, xj) calculates contrast between
two nearby pixels with summation of appearance kernel and smoothness kernel, with
weight of w1 and w2 for each. The appearance kernel uses the difference in their positions
p and the information of pixel color I, controlled by the standard deviation of σα and σβ

for each. The smoothness kernel uses pixel proximity to remove small isolated regions
and give the mask a much sharper boundary, controlled by the degree of smoothness
with standard deviation value of σγ. The terms σα, σβ, and σγ are adjusted to match the
purpose. σα was set low to focus on high-frequency building edges and σβ was set high to
consider color variety in roofs. σγ was set low for localized smoothing. This fine-tuning
on Figure 7 optimizes the CRF’s impact without additional labeled data, ensuring precise
corrections to the model’s predictions, particularly in capturing building details while
mitigating potential inaccuracies.

Figure 7. The fine-tuning of CRFs. The red box represents the best result.
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3. Experiments
3.1. Datasets

Our approach eliminates the need for human-annotated ground-truth labels during
training. Labels were exclusively used to evaluate the unsupervised segmentation results
and model performance. For evaluation, we used the building class of the Potsdam dataset
(Figure 8) and Vaihingen dataset. The Potsdam dataset consists of 38 patches with size
of 6000 × 6000, with 6 classes: building, clutter, tree, low vegetation, car, and impervious
surfaces. The spatial resolution of the dataset is 0.05 m, and the images are accurately
orthorectified. This dataset is widely used in various segmentation tasks, including un-
supervised building segmentation, vegetation segmentation, and road segmentation. In
our experiments, we used 24 patches of the Potsdam dataset for training and reserved
the remaining 14 patches for evaluation purposes. The patches were divided into size of
500 × 500, and one out of nine train patches was used for validation. Thus, 3072 out of
3456 divided patches were used for train and the remaining 384 patches were used for
validation. The 2016 divided patches were used for evaluation.

The Vaihingen dataset consists of 33 patches with 6 classes: building, clutter, tree, low
vegetation, car, and impervious surfaces. The spatial resolution of the dataset is 0.09 m
and the dataset includes a digital surface model within the file. The Vaihingen dataset has
3 bands of red, green, and near-infrared. Among the 33 patches, the Vaihingen dataset has
16 labeled patches for evaluation, which were used for evaluation in our research. We also
divided the patches into size of 500 × 500, and one out of nine train patches were used for
validation. Thus, 249 out of 280 divided patches were used for train and the remaining
31 patches were used for validation. The 241 divided patches were used for evaluation.

Figure 8. ISPRS Potsdam dataset. (a) Original Image, (b) Original 6-class Potsdam label, (c) Extracted
Potsdam building label.

3.2. Evaluation

In our evaluation process, we chose the f1-score and IoU (Intersection over Union)
for comparison. These metrics are among the most widely used evaluation measures in
segmentation tasks. The f1-score determines the harmonic mean of Precision and Recall.
Precision is defined as the ratio of accurately predicted positive results to the total number
of positive results predicted by the model. Conversely, Recall denotes the ratio of true
positive results to the total number of actual positive results. By calculating the harmonic
mean, the f1-score can indicate whether the segmentation rate of the model is balanced. We
also used IoU to follow the tradition of evaluating building segmentation. IoU refers to the
ratio of the intersection area between the ground-truth and predicted masks to the union
area of the two. The metric is expressed in Equation (14):
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Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

f1-score = 2 ×
(

1
Precision

+
1

Recall

)−1
, (13)

IoU =
TP

TP + FP + FN
, (14)

where TP represents true positives, FP corresponds to false positives, and FN denotes false
negatives.

3.3. Training and Validation

In terms of training strategies, we incorporated Gaussian noise augmentation and
random crop augmentation. Given that our model classifies pixels based on SAM-based
pseudo-labels and reconstructs building structures using edge information, introducing
edge information to the model inherently makes it susceptible to point or edge noise.
Gaussian noise augmentation was applied to enhance the model’s robustness to noises. For
random crop augmentation, we cropped the image size to 500 × 500 and then randomly
cropped them to 384 × 384. For the training strategy, the weight λ in Equation (5) was set
to 0.2, and a learning rate of 0.001 was used with the Adam optimizer [47]. The batch size
was set to 8, and the model was trained on a single NVIDIA GeForce RTX 2080 Ti GPU
with 8 GB memory using the PyTorch library. DINO backbone models, HP and STEGO,
and ResNet50 backbone models, IIC and MANet, were initialized in pretrained weights,
and the rest were initialized in Kaming initialization [48].

