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Abstract: Water parameter estimation based on remote sensing is one of the common water quality
evaluation methods. However, it is difficult to describe the relationship between the reflectance
and the concentration of non-optically active substances due to their weak optical characteristics,
and machine learning has become a viable solution for this problem. Therefore, based on machine
learning methods, this study estimated four non-optically active water quality parameters including
the permanganate index (CODMn), dissolved oxygen (DO), total nitrogen (TN), and total phosphorus
(TP). Specifically, four machine learning models including Support Vector Machine Regression (SVR),
Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) were
constructed for each parameter and their performances were assessed. The results showed that the
optimal models of CODMn, DO, TN, and TP were RF (R2 = 0.52), SVR (R2 = 0.36), XGBoost (R2 = 0.45),
and RF (R2 = 0.39), respectively. The seasonal 10 m water quality over the Zhejiang Province was
measured using these optimal models based on Sentinel-2 images, and the spatiotemporal distribution
was analyzed. The results indicated that the annual mean values of CODMn, DO, TN, and TP in
2022 were 2.3 mg/L, 6.6 mg/L, 1.85 mg/L, and 0.063 mg/L, respectively, and the water quality in
the western Zhejiang region was better than that in the northeastern Zhejiang region. The seasonal
variations in water quality and possible causes were further discussed with some regions as examples.
It was found that DO would decrease and CODMn would increase in summer due to the higher
temperature and other factors. The results of this study helped understand the water quality in
Zhejiang Province and can also be applied to the integrated management of the water environment.
The models constructed in this study can also provide references for related research.

Keywords: machine learning; non-optically active water quality parameters; Sentinel-2; spatiotemporal
analysis

1. Introduction

As the source of life, water plays an important role in human production and life.
However, due to the imbalance between economic development and environmental protec-
tion, current society is faced with many serious water problems, such as water pollution,
water ecology fragility, and water resource shortage [1,2]. Thus, it is necessary to measure
the physical, chemical, and biological properties of water, which can provide a scientific
basis for pollution source control and water environment management [3].

Traditional water quality monitoring is usually based on sampling analysis. Water
temperature, color, transparency, and other physical properties are mainly measured in
situ, and most of the chemical and biological properties such as the concentration of water
components need to be analyzed in the laboratory. Such kind of method is inefficient and
lacks details in time and space [4]. Although the development of water quality monitoring
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stations can provide almost continuous measurement data, the point-based data still fail to
fully describe the spatial characteristics [5]. With the characteristics of a large observation
range and convenient data acquisition, monitoring based on remote sensing techniques can
make up for such limitations.

The remote sensing technique was first utilized in water quality monitoring in the
1970s [6] and has been increasingly applied in water quality estimation with the continu-
ous progress of satellite sensor development and other technologies. For example, both
Mohammadpour and Pirasteh [7] and Cao et al. [8] used MODIS (Moderate Resolution
Imaging Spectroradiometer) images to analyze the spatial and temporal variability of sus-
pended particulate matter (SPM) in the Persian Gulf and lakes across China, respectively.
Li et al. [9] used Landsat 8 data to estimate the colored dissolved organic matter (CDOM)
over Saginaw Bay. Based on Sentinel-2 images, Zhang et al. [10] also investigated the water
quality change in Chinese rivers. Yang et al. [11] utilized the fusion images generated with
Landsat, Sentinel-2, and GaoFen-2 data to estimate chlorophyll a (Chl-a).

However, most previous studies mainly focus on the estimation of optically active
components such as the Chl-a, SPM, and CDOM due to their direct strong interaction
with electromagnetic radiation [5,12–15]. Since the interaction of non-optically active
components such as nitrogen, phosphorus, and oxygen with light is not obvious, and
the relationship between the two has not been fully studied, it is difficult to estimate the
non-optically active water quality via remote sensing.

Currently, the estimation of non-optically active water quality by remote sensing can be
classified into two categories: the empirical method and the machine learning method [16].
The empirical methods usually use standard linear regression or logarithmic or exponential
transformations to simulate the relationship between water quality parameters and spectral
reflectance or other intermediate variables. Taking the estimation of total phosphorus (TP)
as an example, Wu et al. [17] constructed a linear regression equation for natural logarithmic
TP concentration, and Gao et al. [18] constructed a combination of linear regression models
adapted to the different regions. This kind of method is easy to establish and has achieved
high accuracy in several studies [19–24]. It may be because most of these studies focused
on small areas and using only a small amount of data for model building, so the water type
was relatively homogeneous. However, more studies show low correlations among the
non-optically active parameters and the reflectance or other optically active components,
which makes empirical methods often perform poorly because of the difficulty in finding
the key regressive variables [5]. The machine learning methods are an ideal solution for they
could fully capture the complex nonlinear relationship [25] and have been widely applied
in water quality estimation [26,27]. For example, a back-propagation (BP) neural network
was successfully leveraged to estimate chemical oxygen demand (COD), the permanganate
index (CODMn), the total nitrogen (TN), and TP [28–30]. In addition, decision trees, support
vector machine regression (SVR), random forest (RF), and other methods are also widely
used [31–33]. Some studies compared the performance of empirical methods and machine
learning methods on the same data, and the results often showed that machine learning
had higher accuracy [5,28]. Although machine learning is less interpretable and not as
intuitive and easy to understand as empirical methods, most people working in water
environment management are more focused on the results than the principles of the model.
Therefore, the use of machine learning has great potential in non-optically active water
quality parameter estimation.

