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Abstract: The Choushui River groundwater basin (CRGB) in Yunlin County, Taiwan, is a significant
groundwater source for the western part of the region. However, increasing groundwater demand
and human activities have triggered a potential crisis due to overexploitation. Therefore, groundwater
potential zone (GWPZ) maps are crucial for mapping groundwater resources and water resource
management. This study employs the normalized index–overlay method and fuzzy extended
analytical hierarchy process (FE-AHP) to map GWPZs cost-effectively. The methodology objectively
incorporates weightings from various thematic layers by normalizing and correlating parameters with
observed groundwater availability (GA). Site-specific observations, including aquifer thickness, depth
to the groundwater level, and porosity, inform GA calculations. Seven comprehensive layers derived
from remote sensing (RS) data are processed to obtain weightings and ratings for the groundwater
potential index (GWPI) in the CRGB. Selected parameters are categorized into hydrological processes,
human interventions, geological, and surface profiles. Hydrological processes include precipitation,
modified normalized difference water index (MNDWI), and drainage density. Human interventions
consist of the enhanced vegetation index (EVI) and normalized difference building index (NDBI).
Surface profiles encompass the terrain ruggedness index (TRI) and slope, enhancing the study’s
multi-criteria approach. The observed GA validates the GWPZ accuracy, classifying zones into five
categories. According to the GWPI of FE-AHP, about 59.56% of the CRGB area can be categorized as
“moderate” to “very good” potential groundwater recharge zones. Pearson’s correlation coefficient
between GWPI and GA, based on FE-AHP, outperforms the conventional AHP. This RS-based
approach efficiently evaluates GA in aquifers with limited wells, highlighting crucial zones in CRGB’s
proximal-fan and southeastern mid-fan for informed groundwater management strategies.

Keywords: index–overlay method; groundwater potential zone; fuzzy extended-AHP; groundwater
availability

1. Introduction

In principle, the presence of groundwater depends on the interactions among several
factors, such as hydrological, climatic, ecological, geological, and biological factors [1].
Identifying groundwater potential is essential for the local authorities to decide on a
strategic plan for groundwater resource management in a vulnerable area. In most cases,

Remote Sens. 2024, 16, 502. https://doi.org/10.3390/rs16030502 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16030502
https://doi.org/10.3390/rs16030502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2742-3308
https://orcid.org/0000-0002-8642-7472
https://orcid.org/0000-0002-4312-9424
https://doi.org/10.3390/rs16030502
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030502?type=check_update&version=2


Remote Sens. 2024, 16, 502 2 of 29

groundwater recharge is mainly influenced by soil permeability and porosity, which refer
to the geological structure, geomorphological setting, lineaments, slope, land use, soil
texture, and land use or land cover [1]. Site-specific groundwater drilling and stratigraphy
investigations are two reliable methods for investigating aquifer properties, but these
methods are relatively costly in terms of time and investigation resources [2]. In recent years,
the integration of remote sensing and Geographical Information System (GIS) applications
has been used widely in most hydrological studies. Groundwater potential pertains to the
total volume of permanent storage within the initial layer of aquifers, often referred to as
groundwater availability (GA) [3].

Groundwater potential is primarily determined by the porosity of rocks and the extent
of open spaces within them capable of storing water [3]. Groundwater potential is prin-
cipally affected by the porosity of rocks and favorable topography. Global groundwater
storage constitutes the most voluminous fresh water available for human consumption.
Conversely, the groundwater potential zone (GWPZ) encompasses a substantial and eco-
nomically viable reservoir of groundwater resources, indicating a notable increase in
groundwater availability [4]. Hence, investigating GWPZs is vital for estimating water
resource reserves, zone budgeting, preservation of water quality, creating vulnerability
maps, and effectively managing the environment. Most hydrogeological investigations
and groundwater potential evaluations have traditionally been conducted using in situ
measurements. However, these are not feasible in cases of limited funding or large area
covers [3]. The latest improvements in GIS and RS technologies support advanced tools for
groundwater monitoring and exploration [4]. Defining groundwater areas using GIS and
RS becomes efficient and valuable in determining GWPZs [5].