Figure 9 represents the corresponding loss value of our model. The validation loss
is calculated within the generated pseudo-label and edge map. Our model has two loss
functions: LEFE, which is boundary loss, and LSFE, which is classification loss. Each
represents the loss value for boundary and spectral information and guides the model to
focus on corresponding features. The analysis of the loss value implies that, though the
boundary loss keeps decreasing, classification loss reaches a minimum value from epoch
100 to epoch 150. Therefore, to balance between the two corresponding losses, the model
with lowest validation score was saved and used for evaluation.

Figure 9. Loss values using the unsupervised method.
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3.4. Experimental Results

We conducted a comprehensive comparison with the state-of-the-art unsupervised
segmentation model, IIC [15], STEGO [16], and HP [17]. IIC [15] uses contrastive learning
based on weak augmentation and is a CNN-based model with superior accuracy in un-
supervised segmentation, particularly on the Potsdam dataset, while STEGO and HP are
state-of-the-art vision Transformer-based models that show great accuracy on the Potsdam
dataset. Furthermore, to assess the inherent performance of our model, we conducted a
comparison by training it with a fully supervised dataset and compared the results with
those obtained from fully supervised models. For this purpose, four well-established
models, namely U-Net [6], DeepLabV3+ [8], Deep Residual U-Net [49], and MANet [50]
were selected. We then compared the results of these models with our results, which were
trained on a supervised dataset.

3.4.1. Unsupervised Models

The visual comparison and quantitative evaluations of the unsupervised models on
the Potsdam dataset are presented in Figure 10 and Table 1. Notably, our model outper-
forms other models, achieving the best results in building segmentation, with an f1-score of
0.78 and IoU of 0.64. Compared with STEGO and IIC, our model significantly reduces the
misclassification rate of pixels. Unsupervised models often rely on the similarity or contrast
of extracted features, potentially leading to a lack of control over the training process. How-
ever, our model uses the pixel features derived from SAM-based pseudo-labels, providing
a guiding framework for building classification. This approach enhances control over the
learning process, resulting in an overall improvement in building segmentation accuracy.

Figure 10. The result for unsupervised models on Potsdam dataset, each image represents: (a) Original
Image, (b) IIC, (c) STEGO, (d) HP, (e) Pseudo-Label, (f) Proposed Method, (g) Ground-Truth.

Table 1. Comparison of unsupervised models on Potsdam.

Dataset Models f1-Score Precision Recall IoU

Potsdam

IIC 0.4587 0.4315 0.5110 0.3013
STEGO 0.7557 0.7775 0.7408 0.6122
HP 0.7771 0.8063 0.7532 0.6390
Pseudo-Label 0.7363 0.7273 0.7548 0.5850
Proposed Method 0.7829 0.8569 0.7231 0.6463
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IIC encountered challenges in consistently generating reliable building segments.
The primary factor contributing to this issue was the inherent instability in the criteria
for identifying building objects. IIC derives features by discerning contrasts between
original and weakly augmented images, thereby rendering the segmentation of buildings
with diverse roof features into a singular class exceptionally challenging. Consequently,
IIC selectively recognized only those buildings exhibiting specific roof features, while
dismissing those with alternative roof types. While the outcomes were comparatively
improved, similar issues were observed in the context of STEGO and HP. In the case of
STEGO, there was an incorporation of cars within the building class, and a simultaneous
exclusion of buildings with specific roof types. Similarly, though discrimination of buildings
was slightly better than STEGO, HP also incorporated cars within the building class. In
contrast, our proposed model demonstrated a noteworthy distinction by acquiring a
comprehensive understanding of generic criteria applicable to various roof types.