However, there are still certain limitations of previous studies that utilized machine
learning methods to estimate non-optically active water quality parameters. Firstly, in
many previous studies, the training sets were mostly from field sampling by researchers,
which made the data often limited to relatively small areas (e.g., a single lake) and small in
number. Although a lot of effort had been made and the data numbered in the hundreds,
it was still not enough to build a robust machine learning model. Since machine learning
models are typically data-driven, the richness of the training dataset would significantly
affect the performance of the model. Therefore, the models built on small regions or small
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amounts of data usually cannot be accurately extrapolated and show poor performance
at larger regional scales, such as the provincial scales. Many water quality monitoring
stations are built to realize the long-term and high-frequency monitoring of some important
water bodies. The rich field measurements provided by these stations can be used as the
dataset for the construction of machine learning models. In addition, previous studies
used medium-resolution satellite data (e.g., Landsat series with 30 m resolution) for water
quality estimation studies, but such a spatial resolution still failed not meet the needs
of fine-grained water quality monitoring, which requires a spatial resolution of 10 m or
several meters. Meanwhile, most studies only used one or two machine learning models
for estimating water quality, and the performance of different machine learning models in
non-optically active water quality parameter estimation remains unclear. Therefore, the
establishment and comparison of multiple machine learning models can avoid the problem
of poor estimation results due to the inapplicability of one model.

The main objectives of this study were as follows. (1) Based on the measurements from
water quality monitoring stations and Sentinel-2 images, machine learning models were
constructed to estimate four non-optically active water parameters of CODMn, dissolved
oxygen (DO), TN, and TP, respectively. (2) The performances of the different models and
the optimal models were compared to generate the seasonal 10 m water quality over the
Zhejiang Province. (3) The spatial distribution of water quality over Zhejiang Province was
analyzed, and the temporal characteristics were further discussed by taking some regions
as examples. This study helps us to understand the overall water quality of Zhejiang
Province and provides a reference for the integrated management of the regional water
environment from the perspective of the whole province.

2. Materials
2.1. Study Area

Zhejiang Province, located on the southeast coast of China and the southern wing of
the Yangtze River Delta, has a land area of 105,500 km2, of which the area of rivers and
lakes accounts for about 5.05% (Figure 1a). It is a subtropical monsoon climate with four
distinct seasons and moderate annual temperatures, with an annual average temperature
of 15~18 ◦C. The lowest and highest temperatures occur in January and July, respectively.
In the same period of rain and heat, the average annual rainfall is 980~2000 mm, of which
May and June are concentrated rainfall periods [34].

West Lake, located in the north of Zhejiang Province (Figure 1b), is a typical urban
landscape lake with a catchment area of 21.22 km2, an annual runoff of 14 million m3,
and a water storage capacity of nearly 14 million m3. As a semi-closed still water lake,
its water flow is poor, and the sediment brought by the flowing stream is constantly
deposited, making the water silting situation constantly aggravated. To improve the
water environment of the West Lake, the government carried out a large number of water
conservancy projects, the most notable of which was the diversion of Qiantang River water
into the West Lake.

Qiantang River is the largest river in Zhejiang Province. Xin’an River is the north
source of the Qiantang River, and the Lan River is the south source of the Qiantang River,
and the river after the intersection of the two is called the Fuchun River. This confluence
(Figure 1c) is an important transportation hub in history and had an important impact on
people’s production and life. In addition, as the confluence of two sources, knowing the
water quality of this area is also of great significance to the water quality monitoring of the
Qiantang River basin.

