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Abstract: Contrastive learning allows us to learn general features for downstream tasks without
the need for labeled data by leveraging intrinsic signals within remote sensing images. Existing
contrastive learning methods encourage invariant feature learning by bringing positive samples
defined by random transformations in feature spaces closer, where transformed samples of the same
image at different intensities are considered equivalent. However, remote sensing images differ
from natural images in their top-down perspective results in the arbitrary orientation of objects and
in that the images contain rich in-plane rotation information. Maintaining invariance to rotation
transformations can lead to the loss of rotation information in features, thereby affecting angle
information predictions for differently rotated samples in downstream tasks. Therefore, we believe
that contrastive learning should not focus only on strict invariance but encourage features to be
equivariant to rotation while maintaining invariance to other transformations. To achieve this goal,
we propose an invariant–equivariant covariant network (Co-ECL) based on collaborative and reverse
mechanisms. The collaborative mechanism encourages rotation equivariance by predicting the
rotation transformations of input images and combines invariant and equivariant learning tasks
to jointly supervise the feature learning process to achieve collaborative learning. The reverse
mechanism introduces a reverse rotation module in the feature learning stage, applying reverse
rotation transformations with equal intensity to features in invariant learning tasks as in the data
transformation stage, thereby ensuring their independent realization. In experiments conducted on
three publicly available oriented object detection datasets of remote sensing images, our method
consistently demonstrated the best performance. Additionally, these experiments on multi-angle
datasets demonstrated that our method has good robustness on rotation-related tasks.

Keywords: oriented object detection; remote sensing (RS); contrastive learning; equivariant learning

1. Introduction

Object detection is a fundamental remote sensing task that has important applications
in urban planning, land management, and disaster monitoring. Compared to natural
images, remote sensing images are taken from a top-down perspective, so the problem
of orientation is more prominent. Different objects of the same class are often distributed
with arbitrary orientations, coupled with the characteristic of dense object distributions.
Maintaining horizontal bounding boxes (HBBs) [1–7] for detection causes a mismatch
between the bounding boxes and the objects. Therefore, object detection in remote sensing
images achieves better object localization by using oriented bounding boxes (OBBs) [8–12].
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Currently, the success of oriented object detection in the supervised learning paradigm is
usually achieved by relying on the strong learning ability of networks to fit the rotation
information of the data, but this is limited by the quantity of high-quality labeled data.
Even if rotation transformations are applied to data, networks can fit only the rotation
information in a single dataset, that is, the angle distribution of the oriented object. Rotation-
equivariant features cannot be learned in this way.

Therefore, to address the limitations of the oriented object detection task caused by the
lack of high-quality labeled data, we leverage the rich intrinsic signals of remote sensing
images with the help of self-supervised learning paradigms to learn good representations
that can be transferred to downstream tasks. Currently, self-supervised learning achieves
feature learning by constructing pretext tasks [13–16] to generate pseudo-labels; the most
classical method is contrastive learning [17–22]. For a given set of images, contrastive
learning first applies multiple random transformations to the images, where different
transformation samples of the same image are positive samples of each other and transfor-
mation samples of other images become negative samples. Then, the distances between
positive samples are decreased during feature learning while the distances between neg-
ative samples are increased. This means that the different transformation samples of the
same image in the feature space are equal, so contrastive learning learns the invariant
features of the transformations used through this process, which we call strict invariant
learning [23–25]. The choice of different transformations in invariant learning has a sig-
nificant impact [26,27] on feature learning. Typical transformations, such as random crop
and color distortion, have been shown to significantly improve performance [22] and are
widely used in contrastive learning.

When rotation transformations are added to invariant learning, transformed samples
from the same image with different rotation intensities are forced to be close together in
the feature space. This rotation-invariant assumption leads networks learning the same
features for differently rotated samples. However, this assumption leads to the loss of
rotation information in learned features, limiting the expressiveness of representations
in samples with different rotations. In particular, objects in remote sensing images have
arbitrary orientations. If a network loses the rich rotation information of these objects,
then the features of differently rotated samples are difficult to distinguish, thus making it
difficult to achieve the accurate localization of OBBs. Therefore, we consider maintaining
invariant learning while encouraging features to remain equally transformed following the
rotation transformations applied to images, which we call rotation-equivariant learning.
This addresses the contrastive learning limitations when transferred to oriented object
detection tasks. Rotation-equivariant learning first appeared in self-supervised learning in
the RotNet [16] method proposed by Gidaris et al. A network is trained by predicting four
independent rotation transformations of images. Some methods [27–30] conduct rotation-
equivariant or near-rotation-equivariant learning by introducing rotation angle prediction
tasks or relaxing exact alignments in rotated views in the self-supervised learning paradigm;
however, these methods do not achieve the combination of invariant learning and equiv-
ariant learning. Some other methods [31–33] learn both invariance and equivariance and
apply different learning properties for different transformations; however, the addition of
transformations destroys the structure of contrastive learning and increases the number of
samples to be learned. This increased number of samples can help networks to learn better
features, confusing final accuracy improvements.

To address the above problems, we propose an invariant–equivariant covariant net-
work (Co-ECL) based on collaborative and reverse mechanisms to realize invariant learning
tasks and equivariant learning tasks. The invariant learning task encourages features to
remain invariant to random transformations by decreasing the distances between differ-
ently transformed samples of the same input in the feature space. The equivariant learning
task encourages features to remain equivariant to rotation transformations by recognizing
rotation-transformed samples of the same input with different intensities. The collaborative
mechanism combines these two tasks, jointly supervising the feature learning process to
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achieve collaborative learning. The reverse mechanism introduces a reverse rotation mod-
ule, which applies reverse rotation transformations to the features involved in the invariant
learning task, ensuring independent learning. Our method extends strict invariant learning
into the collaborative learning of invariance and equivariance and addresses the challenge
of achieving better rotation equivariance through supervised learning by employing a
self-supervised paradigm. Experiments on three datasets demonstrated the effectiveness of
our proposed method.