However, feature classes used to define the GWPZs vary through cases, and the the-
matic map selection is subjective depending on the perspectives of different problems. The
multi-criteria decision analysis (MCDA) method is widely used and suitable for complex
and multi-criteria decision problems. Nevertheless, the potential of the MCDA technique
in groundwater research is constrained by its limitation in accurately determining the
appropriate weights for multi-thematic layers and their features. However, the MCDA
technique is limited in potential groundwater research to choosing the correct weights
for multi-thematic layers and the [5]. The AHP, proposed by Saaty (1980), can define
the weights of multi-thematic layers with pairwise comparison [6]. However, there is a
possibility of inconsistency at some stage of pairwise comparison in the AHP method. Then,
Van Laarhoven and Pedrycz (1983) included fuzzy AHP by adopting the conventional AHP
approach. They have involved the fuzzy set theory as an alternative for deriving the weight
of each criterion [7]. In addition, fuzzy numbers are more realistic for defining the weights
of multi-factors with subjective judgments.

At present, the AHP is often used to analyze multi-parameters because of its simplic-
ity and effectiveness in dealing with complex decision-making problems [6]. However,
in practice, a classical problem has to be addressed in the current situation about the
uncertainty fuzziness and subjectivity in the conventional AHP, which makes the AHP
method an inadequate tool for analyzing multi-layer data [8]. This limitation is overcome
by integrating fuzzy logic into the AHP methodology, resulting in the FE-AHP. FE-AHP
was proposed by Chang (1992) and Chang (1996) as an extension of the approach proposed
by Saaty [6,9,10]. In principle, the FE-AHP method uses a triangular fuzzy number (TFN)
during the fuzzification process [11]. By including the fuzzy matrix in the AHP method,
the FE-AHP method can involve the human condition to integrate people’s responses in
decision making. As a result, the weighting of FE-AHP is closer to human reality than the
conventional AHP method. Additionally, validations from previous studies indicated that
the FE-AHP method held higher accuracy than the conventional AHP method based on
expert validations [8].

Indeed, the AHP method has seen extensive application in recent decades and has
proven successful in mapping groundwater potential zones [12–14]. The AHP is a conven-
tional index–overlay method that can predict groundwater vulnerability in different climate
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variations and human activities [15–17]. Applying the FE-AHP in mapping the GWPZ
would improve the understanding of regional groundwater behavior in practical ground-
water resource management. However, no previous studies have used the FE-AHP based
on comprehensive inputs for mapping the GWPZ. The present study aims to integrate
multiple RS data and employ the FE-AHP to delineate the GWPZ. Specifically, the devel-
oped FE-AHP and normalized index–overlay methods are applied to the Choushui River
groundwater basin (CRGB) in Western Taiwan. The CRGB has been an area with intensive
agriculture and aquaculture developments. There are sufficient groundwater monitoring
stations to characterize spatial variations in shallow groundwater resources. Based on
the site-specific monitoring data, the proposed FE-AHP and the associated GWPZ will be
validated. The proposed approach could be useful for efficiently estimating groundwater
availability in the first layer of an aquifer system, in which the groundwater monitoring
data and aquifer properties are limited.

In the conventional AHP method, determining ranks for the AHP criteria requires
expert judgments [18]. However, this study arranges the rank criteria based on the cor-
relation matrix of the thematic maps versus the GA criteria. The correlation is a control
variable for evaluating groundwater potential [3]. Specifically, the GA was derived based
on observation data and will be used to validate the distribution of the final GWPI. In the
present study, the AHP and FE-AHP were used to map groundwater potential zones to
prove the concept of the proposed approach. For areas with limited groundwater moni-
toring systems, the GWPZ could provide input to policymakers and local authorities for
effective and sustainable groundwater resource planning.

2. Materials and Methods

Mapping GWPZs is vital in addressing over pumping and promoting sustainable man-
agement for an aquifer system [19]. Specifically, they identify areas with high groundwater
availability and recharge potential, helping the policymaker to locate suitable extraction
sites [19]. This mapping provides valuable information on aquifers and vulnerability, en-
abling regulators to set pumping limits and develop long-term management strategies [20].
An accurate map of a GWPZ also helps identify areas at risk of over pumping, allowing
targeted measures to prevent excessive extraction and mitigate negative impacts. For
many areas where groundwater monitoring and hydrogeological data are unavailable,
GWPZs calculated based on remote sensing data are efficient for groundwater resource
planning and development. In summary, mapping GWPZs informs sustainable groundwa-
ter resource allocation, balancing water demand and mitigating possible overexploitation
effects [20]. The processes of mapping GWPZs involve assessing the subsurface characteris-
tics, hydrogeological conditions, and various factors that might influence the availability
and quality of groundwater [21].