Changtan Reservoir is located in the southeast of Zhejiang Province (Figure 1d),
surrounded by green mountains, is about 3 km wide from east to west, about 12 km long
from north to south, has a lake area of 36 km2, a rainwater collection area of 441.3 km2,
and a total storage capacity of 732 million m3. As one of the most important water sources
in Zhejiang Province, it provides safe water for about three million people. In addition to
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supplying water to the city, the reservoir also serves a variety of functions such as flood
control, irrigation, and power generation.
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2.2. Satellite Data

Except for some large rivers and lakes, inland water bodies are mainly small- and
medium-sized rivers, which require satellite images with relatively high spatial resolution
for observation. Therefore, the Sentinel-2 series data, which have 13 spectral bands and
a spatial resolution of 10 m, were chosen in this study and have been widely used in
water environment monitoring [35,36]. The data are collected by two satellites, namely
the Sentinel-2A and Sentinel-2B, and the revisit time is 10 days for a single satellite and is
5 days when both satellites are in operation at the same time. In this study, the Sentinel-2
Level-2A images for Zhejiang Province from 1 January 2022 to 15 May 2023 were obtained
through the Google Earth Engine (GEE). Cloud filtering was applied and images with cloud
coverage greater than 20% were excluded, resulting in a total number of 1523 valid images
in 194 days (Figure 2).

2.3. Monitoring Station Data

Instead of the field sampling performed by the researchers, the measurements from
115 water quality monitoring stations (Figure 1a) in Zhejiang Province were utilized. These
monitoring stations are mostly located near representative rivers or lakes with important
ecological and socioeconomic values, and they integrate a collection of pumps, pips, and
many sensors to collect the samples from the target water body and measure them. The
water quality parameters are provided every four hours, including the water temperature,
electrical conductivity, turbidity, pH value, dissolved oxygen (DO), permanganate index
(CODMn), ammonia nitrogen (NH3N), total phosphorus (TP) and total nitrogen (TN). In
this study, the CODMn, DO, TN, and TP were selected as targets and observation values.
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Since the concentration of substances in water rarely changes significantly under natural
circumstances, and also to better match the remote sensing images, the daily average value
was used in this study, ignoring the variation of water quality in one day. Partial daily
average data for several monitoring stations are listed in Table S1.
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Figure 2. Distribution of remote sensing images with less than 20% cloud cover from 1 January 2022
to 15 May 2023.

The average values of CODMn, DO, TN, and TP during January 2022 to May 2023
were 3.0 mg/L (range: 0.2–11.6 mg/L), 8.9 mg/L (range: 1.9–21.0 mg/L), 2.69 mg/L (range:
0.08–10.27 mg/L), and 0.085 mg/L (range: 0.003–0.526 mg/L), respectively (Figure 3),
indicating a relativity good water quality for Zhejiang Province. Given the reasonable
distribution of the stations, these data can accurately reflect the overall water quality of
Zhejiang Province, and thus the constructed models were supposed as being suitable for
estimating the water quality components over Zhejiang Province.
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3. Methodology

The overall framework of estimating the non-optically active water quality parameters
over Zhejiang Province is shown in Figure 4, which consists of the following three steps:
(1) data preparation and preprocessing: prepare remote sensing and measuring data and
conduct necessary preprocessing; (2) machine learning model construction: identify the
optical band combination and construct four machine learning models for each water
quality parameter; and (3) water quality estimation and analysis: estimating the water
quality parameters using the optimal models and analysis the spatiotemporal dynamics.
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3.1. Data Preprocessing

For satellite images, after obtaining the required date, the QA band of Sentinel-2 was
used as a mask for cloud masking. The reflectance of the corresponding position of the
monitoring station was extracted from the satellite images. Then, the extracted reflectivity
data and the water quality data were matched. After removing the invalid data that failed
to match or contained zero values, 2013 records of data containing both water quality and
reflectance information were retained and used to build the models. In this study, the data
were randomly divided into the training set, validating set, and testing set according to a
7:1:2 ratio, in which the training set and validating set were used to build machine learning
models and the test set for model accuracy assessment.

3.2. Optimal Band Identification

Only the reflectance of band 1 to band 8 data were used due to the strong absorption
and relatively low reflectance of the water body in the near-infrared and longer bands. In
addition, to effectively enhance the underlying information and improve the performance
of the model, the band ratios were also calculated, which have been widely used as the
inputs of models in previous research [37–39].

Therefore, a total number of 36 features were obtained and their potentials for esti-
mating each water quality parameter were assessed through Pearson correlation analysis
(Equation (1)). Specifically, the Pearson correlation coefficient with each water quality
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parameter was calculated for each feature and those with significant correlations (p < 0.01)
were selected as the input of the model.

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(1)

where Xi and Yi represent the two input variables and X and Y represent their respective
sample means. The range of r is −1 to 1, and the closer the |r| is to 1, the stronger the
linear correlation between the two.

3.3. Machine Learning Model

The relationship between non-optically active parameters and reflectance is compli-
cated, and traditional empirical linear/non-linear regression fails to fully capture such
relationships. Machine learning methods can represent the complex nonlinear relation-
ship among data and have been widely used in the estimation of non-optically active
water quality parameters. Therefore, in this study, four machine learning models that
have been previously utilized for water quality estimation including the Support Vector
Machine Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost),
and K-Nearest Neighbor (KNN) were leveraged to estimate the non-optically active water
quality parameters [11,40–42].