The similar results could be observed in Vaihingen dataset on Figure 11 and Table 2.
The results show that our model greatly outperforms the other models, especially in label
consistency and discrimination of building edges. The visual comparison on Figure 11
proves that our model shows exceptional consistency in generating building segments,
while others frequently failed to create accurate building segments. Though pseudo-label
proved reliability on preserving the building edges, it often included other objects, leading
to decrease in Precision score. The quantitative comparison on evaluation metrics also
proves that our model is capable of generating building segments regardless of image
domain. Considering that the images from Vaihingen dataset consists of NIR, R, G bands
instead of R, G, B bands and spatial resolution of 0.09, instead of 0.05 m, our model consis-
tently expressed better results than other models even when the image domain changed.

Figure 11. The result for unsupervised models on Vaihingen dataset, each image represents: (a) Origi-
nal Image, (b) IIC, (c) STEGO, (d) HP, (e) Pseudo-Label, (f) Proposed Method, (g) Ground-Truth.

Table 2. Comparison of unsupervised models on Vaihingen.

Dataset Models f1-Score Precision Recall IoU

Vaihingen

IIC 0.4042 0.3793 0.4422 0.2618
STEGO 0.7330 0.7068 0.7613 0.5741
HP 0.7567 0.7709 0.7430 0.6226
Pseudo-Label 0.7108 0.7066 0.7156 0.5504
Proposed Method 0.7779 0.8242 0.7483 0.6453

An important highlight of our model is its substantial improvement over the accuracy
of the pseudo-label, which serves as a trainable dataset for our weakly supervised model.
Visual comparison on full images, Figure 12, between the pseudo-label and our proposed
method reveals a significant reduction in misclassified pixels clusters, contributing to
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increased Precision, f1-score, and IoU. The increase in Precision score was exceptional,
from 0.7066 to 0.8242, which implies that the overly generated building segments were
greatly reduced after being trained by our model. The result shows that edge information
derived from the Canny edge detector not only guides building shape reconstruction but
also prevents overfitting to the pseudo-label, thereby enhancing general pixel classifica-
tion performance.

Figure 12. The result for unsupervised models on full Potsdam images; each image represents
(a) Original Image, (b) IIC, (c) STEGO, (d) HP, (e) Pseudo-Label, (f) Proposed Method, (g) Ground-
Truth.

3.4.2. Supervised Models

The comparison of our model with the unsupervised model implies that our model
shows great performance compared with the other unsupervised segmentation models.
However, the segmentation accuracy was due to the great improvement in clusters of
misclassified pixels rather than the model’s delicate ability to preserve edges. To solely
evaluate the performance of our model, we trained our model on a fully supervised manner
and compared it with other fully supervised models (Figure 13, Table 3). The visual
inspection in Figure 13 implies that our model also shows comparable performance on
building segmentation compared to supervised models. The major factor that affected the
increase in accuracy was the great improvement in preserving edges. Compared to other
models, our model directly uses edge information on training, and this generally increases
the performance on the segmentation of building boundaries.

In a quantitative analysis, our model yielded comparable outcomes to MANet and
ResUNet. MANet achieved f1-score of 0.8540, Precision of 0.8601, Recall of 0.8536, and IoU
of 0.7481, and ResUNet achieved f1-score of 0.8504, Precision of 0.8687, Recall of 0.8381,
and IoU of 0.7427. Our model achieved similar value in f1-score and IoU but exhibited
higher Precision of 0.9072 and lower Recall of 0.8080. These metrics show that our model
has a tendency to produce fewer building segments and yields high Precision yet lower
Recall. The performance of DeepLabV3+, which similarly integrates a CRF module for
post-processing, also exhibited great edge results, with f1-score of 0.8344 and IoU of 0.7216.
However, the consistency of results was much better in our proposed model. DeepLabV3+
effectively retained the building edges but demonstrated a tendency to classify pixels
within the confines of building boundaries, generating noises inside the segmented objects,
while our model consistently classified pixels in a stabilized manner.

Similar trends could be also observed in the Vaihingen dataset (Figure 14, Table 4). On
visual inspection, our model greatly preserved the edges of buildings compared to other
models. MANet and ResUNet also proved great ability to preserve building edges but both
were not as sharp as our model. Our model provided the best accuracy, with f1-score of
0.8435 and IoU of 0.7295, with higher Precision score and lower Recall score compared to
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ResUNet and MANet. Our model directly uses edge information on the model for edge
refinement, and this led to increase in Precision, while reducing the Recall parameter.