The main contributions of this paper are as follows:

(1) We propose an invariant–equivariant covariant network based on collaborative and
reverse mechanisms to achieve invariant and equivariant learning tasks;

(2) The collaborative mechanism combines invariant and equivariant learning tasks,
jointly supervising the feature learning process to achieve collaborative learning,
while the reverse mechanism introduces a reverse rotation module in the feature
learning stage, applying reverse rotations of equal intensity to features in invariant
learning tasks as in the data transformation stage, thereby ensuring their independent
realization;

(3) Experiments on three oriented object detection datasets of remote sensing images
demonstrated the effectiveness of the proposed Co-ECL method.

2. Materials and Methods
2.1. Related Work
2.1.1. Oriented Object Detection in Remote Sensing Images

Due to the arbitrary orientation of objects in remote sensing images, oriented ob-
ject detection in remote sensing images uses OBBs for more accurate object localization.
Currently, oriented object detection in remote sensing images is improved in two ways:
OBB definition and feature extraction. Common OBB definitions comprise two types:
five-parameter [8] and eight-parameter OBBs [34]. The five-parameter OBBs add angle
parameters to horizontal boxes, indicating that the HBBs are rotated by an angle around the
center point. The eight-parameter OBBs contain the coordinates of the four corner points
of the horizontal external boxes and the offset values of the corresponding corner points,
which indicate the positions of the corresponding corner point coordinates of the OBBs.
Further methods are dedicated to extracting rotation-invariant features. Cheng et al., de-
signed a rotation-invariant layer and introduced a rotation-invariant regular constraint [35],
finding that the features approximated the rotation invariance but needed a large quantity
of data for training. Ding et al. studied the transformation from HRoIs to RRoIs in the RoI
Transformer [8] method and extracted rotation-invariant features using rotated position-
sensitive RoI Align. However, since CNNs cannot learn good rotation-equivariant features
under the supervised learning paradigm, rotation-invariant features cannot be efficiently
extracted on this basis, even with the addition of sub-modules. That is, the success of
rotated object detection in feature learning is usually achieved by relying on the strong
learning ability of backbone networks to fit rotation information.

Recently, Han et al. introduced rotation-equivariant networks [36] to learn rotation-
equivariant features in oriented object detection and proposed the use of RiRoI Align to
obtain features that are rotation-invariant in space and orientation. Although this method
learns rotation-equivariant features, it increases the complexity of network structures
and introduces many nonessential computations. In contrast, our method makes full use
of intrinsic signals in remote sensing images by introducing a self-supervised learning
paradigm, which learns rotation-equivariant features in pretraining and does not introduce
additional computations.

2.1.2. Rotation in Self-Supervised Learning

Rotation transformations first appeared in self-supervised learning in the RotNet [16]
method proposed by Gidaris et al. This method applies four independent rotation transfor-
mations to input images and uses the rotation information as pseudo labels, thus allowing
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networks to learn strong semantic rotation information. Feng et al. [28] decoupled repre-
sentations using a rotation prediction task and an instance discrimination task. The method
was proposed to have both rotation-related and rotation-unrelated features, but it is too
simplistic in the way that it is divided. This method was the first to divide features
into rotation-related and rotation-unrelated features; however, the division is too sim-
ple. Xiao et al. [27] captured varying and invariant factors for visual representations by
constructing separate embedding spaces, each of which is invariant to all but one augmen-
tation. Wang et al. [29] relaxed the exact alignment in multi-view methods by introducing
an adaptive residual vector to encode both pretext-invariant and pretext-aware representa-
tions. In remote sensing, Wen et al. [30] proposed a new encoding scheme to define and
characterize the rotation patterns of ordered sequences among intra-class objects and made
their network learn to predict the rotation patterns of a baseline sequence. While the above
methods conduct rotation-equivariant or near-rotation-equivariant learning in the self-
supervised learning paradigm, our method combines invariant learning and equivariant
learning using a collaborative mechanism to learn better representations.

Recently, Dangovski et al. [31] proposed that better features can be learned by main-
taining invariance for some transformations while maintaining equivariance for others.
Xie et al. [32] had the same point of view and proposed a framework for determining the
augmentation types to which feature representations should be invariant and equivariant
during pretraining. In remote sensing, Ji et al. [33] solved the few-shot scene classification
problem by combining three tasks in training, including rotation prediction, contrastive
prediction, and semantic class prediction. While the above methods apply different learning
properties for different transformations, the addition of transformation branches destroys
the contrastive learning structure and increases the number of samples to be learned. In
contrast, our method introduces rotation-equivariant learning without affecting contrastive
invariance learning using a reverse mechanism to ensure the independence of both. It also
maintains the dual-branch structure of contrastive learning, avoiding any confusion in
accuracy improvements due to increased numbers of samples.

2.2. Method

This section introduces our proposed Co-ECL method. The overall network is pre-
sented in Section 2.2.1. The collaborative mechanism is introduced in Section 2.2.2 and the
reverse mechanism is introduced in Section 2.2.3.

2.2.1. Overview

Our objective is to learn features that remain equivariant to rotation transformations
while remaining invariant to other transformations. To achieve this goal, our method con-
sists of the equivariant learning task and the invariant learning task. The network structure
contains data transformation, feature learning, and two task branches, which are shown
in Figure 1. Specifically, two views are generated during the data transformation stage.
After the feature learning stage, features are sent to two separate branches. The invariant
learning branch encourages features to remain invariant to random transformations by
decreasing the distances between differently transformed samples of the same input in the
feature space. The equivariant learning branch encourages features to remain equivariant
to rotation transformations by recognizing rotation-transformed samples of the same input
with different intensities.