SVR, which maps nonlinear data to high-dimensional space via a kernel function
to construct a decision function for linear regression, has unique advantages in solving
small-sample, nonlinear, and high-dimensional pattern recognition problems [43], and is
often used for small-sample water quality parameter estimation.

RF is an integrated model, which is essentially an improvement of the decision tree
model. It is represented by the repetitive random sampling of samples from the original
training sample set to generate a new training sample set, and then a classification tree is
generated according to the new sample set. Finally, multiple decision trees are combined
to form a random forest. Its final result is obtained by combining several weak classifiers
in the form of taking the mean [44]. The error of the results depends on the classification
ability of each tree and the correlation between them, which makes the results of the overall
model have high accuracy and generalization performance [45].

Similar to RF, XGBoost is also an integrated learning method, which is a kind of
synthesis method that combines basis function and weight to form a good data-fitting effect.
Its essence is a gradient tree-based method that iteratively trains a series of weak learners
(usually decision trees), each iteration attempting to correct the error of the previous
iteration, and eventually combines these weak learners into a strong learner [46,47]. Unlike
traditional gradient boosting decision trees (GBDT), XGBoost adds regularization terms to
the loss function and uses second-order Taylor expansion of the loss function as a fitting
of the loss function, so XGBoost is more efficient when dealing with large data sets and
complex models while preventing overfitting and improving generalization.

KNN is an instance-based and parameter-less learner. Instead of establishing the
relationship between variables through the processing or optimization of the data, it
calculates the distance between the new sample and the training dataset, then selects a
few of the most similar samples and uses their average as the predicted value of the new
sample [48]. It can deal well with the situation of strong interdependence among multiple
features and complex relationships among features.

The models were built using the scikit-learn package in Python, and the hyperparame-
ters of each model were fine-tuned using Bayesian optimization.

3.4. Accuracy Assessment

In this study, the accuracy of each machine learning model was assessed using the
testing set and four evaluation metrics including the determination coefficient (R2), the
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Mean Absolute Error (MAE), the Mean Square Error (MSE), and the Root Mean Square
Error (RMSE). The formulas of each evaluation of the criterion are expressed as follows:

R2 = 1− ∑n
i=1(Mi − Ei)

2

∑n
i=1
(

Mi −M
)2 (2)

MAE =
1
n

n

∑
i=1
|Mi − Ei| (3)

MSE =
1
n

n

∑
i=1

(Mi − Ei)
2 (4)

RMSE =

√
1
n

n

∑
i=1

(Mi − Ei)
2 (5)

where Mi refers to the measured values, Ei refers to the estimated value by models, and n
represents the total number of samples. R2 reflects the degree to which the independent
variable explains the change of the dependent variable, and the closer it is to 1, the better
the model fits. MSE indicates the deviation between the predicted value and the measured
value, and the closer it is to zero, the better the predicted value of the model agrees with
the actual measured value.

4. Results
4.1. Optimal Band Selection

The results of the correlation analysis (Figure 5) showed that the four water quality
parameters had a relatively strong correlation with B1 to B5, br24, br25, br34, and br35. The
results of CODMn, TN, and TP were quite similar, all having a positive correlation with
B1 to B5, and a negative correlation with br24, br25, br34, and br35. Among these three
parameters, the correlation of CODMn was relatively higher, and the correlation of the TN
was slightly weaker. The results of DO exhibited opposite results, with B1 to B5 showing
a negative correlation and br24, br25, br34, and br35 showing a positive correlation. This
might be associated with the different roles of CODMn, TN, TP, and DO components in the
water ecosystem. When evaluating water quality, lower concentrations of CODMn, TN, and
TP and higher the concentrations of DO are positively correlated with the water quality.

Concerning the correlation values, all four parameters presented relatively inferior
relationships with reflectance and their ratios with most of the absolute values of correlation
coefficients under 0.4. However, these four parameters were significantly related to most
bands and band ratios in terms of significance level, suggesting a statistically significant
correlation between the water quality parameters and reflectance. In this study, bands and
band ratios that were significantly correlated with each water quality parameter (p < 0.01)
were selected as input variables of the model. The number of input variables for the
CODMn, DO, TN, and TP models was 25, 21, 31, and 26, respectively.