Figure 13. The result for supervised models on Potsdam: (a) Original image, (b) U-Net, (c) ResUNet,
(d) DeepLabV3+, (e) MANet, (f) Proposed Method, (g) Ground-Truth.

Table 3. Comparison of supervised models on Potsdam.

Methods Models f1-Score Precision Recall IoU

Potsdam

DeepLabV3+ 0.8344 0.8371 0.8444 0.7216
ResUNet 0.8504 0.8687 0.8381 0.7427
U-Net 0.8228 0.8333 0.8363 0.7088
MANet 0.8540 0.8601 0.8536 0.7481
Proposed Method 0.8512 0.9072 0.8080 0.7442

Figure 14. The result for supervised models on Vaihingen: (a) Original image, (b) U-Net, (c) ResUNet,
(d) DeepLabV3+, (e) MANet, (f) Proposed Method, (g) Ground-Truth.

Table 4. Comparison of supervised models on Vaihingen.

Methods Models f1-Score Precision Recall IoU

Vaihingen

DeepLabV3+ 0.8241 0.8204 0.8487 0.7016
ResUNet 0.8335 0.8286 0.8381 0.7142
U-Net 0.8183 0.8139 0.8357 0.6953
MANet 0.8415 0.8257 0.8583 0.7262
Proposed Method 0.8435 0.8632 0.8242 0.7295
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4. Discussion

Comparison with both unsupervised and supervised segmentation models reveals
that our building segmentation framework outperformed its unsupervised counterparts
and was also capable of being trained in a fully supervised manner. On comparison
between unsupervised models, our model proved excellence in discrimination of building
objects, with f1-score of 0.7829 and IoU of 0.6463. State-of-the-art unsupervised models
rely on contrast or similarity of building features, and this often led to unstable criteria
for discrimination of buildings. Our model, on the other hand, utilizes pseudo-labels for
training and shows better performance in discriminating building objects. Notably, our
model also exhibited better performance than the pseudo-label itself that was used to train
our model. The edge information improved the edges of pseudo-labels and increased
stability in discrimination of buildings.

We further compared our model with fully supervised models to analyze the perfor-
mance of our model itself. Unsupervised models tend to generate clusters of misclassified
pixels and hinder the analysis on model itself. Our model utilizes edge information on
training and thus exhibits excellence on preserving edges. The result also proved the ability
of our model to preserve exact boundaries of buildings. On visual inspection, we found out
that the edges of buildings were greatly improved on our model, while other models often
generated noises on building edges. DeepLabV3+ which also. . . building edges: removed.

Though our model exhibits exceptional performance on both supervised and unsuper-
vised models, several questions remain unclear. First, inducing edge information clearly
shows efficiency in improving pseudo-label, implying that the limit to which the model
receives and utilizes the edge information should be explicitly identified. Second, pseudo-
label was generated from SAM polygons with spectral index and area threshold, but the
generalized efficiency of utilizing edge information to enhance inaccurate pseudo-label
should be analyzed. Finally, the model was designed to be trained on pseudo-labels, which
are often insufficient in quantity, and, thus, the model should have few parameters. There-
fore, in this section, we conducted several studies to deeply investigate our framework and
compensate for the remaining questions.

4.1. Effects of Edge Information

The incorporation of edge details significantly increased overall accuracy in both
unsupervised and supervised contexts, providing crucial shape information to the model.
To balance between the loss from pseudo-labels and the informative edge data (as defined in
Equation (5)), we introduced a weight parameter λ that was set to 0.2. However, to identify
the optimal utilization of edge information and understand the model’s interpretation of
such details, we systematically varied the weight. By applying different weight values, we
assessed how edge information influences the model’s performance. The result could be
seen on Figure 15 and Table 5.

In examining the relationship between model weight and evaluation metrics, the
inclusion of edge information consistently demonstrated an enhancement in the Recall
parameter. Initially, with zero weight (no edge information), the model exhibited a Pre-
cision of 0.8196 and a Recall of 0.6306, implying an inclination to less-labeled buildings.
Upon incorporating edge information, the Recall metric exhibited a notable improvement,
ranging from 0.6740 to 0.7429, indicating the successful guidance of the edge information
in reconstructing building shapes and reducing unnecessary segmentation.