(1) Data transformation. For a given input image x, two different views are first generated
by applying a random data transformation τ (without rotation transformation) to
image x. The two views include q = t(x), t ∈ τ and k+ = t′(x), t′ ∈ τ. We then
define the set of N rotation transformations as R = {r(·|y)}N

y=1, where r(·|y) is the
operator that is applied to view the rotation transformation with label y. The set of
rotation transformations R is used to generate N transformation samples for both
views. We set the view q to maintain a rotation angle of 0°, that is, qr = r(q|y = 1).
For view k+, N − 1 rotation transformations are performed to generate N − 1 samples
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kri
+ = r(k+|yi), i ∈ 2, 3, . . . , N with different rotation transformation intensities. Here,

we adopt eight rotation transformations at 45° intervals, meaning that the rotation
transformation set is denoted as R = {r(·|y)}8

y=1.
(2) Feature learning. We define f (·; θ) as an encoder with learnable parameters θ and

pe
(
·; ϕpe

)
and pi

(
·; ϕpi

)
as projection heads with learnable parameters ϕpe and ϕpi ,

respectively. Let r−1(·|y) denote the reverse rotation transformation applied to the
features, with an intensity corresponding to the intensity of the rotation transformation
during data transformation. For views qr and kri

+, i ∈ 2, 3, . . . , N, after passing through
the encoder, features hr

q = f (qr; θ) and hri
k+

= f
(
kri
+; θ

)
, i ∈ 2, 3, . . . , N are generated,

collectively referred to as hr. Feature hr is passed through pe
(
·; ϕpe

)
to generate

the representation zr = pe
(
hr; ϕpe

)
, which is then sent to the equivariant learning

branch. Simultaneously, after applying the reverse rotation transformation to feature
hr and computing the average feature hk+ of hki+ , i ∈ 2, 3, . . . , N, we obtain feature
h =

{
hq, hk+

}
= r−1(hr|y) without any rotation transformation information. h is then

passed through pi
(
·; ϕpi

)
to generate the representation z =

{
zq, zk+

}
= pi

(
h; ϕpi

)
,

which is sent to the invariant learning branch.
(3) Invariant learning branch. Invariant learning refers to bringing the features of differ-

ently transformed views of the same image closer while pushing away the transformed
views of other images. This means bringing the features zq and zk+ from different
views generated from the same input image x closer. During training, the network is
optimized by minimizing the cosine similarity between positive samples using the
InfoNCE loss function.

(4) Equivariant learning branch. Equivariant learning refers to predicting the rotation in-
tensity label y for the input image x after applying the rotation transformation r(x|y),
that is, predicting the rotation intensity labels of views qr and kri

+, i ∈ 2, 3, . . . , N. Dur-
ing training, this task is optimized by minimizing the cross-entropy loss of predicting
rotation transformation labels.

Rotate θ

view q

view k+

projector
pi

projector
pi

projector
pe

projector
pe 0°

45°
90°
135°
180°
225°
270°
315°

Equivariance

Rotate!" θ

view k+:45° view k+:90° view k+:180° view k+:270°view k+:135° view k+:225° view k+:315°

Rotated
Images

view q:0°

Similarity

Invariance

Figure 1. Overall structure of Co-ECL: data transformation, feature learning, invariant learning
branch, and equivariant learning branch.

2.2.2. Collaborative Mechanism

The collaborative mechanism of covariant networks refers to the joint supervision
of the feature learning stage by the invariant and equivariant learning tasks. Next, we
introduce each of these two tasks.
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(1) Invariant Learning Task

We define x as the input image, f as the encoder network that performs feature learn-
ing, R as a set of transformations, and r(x), r as the function that applies the transformation
r to the input image x. The encoder f learns the invariance of the transformation R when
any input image x satisfies Equation (1), as shown in Figure 2a.

f (x) = f (r(x)), r ∈ R (1)

𝑓 𝑥 = 𝑓(𝑟(𝑥))

𝑟(·) 𝑟(·)

𝑓 𝑥 𝑓 𝑟(𝑥)

𝑥 𝑥

𝑟-./(·)

（a）Invariance （b）Equivariance

Generalization

𝑟-(·)

Figure 2. Conceptual diagram of invariance and equivariance. Invariance is described by Equation (1),
while equivariance is described by Equation (4) and also Equation (7).

Contrastive learning reduces the distances between different samples of the same
image in the feature space after applying random transformations during the learning
process. This means that in the invariant learning task of contrastive learning, if the features
corresponding to the input image x after different transformations r and r′ are the same,
then encoder f has learned the invariance of transformation R, as described in Equation (2).

f (r(x)) = f
(
r′(x)

)
, r ∈ R (2)

Invariant learning tasks use the InfoNCE loss function to minimize the similarity
distances between differently transformed views of the same image. Specifically, when
the similarity distances between the features zq and zk+ from different views generated
from the same input image x are closest, the loss function reaches its minimum. Here, dot
products are used to calculate the similarity. The invariant loss function is as follows:

Lin = −log
exp

(
zq · zk+/τ

)
∑K

i=0exp
(
zq · zki

/τ
) (3)

where τ is the temperature hyperparameter and K is the number of negative samples.