4.2. Evaluation of Machine Learning Models

The evaluation results of four machine learning methods for estimating each water
quality parameter are shown in Table 1. Overall, all four machine learning methods
presented the best performance for the CODMn parameter, followed by the TN parameter,
while their performances in estimating the TP and DO were relatively poor. The accuracies
of diverse machine learning approaches varied among different water quality parameters.
Specifically, for CODMn, the RF and XGBoost were the best two models with R2 values
of 0.52 and 0.51, respectively. The SVR and KNN methods exhibited relatively inferior
performances (R2 = 0.45 and 0.46, respectively). Similarly, they also had poor behaviors
for the TP parameter, especially for the SVR model with an R2 value of 0.1. As for the TN
parameter, the XGBoost showed the best performance with an R2 value of 0.45, and the
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RF had slightly lower accuracy, but they were both significantly higher than the other two
models (e.g., the SVR and KNN). Regarding the DO, however, the SVR outperformed the
other three models with R2 values of 0.36. The RF and XGBoost were both slightly inferior
to the KNN.
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Table 1. Performance of machine learning models for CODMn, DO, TN, and TP.

Parameter Model R2 MAE MSE RMSE

CODMn

SVR 0.45 0.807 1.18 1.09
RF 0.52 0.757 1.03 1.02

XGBoost 0.51 0.765 1.06 1.03
KNN 0.46 0.796 1.16 1.08

DO

SVR 0.36 1.558 3.96 1.99
RF 0.34 1.558 4.11 2.03

XGBoost 0.34 1.566 4.12 2.03
KNN 0.35 1.547 4.03 2.00

TN

SVR 0.31 0.890 1.36 1.164
RF 0.42 0.844 1.14 1.068

XGBoost 0.45 0.816 1.09 1.045
KNN 0.33 0.900 1.32 1.151

TP

SVR 0.10 0.047 0.0033 0.057
RF 0.39 0.035 0.0022 0.047

XGBoost 0.37 0.036 0.0023 0.048
KNN 0.35 0.036 0.0023 0.048

Except for the DO, the performances of the KNN and the SVR in other parameters
were relatively poor. This might be because the KNN and the SVR were constructed
based on the distance between variables [43,48]. Although they have performed well
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in some previous studies, their training sets were almost two or three hundred or even
dozens [32,38,49]. When the amount of the training set or the number of input variables
increases, the complexity of the model significantly increases, and the training efficiency
and estimation accuracy decrease. In this study, the CODMn, the TN, and the TP had more
input variables than the DO, even though the models were built based on the same number
of training sets. For these non-optically active water quality parameters with many input
variables, the KNN and the SVR had more difficulty achieving accurate estimation.

According to the performance of the models described above, the RF model was
chosen for estimating CODMn and TP, and the XGBoost and SVR models were selected for
estimating TN and DO, respectively.

4.3. Annual Mean Water Quality Maps in Zhejiang Province

Utilizing the optimal models and Sentinel-2 images, the CODMn, DO, TN, and TP
concentrations for each season over the Zhejiang Province in 2022 were derived. From the
seasonal results, the annual mean distribution and statistics of water quality were further
obtained are and shown in Figure 6 and Table 2. The annual mean values of CODMn, DO,
TN, and TP over Zhejiang in 2022 were 2.3 mg/L, 6.6 mg/L, 1.85 mg/L, and 0.063 mg/L,
respectively. They indicated that the overall water quality of Zhejiang Province in 2022 was
relatively good, except for the slightly higher concentration of the TN.
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Table 2. Statistical characteristics of average water quality in Zhejiang Province in 2022 and limits
of “Surface water Environmental Quality Standards”, and the limits of TN are only for lakes and
reservoirs.

Parameter
Statistical Characteristics Standards Limits

Minimum Mean Maximum Level 2 Level 3 Level 4

CODMn (mg/L) 0.2 2.3 6.0 ≤ 4 6 10
DO (mg/L) 0.6 6.6 13.7 ≥ 6 5 3
TN (mg/L) 0.00 1.85 5.74 ≤ 0.5 1.0 1.5
TP (mg/L) 0.001 0.063 0.187 ≤ 0.1 0.2 0.3

There were obvious differences in water quality among different regions. Com-
pared with the western region of Zhejiang represented by the Thousand-island Lake
(Figure 6(e1–e4)), the concentrations of CODMn, TN, and TP in the densely populated
northern eastern Zhejiang region were significantly higher, while the concentration of DO
was significantly lower. This reflected that the water quality in the western Zhejiang region
was better than that in the northeastern Zhejiang region.

The change in water quality was especially obvious in the Qiantang River (Figure 6(f1–f4)).
Along the way from the west to the east of the river, the concentrations of CODMn, TN,
and TP gradually increased, while the concentrations of DO significantly decreased, which
means the overall situation of water quality became worse. A similar change was also
observed in the Oujiang River region located in the southeastern province, where the water
quality gradually deteriorated toward the river (Figure S1). The results of the study of
Zhang et al. [10] also showed a similar situation. The reason for this phenomenon may be
that pollutants continuously enter the river on both sides of the river with the flow of the
river. At the same time, the upstream flow rate is fast, while the downstream flow rate is
slow, and thus the migration rate of substances in the water is reduced, resulting in more
pollutants suspended or deposited in the river.