Despite the considerable boost in Recall through the incorporation of edge information,
the Precision parameter exhibited independence from changes in weight. No discernible
pattern emerged regarding the impact of weight on Precision. Specifically, a weight of
0.2 significantly exceeded the Precision of zero weight, while a weight of 0.5 led to a
substantial decrease. The intended role of edge information in reconstructing building
structures faced challenges due to variations in the results of the Canny edge detector,
particularly concerning different roof types. For instance, rough roof textures did not
consistently reveal clear roof types, impacting the Precision parameter, as edge features
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did not consistently align with building boundaries. Consequently, the application of
edge information contributed to increased Precision to a certain extent, but an excess of
information led to a decrease in Precision.

Similar trends were observed in f1-score and IoU. Weight values of 0.2 and 0.3 exhibited
superior performance, yielding f1-scores of 0.7828 and 0.7641 and IoUs of 0.6463 and 0.6207,
respectively. However, a decline in performance occurred upon reaching a weight of 0.5,
resulting in an f1-score of 0.6714 and an IoU of 0.5099. Notably, the decrease in Precision
at higher weights surpassed the increase in Recall, contributing to an overall decline
in performance.

Figure 15. The evaluation metrics on weight λ. The center line exhibits the metrics with zero weight.

Table 5. Comparison of weight λ and evaluation metrics.

Weight

Metrics 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f1-score 0.7065 0.7138 0.7828 0.7641 0.7186 0.6714 0.6998 0.7055
Precision 0.8196 0.7057 0.8569 0.8595 0.6832 0.6169 0.6789 0.7387
Recall 0.6306 0.7326 0.7531 0.6922 0.7659 0.7529 0.7313 0.6863
IoU 0.5488 0.5583 0.6563 0.6207 0.5638 0.5099 0.5412 0.5484

4.2. Further Application

To further examine the availability of our method to be generalized on various pseudo-
labels, we conducted the same task on vegetation and road classes with identical framework:
generating the pseudo-label and enhancing the pseudo-label. We simply added vegetation
and road classes on our pseudo-label by adding NDVI and BAI thresholded pixels on each
class. The result can be seen in Figure 16 and Table 6.
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Figure 16. The result for building (red), vegetation (green), and road (blue): (a) Original Image, (b) IIC,
(c) STEGO, (d) HP, (e) Pseudo-label with NDVI and BAI, (f) Proposed Method, (g) Ground-Truth.

Table 6. Comparison of f1-score and IoU for building, vegetation, and road.

f1-Score IoU

Methods Models Bldg. Veg. Road. Bldg. Veg. Road.

Unsupervised

IIC 0.4587 0.8237 0.5789 0.3013 0.7021 0.4112
STEGO 0.7557 0.8007 0.7144 0.6122 0.6759 0.5570
HP 0.7771 0.8461 0.7928 0.6390 0.7030 0.6578
Pseudo-Label 0.7363 0.7762 0.6640 0.5850 0.6455 0.5012
Proposed Method 0.7829 0.8108 0.7222 0.6464 0.6887 0.5677

The f1-score and IoU for our model in the vegetation class were 0.8108 and 0.6887
respectively, outperforming the result of STEGO. The standout observation is the notable
increase in performance of our model compared to the pseudo-label. Similar increase in
accuracy of pseudo-label could be observed in road class. Our model achieved an f1-score of
0.7222 and an IoU of 0.5677 in road class, outperforming both IIC and STEGO. The notable
increase in our model’s f1-score and IoU compared to pseudo-label was also observed in
road class, which were 0.6640 and 0.5012.

Remarkably, our model consistently outperformed the label itself not only in building
class but also in vegetation and road class. These findings underscore the efficacy of
our generalized framework, involving the strategic generation and enhancement of a
pseudo-label based on edge information. This approach successfully extends the model’s
applicability from buildings to various land cover classes.