(2) Equivariant Learning Task

For input image x, applying the transformation r to the image x is the same as the
equivalent transformation r f of features, meaning that equivariance encourages the trans-
formations applied to features to have the same intensity as those applied to the input
image, as shown in Figure 2b. By extending invariance to Equation (4), the encoder f learns
the equivariance of transformation R. In other words, equivariance is the generalization
of invariance.

r f ( f (x)) = f (r(x)), r ∈ R (4)

We define a set of N rotation transformations as R = {r(x|y)}N
y=1, where r(x|y)

is the rotation transformation applied to image x with an intensity label defined as y.
The rotation-equivariant task trains a network to recognize the intensity of the rotation
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transformation applied to the input image. Here, we optimize the network by minimizing
the cross-entropy loss between the predicted probability distribution and the rotation label
y. The equivariance loss function is as follows:

L(xi, y) = − 1
N

N

∑
y=1

log
(

pe
(

f (r(xi|y); θ); ϕpe

))
(5)

Thus, given a set of training images {xi}B
i=1, the overall loss function during training is

Lequi =
1
B

B

∑
i=1

L(xi, y) (6)

(3) Collaborative Mechanism

We combine the invariant learning task and the equivariant learning task using a
dual-branch network to jointly supervise the feature learning process, as shown in Figure 1.
The overall loss function is the weighted sum of the invariant loss Lin and the equivariant
loss Lequi, with λ assumed to be 0.1 by default.

L = Lin + λLequi (7)

2.2.3. Reverse Mechanism

The reverse mechanism of the covariant network applies reverse rotation transforma-
tions of equal intensity to features in the invariant learning task as in the data transformation
stage, which ensures that the features in that task do not contain rotation transformations.

In Equation (4), we define the concept of equivariance. In this equation, equivariance is
achieved by encouraging the transformations applied to features to have the same intensity
as those applied to the input image. We define the reverse transformation of r as r−1

and the reverse transformation follows the equation x = r−1(r(x)). Similarly, the reverse
transformation of the transformation r f applied to the features is denoted as r−1

f . Therefore,
we can transform Equation (4) into Equation (8), where the transformed features after the
reverse transformation are the same as the original features, as shown in Figure 2b. When
specifying a counterclockwise rotation transformation, the reverse rotation transformation
corresponds to a clockwise rotation.

f (x) = r−1
f ( f (r(x))), r ∈ R (8)

In the data transformation stage of the covariant network, we apply rotation trans-
formations to both views q and k+. To ensure that the rotation transformations do not
interfere with the invariant learning process, we refer to Equation (8) and introduce a
feature reverse rotation module. This module applies reverse rotation transformations of
the same intensity as the rotation transformations in the data transformation stage to the
features in the invariant learning task, ensuring that the features in the invariant task do not
contain rotation information. This ensures independence between the invariant learning
task and the equivariant learning task while combining them.

The reverse rotation module is implemented using a spatial transformer [37] structure.
This module can perform spatial transformations on features and be inserted at any position
within the CNN. In the covariant network, we insert it after the encoder f and before the
projection head pi. Since the rotation transformation intensity is the same as that of
the input image, the parameters of the spatial transformer module remain fixed during
network training.

3. Experiments

We evaluated our method on three oriented object detection datasets of remote sensing
images. The datasets and parameter settings are described in Section 3.1. The main experi-
mental results with state-of-the-art comparisons are presented in Section 3.2. The ability of
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the model to learn rotation-equivariant features is evaluated in Section 3.3. The effect of
different numbers of rotations on network learning is evaluated in Section 3.4. In Section 3.5,
we present some ablation studies.

3.1. Datasets and Implementation Details

We trained our method using the FAIR1M [38] dataset and validated it on three ori-
ented object detection datasets: DOTA-v1.0 [9], DOTA-v1.5, and DIOR-R [39]. For pretrain-
ing, all images from the FAIR1M dataset were used. For the DOTA-v1.0 and DOTA-v1.5
datasets, 80% of the original training data were randomly divided into a training dataset,
then 10% of the divided training dataset was randomly selected for fine-tuning, and the
original validation data were used as the test dataset. For the DIOR-R dataset, 10% of the
original training data were randomly selected for fine-tuning, and the original validation
data were used as the evaluation dataset.The datasets are shown in detail in Table 1.

Table 1. Detailed information about the FAIR1M, DOTA-v1.0, DOTA-v1.5, and DIOR-R datasets. All
datasets are publicly available.

Dataset FAIR1M [38] DOTA-v1.0 [9] DOTA-v1.5 DIOR-R [39]

Categories 37 15 16 20
Instances >1 million 188,282 403,318 192,518

Image Width 1000–10,000 800–4000 800–4000 800
Crop Width 1000 1024 1024 800
Annotation OBB OBB OBB OBB

Usage Pretraining Fine-tuning Fine-tuning Fine-tuning

FAIR1M is a remote sensing dataset for fine-grained oriented object detection. The
images in the FAIR1M dataset were collected from different sensors and platforms, with spa-
tial resolutions ranging from 0.3 m to 0.8 m. There are more than 1 million instances and
more than 16,488 images in this dataset. All objects in the FAIR1M dataset are annotated
with respect to 5 categories and 37 sub-categories according to oriented bounding boxes
(OBBs). No labels from the dataset were used in the pretraining.

The DOTA-v1.0 images were collected from Google Earth, GF-2, and JL-1 satellites
provided by the China Centre for Resources Satellite Data and Application. It is one of
the largest datasets for oriented object detection in aerial images and contains 15 common
categories, 2806 images, and 188,282 instances. Each image is from 800 × 800 to 40,000 ×
40,000 pixels in size. The object categories in DOTA-v1.0 are as follows: plane (PL), baseball
diamond (BD), bridge (BR), ground track field (GTF), small vehicle (SV), large vehicle (LV),
ship (SH), tennis court (TC), basketball court (BC), storage tank (ST), soccer field (SBF),
roundabout (RA), harbor (HA), swimming pool (SP), and helicopter (HC). For training and
testing, we cropped the original images into a series of 1024×1024 patches with a stride
of 824.

DOTA-v1.5 uses the same images as DOTA-v1.0, but the extremely small instances
(less than 10 pixels) are also annotated. Moreover, a new category was added: container
crane. It contains 403,318 instances in total. Compared to DOTA-v1.0, DOTA-v1.5 is more
challenging but also more stable during training. For training and testing, we cropped the
original images into a series of 1024 × 1024 patches with a stride of 824.