2.1. Study Area

The study area is in Yunlin County, Western part of Taiwan and known as the CRGB
(see Figure 1a). The area of the CRGB is about 2500 km2, bounded by Pakuashan tableland
and Douliu Hill on the east side and the coastal line of the Taiwan Strait on the west. The
regional surface and groundwater flow are from the east to the west along the gradually
changed land surface from Pakuashan table land and Douliu Hill. The Choushui River,
which passes the gap between Pakuashan tableland and Douliu Hill, develops the main
river system in the study area. Drilling logs conducted in CRGB found the existence
of various aquifers and aquitards from the Holocene to Pleistocene sands, gravels, and
impermeable marine mud layers [22]. River and marine sedimentation processes have
developed a complex system consisting of multiple aquifers and aquitards. The non-marine
sequences were identified as aquifers. Because of the relatively high variation in the terrain
slope, the aquifers consist of coarse sediment ranging from medium sand to gravel with
high permeability. On the other hand, marine sequences comprising fine sediment ranging
from clay to fine sand with low permeability are classified as aquitards in the CRGB [23].
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In the context of the CRGB, the proximal-fan formation represents an unconfined aquifer.
Aquitards are primarily situated in the distal-fan and mid-fan regions, distinct from the
proximal-fan area. Based on the available logging data, the four aquifers are labeled
“Aquifer 1” to “Aquifer 4” from top to bottom (Figure 1b).

The CRGB is an enormous alluvial plain in Central Western Taiwan. The alluvial fan
is a crucial coastal aquifer that supports primary groundwater resources in the coastal
region of Taiwan [24]. In the CRGB, groundwater dynamics are primarily influenced by
direct precipitation and, to a certain extent, by local factors, as observed through river
recharge [25]. With the non-uniform precipitation in time and space, the CRGB has regularly
faced a shortage of surface water in dry seasons. Therefore, groundwater resources support
the demand for various water uses in dry seasons, leading to high variations in groundwater
levels in wet and dry seasons. Such high variations in groundwater levels are one of the key
factors that trigger land subsidence in the CRGB. The land subsidence issue in the alluvial
fan of the Choushui River in Western Taiwan has severe consequences for human-made
structures, including railroads and buildings [26]. Previous investigations have proposed
that extracting groundwater from areas with high groundwater potential could effectively
balance the demand for groundwater resources and reduce land subsidence [27].

Remote Sens. 2024, 16, 502 4 of 31 
 

 

sequences were identified as aquifers. Because of the relatively high variation in the ter-
rain slope, the aquifers consist of coarse sediment ranging from medium sand to gravel 
with high permeability. On the other hand, marine sequences comprising fine sediment 
ranging from clay to fine sand with low permeability are classified as aquitards in the 
CRGB [23]. In the context of the CRGB, the proximal-fan formation represents an uncon-
fined aquifer. Aquitards are primarily situated in the distal-fan and mid-fan regions, dis-
tinct from the proximal-fan area. Based on the available logging data, the four aquifers are 
labeled “Aquifer 1” to “Aquifer 4” from top to bottom (Figure 1b).  

The CRGB is an enormous alluvial plain in Central Western Taiwan. The alluvial fan 
is a crucial coastal aquifer that supports primary groundwater resources in the coastal 
region of Taiwan [24]. In the CRGB, groundwater dynamics are primarily influenced by 
direct precipitation and, to a certain extent, by local factors, as observed through river 
recharge [25]. With the non-uniform precipitation in time and space, the CRGB has regu-
larly faced a shortage of surface water in dry seasons. Therefore, groundwater resources 
support the demand for various water uses in dry seasons, leading to high variations in 
groundwater levels in wet and dry seasons. Such high variations in groundwater levels 
are one of the key factors that trigger land subsidence in the CRGB. The land subsidence 
issue in the alluvial fan of the Choushui River in Western Taiwan has severe consequences 
for human-made structures, including railroads and buildings [26]. Previous investiga-
tions have proposed that extracting groundwater from areas with high groundwater po-
tential could effectively balance the demand for groundwater resources and reduce land 
subsidence [27].  

  

(a) (b) 

Figure 1. (a) Choushui River groundwater basin (CRGB), overlaid by surface elevation data obtained 
from the SRTM, groundwater levels, and precipitation stations (CGS: WGS 1984) [28]; (b) the general 
hydrogeological profile for the Choushui River alluvial fan [27]. 