However, this trend of water quality change was opposite to the abovementioned
situation in the estuary area of the Qiantang River, where the concentrations of CODMn,
TN, and TP were lower and the concentration of DO was higher than those in the middle
and lower reaches of this river (Figure 7b–e). This may be attributed to the fact that the
water quality in the estuary of the Qiantang River was greatly affected by the tidal action,
and the water quality was improved by the entry of seawater.
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5. Discussion
5.1. Seasonal Differences of Water Quality

Obvious seasonal fluctuations were observed in the water quality parameters in
Zhejiang Province due to the subtropical monsoon climate, and these differences were
analyzed taking three typical areas as cases: West Lake, the Changtan Reservoir, and the
confluence of Xin’an River, Fuchun River, and LAN River (Figure 1).

In West Lake, the water quality was relatively uniform in winter (January to March),
and summer (July to September), while the spatial heterogeneity was quite large in spring
(April to June) and autumn (October to December), especially for CODMn and TN (Figure 8).
Compared with winter, the concentration of CODMn apparently increased in summer, while
the concentrations of DO and TN decreased. The average concentrations of CODMn in
winter and summer were 2.3 mg/L and 2.8 mg/L, of DO were 9.3 mg/L and 7.4 mg/L,
and of TN were 2.66 mg/L and 2.16 mg/L, respectively. In addition, even though the
change in TP concentration was relatively weak (the seasonal average concentrations were
0.069 mg/L, 0.075 mg/L, 0.076 mg/L, and 0.069 mg/L, respectively), a significant reduction
in the western part of the lake from spring to autumn can still be observed. Compared with
the obvious seasonal characteristics of the water quality in West Lake, the water quality
in most areas of Changtan Reservoir changed little with the seasons and was stable at a
good level all year round (Figure S2). However, there were some areas at the edge of the
reservoir where the concentrations of CODMn, TN, and TP were higher in summer and
autumn than in winter and spring.
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Previous studies also showed a consistent tendency that the DO was lower in summer
than in winter. For example, a shallow lake in southern America called University Lake
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was investigated by Xu et al. [50], as well as Xianvu Lake [51], Dianshan Lake [52], and
Tianmu Lake [53], which are all located in the southeast of China and have similar climates
to the study area. The study of Dianshan Lake also showed that the CODMn and TN were
higher in summer and autumn, while the TP showed an opposite trend. The research by
Qian et al. showed that in the Three Gorges Reservoir Area, the TN was highest in winter
and lowest in summer, while the TP increased in spring and summer, decreased first in
autumn and winter, and then increased [54]. It indicated that for some lakes, the trend of
CODMn was consistent; specifically, CODMn was usually high in summer and low in winter.
However, the trends of the TN and TP were greatly different in different water bodies.

For rivers, it was more fluid than lakes and reservoirs, and therefore, their water
quality distributions were more spatiotemporally heterogeneous. Taking the intersection of
Xin’an River, Fuchun River, and Lan River as an example (Figure S3), it could be observed
that there was an almost triangular area at the intersection of Xin’an River and Lan River,
where the concentrations of CODMn, TN, and TP were lower than those in the surrounding
areas, but the concentration of DO was higher than the adjacent regions, especially in
winter. Compared with the Xin’an River section, the water quality became worse after the
river entered the Fuchun River section, with the increase of river flow, and the CODMn
exhibited a significantly increasing trend. However, it can also be found that, in this region,
the DO was relatively low and the CODMn was high in summer.