The angle distribution of objects for each category in the cropped DOTA-v1.0 dataset
is shown in Figure 3. The horizontal axis represents the categories contained in the DOTA-
v1.0 dataset, while the vertical axis represents the proportion of the number of objects in
each angle interval to the total number of objects in that category. The different colors
of the legend represent data from different angle intervals. It shows that in this remote
sensing dataset, there are two main categories, as shown in Figure 4: (a) ground-nonfixed
objects and (b) ground-fixed objects. Ground-nonfixed objects include vehicles, planes,
ships, etc. This type of target has an arbitrary orientation and can be distributed in the
image at any angle. Ground-fixed objects mainly include basketball courts, soccer fields,
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and ground track fields. This type of target has a regular orientation and can be distributed
in the image at one or several fixed angles. Remote sensing object detection datasets are
typically collected from several fixed remote sensing satellites. Due to the limitations of
satellite trajectory and shooting angle, the angles of ground-fixed objects are concentrated
in a few angle intervals. The angle distribution of ground-nonfixed objects is more uniform
over the intervals due to the arbitrary object distribution.

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC
0

20

40

60

80

100

Category

Pe
rc
en
ta
ge

(-91,-75]

(-75,-60]

(-60,-45]

(-45,-30]
(-30,-15]

(-15,0]

(0,15]

(15,30]

(30,45]

(45,60]

(60,75]

(75,90]

Figure 3. Angle distribution of objects in each category of the DOTA-v1.0 dataset.

(a)

(b)

Figure 4. Example images of ground-nonfixed and ground-fixed objects in the DOTA-v1.0 dataset:
(a) ground-nonfixed objects; (b) ground-fixed objects.

DIOR-R is a challenging remote sensing dataset for oriented object detection, which
shares the same images as the DIOR [40] dataset labeled with horizontal annotations. There
is a total of 23,463 images and 192,518 instances, covering 20 classes. The size of each image
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is 800 × 800 and the spatial resolutions range from 0.5m to 30m. The object categories in
DIOR-R are as follows: airplane (APL), airport (APO), baseball Field (BF), basketball Court
(BC), bridge (BR), chimney (CH), dam (DAM), expressway toll station (ETS), expressway
service area (ESA), golf course (GF), ground track field (GTF), harbor (HA), overpass (OP),
ship (SH), stadium (STA), storage tank (STO), tennis court (TC), train station (TS), vehicle
(VE), and windmill (WM). The original image size was used for both training and testing.

Pretraining. Our method is based on MoCo-v2 [21]. We optimized the model using
synchronized SGD with a weight decay of 0.0001 and a momentum of 0.9. We used a
batch size of 128 in a GPU. The optimization took 200 epochs with an initial learning
rate of 0.015 and a cosine learning rate schedule. The learning rate was multiplied by 0.1
at 120 and 160 epochs. The backbone network was ResNet50 [41] and the temperature
hyperparameter was set to 0.07.

Fine-tuning. The detector was fine-tuned using the RoI Transformer [8] method im-
plemented in the MMRotate-v0.3.4 [42]. The backbone network weights obtained from
pretraining were use and frozen during training. We optimized the model using syn-
chronized SGD with a weight decay of 0.0001 and a momentum of 0.9. The optimization
took 200 epochs with an initial learning rate of 0.005 and a batch size of 4. We adopted a
learning rate warm-up of 500 iterations and the learning rate was divided by 10 at 133 and
183 epochs.

3.2. Main Results

We compared our method to other current state-of-the-art methods on three sepa-
rate remote sensing image datasets for oriented object detection. Tables 2–4 show the
experimental results on DOTA-v1.0, DOTA-v1.5, and DIOR-R, respectively. Our method
showed the best performance compared to the baseline methods on all three datasets,
with improvements of 0.39%, 0.33%, and 0.32%, respectively. Combining the results from
the DOTA-v1.0 dataset in Tables 2 and 3 and the angle distribution for each category in
Figure 3, we found that compared to the baseline method, ground-fixed objects, such as
GTF, BC, and SBF, achieved an average accuracy improvement of 2.56% on DOTA-v1.0 and
DOTA-v1.5, which was 1.50% higher than ground-nonfixed objects, such as PL, BR, SV,
and LV. Our method showed more significant improvements on ground-fixed objects where
the angle information provided was more unbalanced. This demonstrates that the Co-ECL
method does not rely on the network fitting the angle distribution of the oriented object
for feature learning, but really learns better rotation equivariance through the covariant
network. However, our method performed poorly on two circular objects: ST and RA.
We found that this was because circular objects do not have obvious angle information.
Circular objects also do not have different angle information for the network, but this type
of object has different angle annotations. This is contradictory for network training, so the
accuracy was reduced.

Table 2. Comparisons to state-of-the-art methods on DOTA-v1.0. The results in red indicate the best
results in each column.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

RotNet [16] 56.06 19.72 12.53 15.51 29.98 45.58 62.10 59.34 4.01 43.70 9.11 7.20 9.48 37.94 9.49 28.12
SimCLR [22] 57.94 25.34 11.52 16.26 27.78 42.62 52.67 56.41 4.09 52.07 22.67 12.68 10.21 43.10 6.79 29.48

Barlowtwins [43] 59.41 27.93 12.43 18.24 28.75 45.33 59.49 61.97 4.17 50.41 16.75 17.76 11.92 40.91 7.11 30.84
SimSiam [24] 61.39 30.17 7.67 18.32 31.26 45.24 61.34 54.14 4.22 52.59 17.74 14.82 11.59 50.44 6.85 31.19