2.2. Datasets 
This section explains the data sources and types utilized in the study. The logging 

data, which consist of collected lithology data, were obtained from the Central Geological 
Survey (CGS) in Taiwan. The monthly average groundwater levels from 2006 to 2015 were 
collected by the Taiwan Water Resource Agency (WRA) from 31 groundwater wells in-
stalled in the first aquifer layer. The yearly precipitation data from 2006 to 2015 were de-
rived from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) 
dataset. CHIRPS has a spatial resolution of 5.5 km, which was resampled to 30 m for this 
study. CHIRPS data can be downloaded for free from https://data.chc.ucsb.edu/prod-
ucts/CHIRPS-2.0/ (accessed on 15 October 2023) . The enhanced vegetation index (EVI) 

Figure 1. (a) Choushui River groundwater basin (CRGB), overlaid by surface elevation data obtained
from the SRTM, groundwater levels, and precipitation stations (CGS: WGS 1984) [28]; (b) the general
hydrogeological profile for the Choushui River alluvial fan [27].

2.2. Datasets

This section explains the data sources and types utilized in the study. The logging
data, which consist of collected lithology data, were obtained from the Central Geological
Survey (CGS) in Taiwan. The monthly average groundwater levels from 2006 to 2015
were collected by the Taiwan Water Resource Agency (WRA) from 31 groundwater wells
installed in the first aquifer layer. The yearly precipitation data from 2006 to 2015 were
derived from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS)
dataset. CHIRPS has a spatial resolution of 5.5 km, which was resampled to 30 m for this
study. CHIRPS data can be downloaded for free from https://data.chc.ucsb.edu/products/
CHIRPS-2.0/ (accessed on 15 October 2023). The enhanced vegetation index (EVI) was
downloaded from the sensor of the MCD12Q1. It has been demonstrated in previous
investigations to be a more reliable representation of the vegetation index in atmospheric
disturbance compared to the normalized difference vegetation index (NDVI) [29]. The EVI
can be downloaded from https://modis.ornl.gov/globalsubset/ (accessed on 15 October
2023) with a spatial resolution of 500 m. The land surface slope was obtained from the
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Shuttle Radar Topographic Mission (SRTM) dataset with a spatial resolution of 30 m,
accessible at https://earthexplorer.usgs.gov/ (accessed on 15 October 2023). The modified
normalized difference water index (MNDWI) was derived from cloud-free Landsat 8 OLI
(Operational Land Imager) Level 2 satellite images taken in 2015 and obtained from the
United States Geological Survey (USGS). These images can also be accessed at https:
//earthexplorer.usgs.gov/ (accessed on 15 October 2023). Table 1 presents the Landsat
8 OLI/TIRS data bands, wavelengths, and resolutions used in the study. Multiple software
tools, including Matlab R2016b, ArcGIS 10.8, and the R 4.2.3 package, were utilized for
data processing.

Table 1. Landsat 8 OLI/TIRS data bands, wavelength, and resolution for the study.

Band

Landsat 8 Operational Land Imagers (OLIs) and Thermal Infrared Sensor (TIRS)

Band Name Wavelength
(Micrometers) Resolution (Meters)

Band 1 Ultra-Blue 0.435–0.451 30
Band 2 Blue 0.452–0.512 30
Band 3 Green 0.533–0.590 30
Band 4 Red 0.636–0.673 30
Band 5 NIR 0.851–0.879 30
Band 6 SWIR 1 1.566–1.651 30
Band 7 SWIR 2 2.107–2.294 30
Band 8 Panchromatic 0.503–0.676 15
Band 9 Cirrus 1.363–1.384 30

Band 10 TIRS 1 10.60–11.19 100 ∗ (30)
Band 11 TIRS 2 11.50–12.51 100 ∗ (30)

2.3. Methods

Figure 2 presents the general flowchart in this study to map the GWPZ. The GWPZ
was determined by calculating the GWPI for the entire groundwater basin [25]. The GWPI
represents the complex interplay of socioeconomic factors, hydrometeorology, topography,
and land resources [26]. A GWPZ map employs a weighted index overlay concept, where
weight values are assigned to each thematic layer [27]. As shown in the flowchart of
Figure 2, the study determined the GA based on the collected site-specific data, including
the aquifer thickness of the first layer, groundwater depths, and the porosity of the shallow
aquifer. The results of the GA were for the validation of the GWPZ. We then conducted
the Band Collection statistics for normalized thematic maps. The index–overlay method
requires weightings and ratings for each specific thematic map. We utilized the FE-AHP
to assess the thematic layers and define their weightings. The ratings and weightings
of the selected parameters were used to determine the GWPI for each cell in the map.
Subsequently, the GWPZ map was generated based on the GWPI values.