5.2. Influencing Factors of Seasonal Variation in Water Quality

Due to the comprehensive effects of the water formation process, surrounding envi-
ronment, human activities, and other factors, there are great differences in the composition
of different water bodies, and the causes of water quality change are also very complex [55].
The concentrations of the DO in many lakes are lower in summer than in winter, possibly
because it is dominated by climate. Studies have shown that there is a clear positive corre-
lation between water temperature and air temperature [56]; more specifically, as the water
temperature increases, oxygen generally has more difficulty dissolving in the water [57].
Since the concentration of DO in surface water usually tends to saturation under natural
conditions [58], the change of DO concentration in water is significantly negatively corre-
lated with temperature. Taking West Lake as an example, its temperature was significantly
higher in summer than in winter (Figure 9a); hence, the concentration of DO in summer
was lower than in winter, and the decrease of DO further led to the increase of reducing
substances in the water, and, subsequently, the concentration of CODMn rose.
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Different from DO, the sources of nitrogen and phosphorus in surface water include
exogenous and endogenous sources, and the variation of their concentration is related to
the lake itself and the surrounding environment. When there is no external input, there
is a dynamic equilibrium of adsorption and release of nitrogen and phosphorus between
sediments and water bodies [59]. Studies have shown that temperature changes can affect
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the release rate of nitrogen and phosphorus in sediments [60,61]. Within a certain range,
the rising temperature would increase the solubility of various insoluble compounds in
sediments, as well as the decomposition and mineralization of organic matter in sediments
by organisms, thus increasing the concentration of nitrogen and phosphorus in water
bodies [62]. However, the release mechanisms of the two elements at the sediment–water
interface are not the same [63]. The phosphorus is usually controlled by the redox process
of iron [64,65], while the nitrogen depends on the degree of decomposition of nitrogen
compounds in the sediment [66]. At the same time, the temperature change will also
affect the activity of aquatic organisms, thus affecting the rate of nitrogen and phosphorus
consumption by organisms. In addition, rainfall in different periods, such as flood seasons
and drought seasons, has different impacts on water quality [67]. Extreme rainfall events
usually wash the surface around the lake and bring surface sediments into the lake, which
will worsen water quality in a short time [68,69]. However, long-term rainfall increases the
water level, which plays a role in diluting the components in the water body [70,71].

As for West Lake, its water quality was also related to human activities [72], such as
surrounding tourism and commercial activities which may cause pollution [73,74]. With
the diversion of the Qiantang River and the strengthening of water management, the trend
of deterioration of West Lake water quality and the occurrence of large-scale algal blooms
have been controlled in recent years [75]. Thanks to the strict controls on input pollutants,
the changes in the TN and the TP were mainly caused by a combination of endogenous
pollutants and climate. However, the seasonal variations of the TN and the TP were not
the same, which was most likely due to their varying degrees of response to the same
changes. In summer, the external consumption of nitrogen was greater than the release of
internal sources, resulting in the reduction of TN (Figure 8(c3)), while the rate of increase
and consumption of phosphorus was equal, resulting in a similar concentration of TP in a
year.

5.3. Strengths and Limitations

Although non-optically active water quality parameters were statistically significantly
correlated with reflectance and reflectance ratios, the Pearson correlation coefficient of less
than 0.5 indicated that there was no significant linear relationship between them (Figure 5).
In this study, for each parameter, some empirical models were selected for estimation, and
their parameters were recalibrated to make them more suitable for the current study area.
Their performance further indicated that such a relationship was difficult to describe with
ordinary empirical formulas (Table 3).

Therefore, the machine learning models were selected to estimate the non-optically
active water quality parameters, and those models had similar performances compared
to previous studies. For example, in the study of Yang et al. for urban water bodies in
Shanghai, the estimation models for CODMn performed better than the models for DO and
TP. Specifically, the R2 values of XGBoost for CODMn, DO, and TP were 0.58, 0.53, and 0.39,
respectively [38]. This may be because CODMn reflected the extent of organic and inorganic
oxide pollution in the water body, and among these substances may be components that
interacted with light more strongly than nitrogen, phosphorus, and oxygen. In the study of
Wang et al., the R2 value and RMSE of XGBoost developed based on Sentinel-3 images for
TP of shallow lakes in the Yangtze-Huaihe River region were 0.53 and 0.08, respectively [76].
Because the performance of machine learning was highly dependent on the dataset, it might
not be very reasonable to directly compare the performance of models built for different
regions and different datasets, but it could still be considered that the machine learning
models constructed in this study can be used to estimate non-optically active water quality
parameters over Zhejiang Province.

There are still some limitations to machine learning models. As a data-driven model,
the most obvious limitation of the machine learning model is that its performance is greatly
affected by the quality of the training dataset [77]. If the training dataset is unbalanced, the
accuracy of the machine learning model will decrease. In this study, the data of the CODMn,
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the TN, and the TP all showed a slight positive skew (Figure 3), and, especially, the samples
with high concentrations of CODMn (CODMn > 6.0 mg/L) and TP (TP > 0.20 mg/L) were few.
This might lead to different performances of the model over different concentration ranges,
especially with apparent underestimation of the large values. Although this imbalance
problem can be improved by some transformations during data preprocessing, the ultimate
solution is to expand the number of corresponding samples to a preset minimum threshold
of various sample numbers. In addition, there was also a lack of some water types, such as
black and odorous water, so the machine learning models established in this study might
fail to estimate the water quality for poor-quality water bodies [59], and the estimated
results are more likely to be better than the actual situation. This means that these models
still need some improvement when applied to related studies such as the identification of
black and odorous water bodies.

Table 3. The performance of re-calibrated linear regression models of CODMn, DO, TN, and TP.