ESSL [31] 61.17 28.61 13.38 20.05 30.80 45.93 60.68 61.65 4.79 47.69 21.28 12.39 10.90 46.67 8.21 31.61
MoCo-v2 [21] 61.72 33.69 14.98 17.51 33.31 47.50 62.19 65.81 4.43 47.02 23.36 12.28 15.85 37.66 11.47 32.58

Co-ECL 62.46 31.98 15.80 20.87 36.16 47.99 61.81 64.19 5.92 47.08 25.08 11.98 18.61 35.83 8.87 32.97
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Table 3. Comparisons to state-of-the-art methods on DOTA-v1.5. The results in red indicate the best
results in each column.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

RotNet [16] 49.76 18.56 6.68 9.85 49.40 47.41 57.22 61.69 9.14 46.71 0.81 15.74 21.22 19.45 3.19 0.98 26.11
SimCLR [22] 58.99 31.07 9.61 12.99 47.75 46.68 50.29 60.13 10.27 50.53 6.64 17.08 15.87 28.95 4.33 0.54 28.23

Barlowtwins [43] 55.81 32.28 8.67 13.55 46.43 47.36 54.58 67.47 12.35 46.39 14.70 19.88 22.07 27.65 4.55 1.25 29.69
SimSiam [24] 57.62 34.88 8.17 12.65 50.20 47.03 55.00 59.90 9.24 52.94 7.68 18.72 16.13 43.00 1.34 1.24 29.73

ESSL [31] 57.65 33.33 9.79 13.77 48.52 47.73 56.29 62.71 10.42 48.95 9.31 19.90 18.34 35.17 2.27 2.14 29.77
MoCo-v2 [21] 57.78 31.74 11.61 15.92 45.99 49.62 57.67 71.52 15.17 44.81 11.51 20.13 22.41 28.15 4.16 0.97 30.57

Co-ECL 58.29 29.26 11.98 18.32 47.65 50.64 55.25 69.91 16.50 39.04 16.56 16.05 23.87 28.98 9.65 2.36 30.90

Table 4. Comparisons to state-of-the-art methods on DIOR-R. The results in red indicate the best
results in each column.

Method APL APO BF BC BR CH DAM ETS ESA GF GTF HA OP SH STA STO TC TS VE WM mAP

RotNet [16] 76.78 6.25 79.08 17.56 7.96 63.15 1.29 21.48 15.92 28.39 30.02 11.45 8.61 73.49 44.61 59.00 70.78 4.86 40.86 17.97 33.98
SimSiam [24] 65.73 2.79 79.18 22.12 9.09 64.12 4.24 22.59 16.24 33.77 38.63 9.12 10.99 73.35 64.38 60.91 68.26 7.83 43.71 16.84 35.69
SimCLR [22] 71.93 7.58 79.49 25.55 7.20 68.16 3.70 26.11 16.01 32.20 38.34 11.22 11.89 71.55 65.28 61.29 71.26 7.78 40.08 15.98 36.63
MoCo-v2 [21] 65.95 6.82 81.06 37.48 8.52 72.34 1.99 27.32 16.68 29.19 38.45 14.81 10.68 79.44 60.23 61.75 72.15 10.60 41.88 18.18 37.78

ESSL [31] 72.65 6.06 80.85 34.75 8.52 68.45 3.88 31.13 17.31 31.04 38.30 14.08 11.78 78.91 59.38 61.32 72.08 7.15 42.63 17.77 37.90
Barlowtwins [43] 68.02 6.14 81.08 44.30 5.76 76.07 1.51 25.10 18.36 32.37 39.40 12.28 13.61 76.96 56.97 62.05 72.24 8.34 41.21 18.11 37.99

Co-ECL 74.31 5.00 80.84 34.42 7.51 68.60 3.47 30.22 17.94 35.50 38.00 13.44 12.19 78.96 60.86 61.15 72.25 9.12 43.68 18.77 38.31

3.3. Rotation Equivariance Measurement

To verify whether our method could learn better rotation equivariance, we applied
rotation transformations to the data and validated the method on multi-angle datasets.
The validated data came from the test datasets of DOTA-v1.0, DOTA-v1.5, and DIOR-R. We
applied rotation transformations to generate data under four angles: 0°, 90°, 180°, and 270°.

3.3.1. Important Regions

To verify whether the model could learn better rotation equivariance after pretraining,
we visualized the important regions for predicting the concept on multi-angle images.
We used the Grad-CAM [44] method for the visualizations. The Grad-CAM method is
a popular CNN visualization approach, which uses the global averages of gradients to
compute the weights in feature maps, producing coarse localization maps that highlight
important regions in images for predicting the concept. Specifically, we used the pretraining
backbone network weights to obtain visualization results on the DOTA-v1.0 dataset and
compared them to the MoCo-v2. Figure 5 shows that MoCo-v2 could only focus on the
object region at certain angles, while our method could focus on the object region on all
different angle images. This proves that our method can focus on objects with different
angles and learn better rotation equivariance.

Baseline Ours Label

Figure 5. Visualizations of coarse localization maps on multi-angle images from the DOTA-v1.0
dataset. The hottest areas in the figures indicate important regions for predicting the concept.
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3.3.2. Detection Accuracy

Since the angle distributions of oriented objects are fixed in a fixed remote sensing
dataset, testing on these datasets can only reflect the detection results of oriented objects
within that fixed angle distribution. The angle distributions of the oriented objects in
the training and test datasets were similar, so it is possible that the network performed
angle fitting via its strong learning ability to achieve better detection results. To more
accurately measure the rotation equivariance learned by the network, we used multi-angle
datasets to compare the overall levels and degrees of deviation. Specifically, we tested the
multi-angle datasets separately to obtain the detection results of oriented objects within
each angle distribution. We then took the averages of the accuracy AP and the coefficient of
variation cv for each angle distribution. The average accuracy AP for each angle distribution
represented the overall detection accuracy. A larger average AP represented better overall
detection results on multi-angle datasets. The coefficient of variation cv is the ratio of the
standard deviation to the mean and is used to compare the dispersion of data when means
are not equal. Here, the coefficient of variation cv represented the degree of detection
deviation. A smaller coefficient of variation cv represented less variation in detection on
multi-angle datasets.