The study employed the direct calculations of groundwater volume in the first layer
(i.e., the GA) and compared the GA with the obtained GWPZ to assess the accuracy of
the GWPZ map. A Pearson correlation matrix between the GA and GWPZ was built to
evaluate the linear relationship between the GA and GWPZ. This step aimed to examine
the correlation between the GWPZ and the actual groundwater availability. On-site field
verifications were also conducted by checking the selected high and low GWPZ areas in
the CRGB. A Google Street map with high-resolution satellite images was able to provide
specific references for the selected sites [29].

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3.1. Groundwater Availability (GA)

In this study, groundwater availability accounted for the storage potential in the pore
space of the shallow aquifer. Therefore, calculating the groundwater availability considered
site-specific observations such as the aquifer thickness, depth to the groundwater level, and
porosity of the aquifer materials. To quantify the groundwater availability, we calculated
the groundwater volume within the pore space of the saturated portion in the first aquifer
layer. It was calculated by subtracting the groundwater depth from the aquifer thickness
of the shallow aquifer and then multiplying the result by the porosity. Additionally, the
flatness of the topography showed a noteworthy impact on lateral inflows, also known as
the percolation rate. We considered the monthly averaged groundwater depth to identify
seasonal groundwater fluctuations in the study area. February was characterized as a dry
month and was selected to represent the minimum amount of precipitation received across
the study area. Due to limited porosity data, a porosity map was derived based on the
identified soil texture and integrated with the USDA survey database [30] (see Table 2).
The common porosity values in Table 2 were used in the study. For a specific location,
higher groundwater availability could indicate a higher GWPI (groundwater potential
index) and vice versa. In the study area, the calculation of the groundwater availability
used the February groundwater levels obtained from 2006 to 2015.

Table 2. Porosity based on soil texture from Clapp and Hornberger (1978).

Soil Texture Porosity [-]

Sand 0.395
Loamy sand 0.410
Sandy loam 0.435

Silt 0.485
Loam 0.451

Sandy clay loam 0.420
Silty clay loam 0.477

Clay loam 0.476
Sandy clay 0.426
Silty clay 0.492

Clay 0.482

2.3.2. Analytic Hierarchy Process (AHP)

The AHP, proposed by Saaty [6], has found extensive application in multi-criteria
evaluation for decision-making scenarios involving conflicting and qualitative criteria. The
AHP involves a structured approach of pairwise comparisons, utilizing a standardized nine-
level scale to determine the relative importance of criteria. The AHP involves a structured
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set of pairwise comparisons, utilizing a standardized nine-level scale to evaluate the
relative importance of criteria. Each criterion is assigned ratings or weights based on these
comparisons, using values ranging from 1 to 9, reflecting the degree of importance (from
extremely less important to extremely more influential). The impact of factors or criteria
on the decision-making process is quantified by combining this scale with the expertise
and knowledge of specialists or users [31]. The AHP method allows for a comprehensive
consideration of both subjective and objective evaluation measures while also providing a
means to test the stability of evaluation methods and proposed options through specialists
or decision-makers, thus reducing errors in decision making [31]. This study employed the
results of the classical AHP for comparison purposes. Specifically, the maps of the GWPZs
obtained from the conventional AHP and the FE-AHP were quantitatively evaluated
and assessed.