4.3. Model Parameters

For application analysis, we compared the parameter numbers, training time, and
inference time of our model with those of the others in Table 7. We trained the models with
yjr Vaihingen dataset and recorded the time for 100 epochs. Compared with unsupervised
models, our model has fewer trainable parameters than HP and STEGO, yet achieves
superior accuracy for building segmentation than both unsupervised models. IIC costs
less time for training but shows exceptionally lower segmentation performance compared
to our model. Compared with supervised models, our model has the least number of
parameters, yet shows better performance than most models. The results show that our
model is efficient enough to achieve a balance between segmentation performance and
model complexity. Even with fewer parameters, our model outperforms the segmentation
performance, and, thus, the model can be used on various unsupervised or supervised
building segmentation tasks.
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Table 7. Comparison of model parameters.

Methods Models Parameter Trainable Running
Time (h)

Inference
Time (ms)

Supervised

DeepLabV3+ 41 M 41 M 0.78 9.81
ResUNet 31 M 31 M 0.85 17.70
U-Net 23 M 23 M 0.80 16.19
MANet 36 M 36 M 0.61 12.76

Unsupervised

STEGO 49 M 27 M 2.36 41.10
IIC 4 M 4 M 0.48 22.36
HP 87 M 9.8 M 1.92 107.13
Proposed Method 8 M 8 M 0.52 23.78

4.4. Research Limitations

Our framework has several limitations despite the fact that our framework presented
excellence in unsupervised segmentation. Our framework shows a tendency to underes-
timate the building segments, which results in high Precision and low Recall. The major
cause lies beneath the structure of our model. We incorporates edge information on our
model to refine the inaccurate pseudo-labels. However, excessive refinement of building
edges led to lower Recall parameters despite the higher value of Precision.

Another limitation for our framework is that our framework is internally weak to
shadow features. SAM tends to identify shadow objects as distinct features and generally
classify shadow as individual objects. Though there are some spectral indices such as
ISI [51] that could be used to discriminate shadow objects, the objects that lie beneath the
shadow are hard to discriminate based on our framework. Therefore, to be applicable in
areas with shadows, further enhancement to the model should be made.

The detailed inspection in Figure 17 shows that our model incorporates salt-and-
pepper noises on the model. Though the edge information provides sufficient information
for reconstructing building structure, the edge information also incorporates the unwanted
edge noises on the model, thereby generating salt-and-pepper noises. Several approaches
have been incorporated in our model, such as applying Canny edge detector, inducing
attention module for edges, or fine-tuning dense CRFs, but the excessive edge noises kept
appearing. This noises may be crucial to practical applications and, thus, further studies
are required to reduce noises.

Figure 17. Detected salt-and-pepper noises in an unsupervised method.

5. Conclusions

In conclusion, our study introduces an innovative unsupervised framework for build-
ing segmentation. Instead of generating pseudo-labels by using low-cost labels, our frame-
work uses SAM and spectral index-based labeling to enhance Precision in an unsupervised
setting. In addition, we generated an edge-driven model that uses edge information for
precise building shape reconstruction. This strategy not only prevented overfitting to
pseudo-labels but also guided accurate building shape reconstruction in both unsupervised
and supervised learning. Comparative analysis against state-of-the-art unsupervised seg-
mentation models highlighted our model’s superior accuracy. Moreover, when compared
with fully supervised models, our model significantly improved segmentation boundaries,
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designed not only for unsupervised building segmentation but also for supervised tasks,
and demonstrated exceptional performance in building segmentation.

However, future research is needed to address several limitations identified in this
study. Despite achieving superior results in f1-score and IoU, our model consistently
tended to underestimate building segments in both unsupervised and supervised learning,
leading to lower Recall despite maintaining high Precision. Inducing the edge information
on the model greatly improved the performance but also made the model susceptible to
noises. Furthermore, though several adjustments were made in the model to reduce edge
noises through techniques like adding Gaussian noises or applying dense CRFs, the model
prsesented weakness in segmenting rough roof surfaces. This constraint also contributed to
a decrease in Recall, and further study is required to obtain robustness to various building
roof surfaces.

Nevertheless, we established a comprehensive framework with the potential to signifi-
cantly enhance unsupervised building segmentation tasks. The framework’s capacity to
learn building features from inaccurate pseudo-label and edge information gives robustness
to various images, and the model’s simplicity in structure makes it available to be trained in
various conditions. Therefore, based on these advantages, our framework holds potential
to address the lack of datasets in various aerial domains for building segmentation and
also in other segmentation tasks, including land cover classification.
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