Tables 5–7 show that our method had the highest average accuracy AP on all three
datasets, with improvements of 0.75%, 0.59%, and 0.12% compared to the best-performing
method on each dataset. The improvement was most obvious on the DOTA-v1.0 dataset
and poorest on the DIOR-R dataset. We found that this was because some categories are
forcefully annotated by horizontal boxes, although the objects are not exactly horizontal.
This confuses the information about the angles that the network needed to learn and thus,
could have affected the network training and detection results.The coefficient of variation
cv also decreased compared to the MoCo-v2 method by 0.48%, 2.5%, and 0.26% on the
three datasets. The average decrease was 1.08%. The decrease was most obvious on the
DOTA-v1.5 dataset and poorest on the DIOR-R dataset. The decrease in the degree of
deviation was most obvious and higher on the DOTA-v1.5 dataset than the other two
datasets. It is possible that the DOTA-v1.5 dataset has more detailed annotations, providing
a greater amount of quantifiable rotation information during testing. On datasets with
higher difficulty levels in rotation-related tasks, the improvement of Co-ECL compared to
the baseline methods became more obvious.

The optimization of these two metrics showed that the Co-ECL method could achieve
good detection results on test data with different angle distributions by only relying on the
single angle distribution data. This means that the model produces accurate predictions
even when the angle distribution of the test set is different from that of the training set.
This demonstrates that the Co-ECL method truly learns good rotation-equivariant features
of objects and improves the robustness of the model on rotation-related tasks.

Table 5. Comparisons to state-of-the-art methods on DOTA-v1.0 in terms of the averages of the
accuracy AP and coefficient of variation cv.

Method 0◦ 90◦ 180◦ 270◦ AP cv

RotNet [16] 28.12 24.32 28.70 24.96 26.52 7.19
SimCLR [22] 29.48 24.84 29.11 25.08 27.13 8.00

Barlowtwins [43] 30.84 26.11 30.58 26.40 28.48 7.83
ESSL [31] 31.61 26.82 32.07 27.24 29.43 8.21

SimSiam [24] 31.19 27.11 32.15 27.76 29.55 7.30
MoCo-v2 [21] 32.58 27.98 32.20 28.09 30.21 7.23

Co-ECL 32.97 29.12 33.11 28.64 30.96 6.75
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Table 6. Comparisons to state-of-the-art methods on DOTA-v1.5 in terms of the averages of the
accuracy AP and coefficient of variation cv.

Method 0◦ 90◦ 180◦ 270◦ AP cv

RotNet [16] 26.11 20.29 25.87 20.18 23.11 12.45
SimCLR [22] 28.23 23.06 27.55 23.12 25.49 9.47

Barlowtwins [43] 29.69 22.45 28.73 22.67 25.88 12.92
MoCo-v2 [21] 30.57 23.32 29.26 23.37 26.63 12.45

ESSL [31] 29.77 23.77 28.91 24.29 26.69 10.04
SimSiam [24] 29.73 24.13 29.15 24.33 26.83 9.74

Co-ECL 30.90 24.68 29.28 24.82 27.42 9.95

Table 7. Comparisons to state-of-the-art methods on DIOR-R in terms of the averages of the accuracy
AP and coefficient of variation cv.

Method 0◦ 90◦ 180◦ 270◦ AP cv

RotNet [16] 33.98 27.39 34.05 27.53 30.74 9.20
SimSiam [24] 35.69 30.64 35.42 30.86 33.15 6.25
SimCLR [22] 36.63 31.22 36.50 31.69 34.01 6.41

Barlowtwins [43] 37.99 32.12 37.87 31.62 34.90 7.79
MoCo-v2 [21] 37.78 31.98 37.71 32.42 34.97 6.81

ESSL [31] 37.90 32.60 38.15 32.97 35.40 6.66
Co-ECL 38.31 32.79 38.10 32.88 35.52 6.55

3.4. Effect of Different Numbers of Rotations

To explore how the number of rotation transformations affected the ability of our
method to learn good representations, we defined three tasks with different numbers of
rotations. The three tasks used images with 4, 8, and 12 rotations, where the rotations were
all spaced at 45° intervals. To avoid black border areas appearing after the rotations and
thus causing the leakage of GT angle information, we used a center crop after rotation to
obtain images of the same size as the original and then used reflection padding to fill the
black areas [45], as shown in Figure 6. Based on the results of the experiments on the three
datasets in Table 8, we found that we achieved the highest accuracy after applying eight
rotation transformations. This proves that for the oriented object detection task, choosing
eight rotation transformations during pretraining is the optimal rotation transformation
scheme.We analyzed this as a result of a more detailed angle division of oriented objects
in remote sensing. Compared to other downstream tasks, oriented object detection is
more difficult in the task of recognizing the rotation intensity. Therefore, more rotation
transformations need to be applied during pretraining to learn better representations of
rotation equivariance.

Original image Reflection paddingRotate+Center crop

Figure 6. Reflection padding of rotated images.
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Table 8. Exploring how the number of rotation transformations affects the quality of learned features.
Comparisons of the three rotation transformation schemes on each of the three datasets.

Number Rotations DOTA-v1.0 DOTA-v1.5 DIOR-R

4 0◦, 90◦, 180◦, 270◦ 32.44 30.16 38.02
8 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦ 32.97 30.90 38.31
12 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦ 31.72 30.74 37.23

3.5. Ablation Studies

In this section, we present a series of ablation experiments conducted on three datasets
to evaluate the effectiveness of our proposed method.