Most studies utilizing multi-criteria evaluation, such as the AHP, rely on expert judg-
ment to rank the criteria. However, this study introduced a novel approach using a
correlation matrix between selected thematic maps derived from seven RS data and an inde-
pendent variable not included in the model. The study considered GA as the independent
variable strongly correlated with the GWPI [3]. In AHP methods, the initial step involves
tabulating the data based on Pearson’s correlation matrix built between the normalized
thematic maps and groundwater availability. The correlation matrix among the thematic
layers was generated using Band Collection Statistics in ArcGIS 10.8. This method allows
for ranking each criterion of the GWPZ, providing a more objective approach than relying
solely on expert judgment or the existing literature. Here, the z-score normalization or
zero mean normalization method was employed to normalize the data. This normalization
method involves subtracting the mean (µ) of each feature and dividing it by the standard
deviation (σ) [27].

v′i =
vi − µ

σ
(1)

where vi is the value of the criteria for every grid of i, µ is the expectation of the variable,
σ is the standard deviation of the variable, and the notation v′i represents the z-score of
the corresponding outlier. Reference data are presented in the form of seven data on the
GWPI, which were ranked as reference partners, along with seven thematic maps. The
seven thematic maps were then determined by considering the analysis of the needs and
availability of RS data. However, the data types could be changed based on different
situations and site-specific conditions. In this study, the selected parameters were based on
the hydrology processes, human interventions, geological profile and surface profile [11].
For hydrological processes, they are characterized by specific parameters such as P (precip-
itation in mm), MNDWI (modified normalized difference water index), and DD (drainage
density in km/km2). Human interventions are identified by parameters, namely, the EVI
(enhanced vegetation index) and NDBI (normalized difference building index). Geological
profile and surface profile are explained by TRI (terrain ruggedness index) and SL (slope in
degrees), respectively.

Note that the AHP involves breaking down the issue into a hierarchy of elements,
specifically the criteria and the sub-criteria. In this study, the criteria consisted of the seven
parameters, while the sub-criteria were the different ranges within each parameter.

Precipitation (P). Precipitation is the primary source for groundwater recharge in
aquifer systems [11]. Hence, increasing precipitation represents the increasing groundwater
potential over a specific area. Precipitation is closely related to the amount of surface water
that infiltrates and percolates into the aquifer as the input for the groundwater recharge [32].
As a result, a variation in the spatial intensity of precipitation is referred to as the variation
in groundwater recharge rate across CRGB. The yearly precipitation data from 2006 to 2015
were derived from the Climate Hazards Group InfraRed Precipitation With Station Data
(CHIRPS) dataset.

Drainage density (DD). The drainage density is the ratio of the stream segments in a
specific area. Drainage is one of the crucial parameters in hydrogeological processes, which
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controls the interactions near land surfaces. In an aquifer system, the drainage density could
significantly influence groundwater recharge. Lower groundwater infiltration happens in
the media with higher drainage density. A higher drainage density associated with the
lower soil permeability on land surfaces could lead to lower water infiltration and higher
surface runoff. In the study, we employed the available line density algorithm in ArcGIS
to calculate the drainage density in CRGB. Drainage density with the unit of km/km2

represents the closeness among the stream channels.
Enhanced vegetation index (EVI). Areas with dense vegetation are hydrologically more

stable due to their typically better soil infiltration properties, attributed to higher organic
matter content. Different vegetation types respond differently to groundwater presence
in aquifers [33]. NDVI is a conventional vegetation index, but recent studies suggest that
the EVI, with a more robust profile in areas with atmospheric disturbance, can be derived
from Landsat 8–9 data [34]. Equation (2) outlines the general formula for determining
the EVI, covering the canopy background with the L value. Coefficients for atmospheric
corrections and the blue band (B) are represented by C values, helping reduce noise induced
by background, atmospheric conditions, and saturation in cloud-covered areas.

EVI = G ∗ (NIR − Red)
(NIR + C1 ∗ Red − C2 ∗ Blue + L)

(2)

In Landsat 8–9, the EVI for the study area can be calculated by 2.5 ∗ ((Band 5–Band
4)/(Band 5 + 6 ∗ Band 4–7.5 ∗ Band 2 + 1)). The EVI has a range between −1 and 1. When
an area has an EVI closer to 1, then the vegetation over that area is very dense and has a
higher value for groundwater potential, and vice versa.

Modified normalized difference water index (MNDWI). The MNDWI was applied to
detect the water bodies on the land surface [35]. The objective of the MNDWI is to reduce
the effect of features in the built-up areas that are often detected together with open water
like other indices. The algorithm of the MNDWI can be seen in Equation (3):

MNDWI =
(Green − SWIR1)
(Green + SWIR1)

(3)

Moreover, in the case of the modified normalized difference water index (MNDWI),
the pixel values extracted from the Green (3rd band) and short-wave infrared SWIR1 (6th
band) play a pivotal role. The synergistic utilization of these specific bands from the
Landsat 8–9 satellite imagery facilitates a comprehensive analysis of water bodies, aiding
in accurately delineating and characterizing aquatic features within the study area.