Parameter Equation Reference R2 MAE MSE RMSE

CODMn

Y = ax + b; x = ln(B8)/B2 [19] 0.121 1.107 1.945 1.395

Y = ax2 + bx + c
x = (B3− B5)/(B3 + B5)

[20] 0.218 1.022 1.732 1.316

DO
Y = ax1 + bx2 + cx3 + d

x1 = B4× B5; x2 = B4/B5; x3 = B4 [21] 0.115 1.811 5.338 2.310

Y = ax + b; x = B2 [22] 0.100 1.843 5.429 2.330

TN

ln(Y) = ax1 + bx2 + cx3 + d
x1 = B4/B2; x2 = B2/B4; x3 = B2 [23] 0.047 1.138 2.100 1.449

Y = axb; x = B6/B8 [24] 0.000 1.226 2.203 1.484

TP

ln(Y) = ax1 + bx2 + cx3 + d
x1 = B4/B2; x2 = B2/B4; x3 = B2 [23] 0.077 0.0404 0.0033 0.0571

Y = axb; x = (B4 + B5)/B3 [24] 0.093 0.0434 0.0032 0.0566

Y = ax + b
x = (B3− B5)/(B3 + B5)

[20] 0.083 0.0437 0.0032 0.0569

Another obvious shortcoming of the machine learning methods is that they do not
explicitly explain the error propagation mechanism between input and output data [77], so
it is difficult to explain how each part and process affects the final output results. When
there is a high concentration of Chl-a or SPM in the water body, the spectral reflectance of
the water body is quite different from that of the general water body [42], and the accuracy
of the results is difficult to guarantee.

6. Conclusions

In this study, based on Sentinel-2 images, the non-optically active water quality pa-
rameter retrieval over Zhejiang Province was estimated via four machine learning methods
and automatic measurements. The optimal bands for each parameter were identified and
the performances of different machine learning models were inter-compared and fully
assessed. The 10 m seasonal water quality parameters were then obtained using the optimal
models and their spatiotemporal distributions were analyzed. The main conclusions were
as follows:

(1) The performance of the four machine learning methods was inconsistent in the es-
timation of the different parameters, and the optimal models of CODMn, DO, TN,
and TP were RF (R2 = 0.52), SVR (R2 = 0.36), XGBoost (R2 = 0.45) and RF (R2 = 0.39),
respectively;
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(2) The average annual water quality in Zhejiang Province was good, and the annual
mean values of CODMn, DO, TN, and TP in 2022 over Zhejiang Province were
2.3 mg/L, 6.6 mg/L, 1.85 mg/L, and 0.063 mg/L, respectively;

(3) The water quality in the western Zhejiang region was better than that in the north-
eastern region. As for rivers, the water quality in the upper reaches was better than
that in the lower reaches of rivers;

(4) Compared with spring and autumn, the water quality in winter and summer was
more uniform. Though the seasonal variations of water quality in different areas
were not the same, DO and TN generally decreased in summer, while CODMn and
TP increased, and the temperature and rainfall might be the important influencing
factors.

The results of this study are helpful in obtaining the basic water quality information of
Zhejiang Province and provide a reference for water management and the introduction of
more comprehensive policies from the perspective of the whole province. For example, the
results showed that the water quality in the northeast of Zhejiang Province was relatively
poor, so the government should pay more attention to these areas. Considering that
the water quality deteriorates with the inflow of rivers, the management of the input of
pollutants along rivers should be strengthened. The estimated results of the TN and the TP
can also be used to evaluate the risk of the algal blooms.

In future studies, black odorous, eutrophication, or high-turbidity water bodies can
be added to enrich the types of water bodies in the training dataset, and the estimation
model of these special water bodies can be established to achieve more comprehensive
water quality monitoring and evaluation. The water quality should also be studied for
a longer period to explore the annual trend of water quality change and further analyze
the impact of climate change and other factors on water quality, which is conducive to
maintaining the sustainable development of human society.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16030514/s1, Figure S1: Oujiang River and the water quality in
this river (annual mean in 2022). (a) the remote sensing image; (b) the distributions of CODMn; (c)
the distribution of DO; (d) the distribution of TN and (e) the distribution of TP; Figure S2: Seasonal
variation of CODMn (a), DO (b), TN (c), and TP (d) concentrations in the Changtan Reservoir during
2022; Figure S3: Seasonal variation of CODMn (a), DO (b), TN (c), and TP (d) concentrations at river
confluence during 2022; Table S1: The daily averages of water quality parameters from 50 water
quality monitoring stations (part of all stations) on 3 January 2022. T is the water temperature. DO is
the dissolved oxygen. CODMn is the permanganate index. NH3N is the ammonia nitrogen. TP is the
total phosphorus. TN is the total nitrogen.
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