3.5.1. Collaborative Mechanism

To evaluate the effectiveness of the collaborative mechanism, we compared the Co-ECL
method to a method that performs strict invariant learning (including rotation transforma-
tions). The method that performs strict invariant learning (including rotation transforma-
tions) is achieved by adding rotation transformations that are equal to those in Co-ECL to
the baseline method MoCo-v2. This means that this method simply adds rotation-invariant
learning to contrastive learning. As shown in Table 9, the experimental results for the
method that performs strict invariant learning (including rotation transformations) were
not only poorer than those of the Co-ECL method, but even worse than those of MoCo-v2.
This demonstrates that rotation transformations are more suitable for equivariant learning
in contrastive learning. This implies that downstream oriented object detection in remote
sensing images needs to learn rotation-equivariant features more. It also demonstrates
that conducting the collaborative learning of invariance and rotation equivariance is more
helpful for feature learning.

Table 9. Ablation studies with and without the collaborative mechanism on three datasets.

Method Rotation DOTA-v1.0 DOTA-v1.5 DIOR-R

MoCo-v2 - 32.58 30.57 37.78
Invariance 31.66 30.35 37.65

Co-ECL Equivariance 32.97 30.90 38.31

3.5.2. Reverse Mechanism

To evaluate the effectiveness of the reverse mechanism, we compared the Co-ECL
method to a method that does not include the reverse rotation module. The learning of
rotation equivariance and invariance was conducted using this method. Table 10 shows that
the network structure without the reverse rotation module performed extremely poorly on
all three datasets. This shows that the transformations applied to an image can be counter-
acted by applying reverse transformations of equal intensity at the feature level, verifying
the equivariant reversibility. It also demonstrates that the reverse mechanism played an
important role in ensuring the independence of invariant and equivariant learning.

Table 10. Ablation studies with and without the reverse mechanism on three datasets. The
√

and ×
indicate the method with and without the reverse rotation module respectively.

Method Reverse Rotation Module DOTA-v1.0 DOTA-v1.5 DIOR-R

Co-ECL × 28.08 27.43 34.21√
32.97 30.90 38.31

4. Discussion

To address the limitations of contrastive learning when applied to downstream
rotation-related tasks, we propose collaborative and reverse mechanisms based on con-
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trastive learning. These mechanisms extend strict invariant learning into the collaborative
learning of invariance and equivariance, learning features that remain equivariant to rota-
tion transformations while maintaining invariance to other transformations. We conducted
sufficient experiments on three datasets to validate the effectiveness of our method.

Compared to methods [21,22] that perform strict invariant learning, our method based
on the collaborative mechanism can learn features that are better suited to rotation-related
tasks. In experiments on multi-angle images, Co-ECL could focus on more comprehensive
object regions in multi-angle images compared to the MoCo-v2 method. In the baseline
experiments, the improvement in accuracy for ground-fixed objects was significantly higher
than ground-nonfixed objects. This demonstrates that our method does not rely on the
network fitting the angle distributions of oriented objects for feature learning as it truly
learns the rich rotation angle information of the objects. The ablation experiments on the
collaborative mechanism also demonstrated that conducting the collaborative learning
of invariance and equivariance is more advantageous for the network to acquire good
representations.

Compared to methods [31–33] that also perform collaborative learning, the Co-ECL
method improved the robustness of the model while the reverse mechanism ensured
that the dual-branch structure of contrastive learning was not destroyed. In multi-angle
detection experiments, Co-ECL outperformed the ESSL method in both the average accu-
racy AP and the coefficient of variation cv. This demonstrates that our method alleviates
the dependence of the model on high-quality labeled data and improves its robustness
on rotation-related tasks. Furthermore, the ablation experiments on the reverse mecha-
nism demonstrated that this mechanism ensures the independent learning of invariance
and equivariance. It also enables Co-ECL to maintain the dual-branch structure of con-
trastive learning, avoiding confusion in accuracy improvements due to increased numbers
of samples.

At the same time, it should be pointed out that the network also has limitations in
rotation information learning. In the rotation equivariance measurement experiments,
the performance of our method in terms of the coefficient of variation was reduced com-
pared to the baseline method. However, there are still methods with lower coefficients
of variation cv. The reason for this may be that the enhancement of our method was not
completely balanced across all angles, resulting in large differences. In order to focus
the network on more comprehensive angle information during the learning process, we
propose that an equivariant task could be designed to better align with oriented objects
or more comprehensive rotation transformations could be performed. These issues are all
worthy of future study.

5. Conclusions

In this study, we constructed a covariant network based on contrastive learning for
oriented object detection in remote sensing images. To achieve the accurate localization
of OBBs, we proposed a collaborative mechanism that combines invariant learning and
rotation-equivariant learning so that rotation-equivariant features can be truly learned. We
also introduced a reverse mechanism, ensuring that the network retains a dual-branch
structure while maintaining the independent learning of invariance and equivariance.
The combination of these two mechanisms extends strict invariant learning into the collab-
orative learning of invariance and equivariance, addressing the limitations of contrastive
learning when applied to downstream rotation-related tasks. In experiments conducted
on three publicly available oriented object detection datasets of remote sensing images,
our method consistently demonstrated the best performance. This demonstrates that
our proposed method effectively leverages the rich intrinsic signals in remote sensing
images, learns better rotation-equivariant features, enhances the robustness of models in
rotation-related tasks, and introduces a novel solution to the challenge of learning better
rotation equivariance under the supervised learning paradigm. However, in the rotation
equivariance measurement experiments, our method showed unbalanced improvements
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across different angles and some performance gaps. This suggests that there is still room
for improvement in the design of rotation-equivariant learning tasks. In the future, we
will conduct further research on how to create more comprehensive rotation-equivariant
learning tasks.
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