Terrain ruggedness index (TRI). Topography is essential in controlling the spatial vari-
ability of hydrological processes such as surface and groundwater flow and soil moisture.
Topographic indices have been applied to represent the spatial pattern of soil moisture [36].
The topographic ruggedness index to quantify the elevation difference between adjacent
cells using DEM obtained from SRTM [36]. Terrain roughness, such as micro-relief, terrain
rugosity, ruggedness, surface roughness, and micro topography, can be defined as the
variation in elevation. A higher TRI value of a pixel translates to a more considerable
difference in altitude compared to the adjacent areas around that pixel.

Slope (SL). Slope factors intensely affect the lateral and vertical flow of groundwa-
ter [33]. Previous investigations have recognized that the land surface slope considerably
controls the infiltration rate of surface water, which is mainly related to the groundwater
recharge of an aquifer system (e.g., Ref. [37]). In principle, the percolation rate of surface
water has a negative linear interaction with the land surface slope because of the retention
time of the surface runoff. The surface runoff is relatively lower in a gentle slope area than
in a sloping area. Therefore, a gentle slope will lead to a higher rate of percolation.

Normalized difference building index (NDBI). The conventional image classification
technique is usually used to classify satellite images based on supervised and unsupervised
classification methods. However, these methods are ineffective, including steps with
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complex procedures. Specifically, the operations require composite bands and judgment
parameters for the final results. The NDBI technique is more effective than conventional
classification methods. The reflectance for built-up areas and bare lands is relatively higher
for SWIR than for NIR. For a green surface, the reflection of NIR is higher than that of the
SWIR spectrum. In contrast, water bodies cannot be detected by the infrared spectrum. The
NDBI gives the following formula (Equation (4)):

NDBI =
(SWIR − NIR)
(SWIR + NIR)

(4)

For Landsat 8 data, the NDBI can be calculated using the formula (Band 6–Band 5)/
(Band 6 + Band 5). Also, the NDBI has a value range between −1 and +1. A negative
value of NDBI represents water bodies, whereas a positive value represents built-up areas.
Identifying water bodies is essential to indicate the possible recharge zones for an aquifer
system. Note that the NDBI value for vegetation is generally lower than the NDBI value
for water (see Tables A13 and A14 for details) [38].

The AHP requires constructing judgment matrices (Bw) of size (n × n) through pairwise
comparisons among the n criteria. The diagonal elements are all set to one in these
matrices since they represent the same criterion. Subsequently, the relative weights for each
matrix are determined by identifying the right eigenvector (w) corresponding to the largest
eigenvalue (λmax) (Equation (5)).

Bw = λmaxw (5)

As the value of λmax approaches the number of elements (n) in the pairwise comparison
matrix, the judgments in the matrix become increasingly consistent. Hence, the difference,
λmax − n, can be used as an indicator of inconsistency. To assess the coherence of the
judgments, Saaty [30] introduced a consistency index (CI) to measure the agreement
among the B matrices, where bij × bjk = bik.The formula for calculating the consistency
index can be expressed as (Equation (6)):

CI =
λmax − n

n − 1
(6)

Random pairwise comparisons on matrices of varying sizes determine the consistency
index. The random index (RI) can be calculated by averaging the consistency indexes for
each matrix size. The consistency ratio (CR) is subsequently defined as the ratio between
the consistency index and the random index (RI) (Equation (7)).

CR =
CI
RI

(7)

A CR value exceeding 0.1 indicates a significant inconsistency in the judgments made
during the creation of the pairwise comparison matrix. Therefore, it is necessary to maintain
a CR at ≤0.1 to ensure the stability of the array. The CR measures how consistent the
pairwise comparisons are in the AHP analysis. In addition, the CR is used to evaluate the
reliability of the judgments made during the comparison process. Note that the significance
of the difference between these two consistency ratios depends on the context and the
specific threshold used in the model. In general, the lower the consistency ratio, the more
reliable the judgments made in the analysis [39].

2.3.3. Fuzzy Extended AHP (FE-AHP)

Zadeh [11] introduced the fuzzy set theory in 1965. The study showed that using
the membership functions by real numbers [0, 1] is acceptable. The process is called
generalization for a classic set theory. In principle, the primary characteristic of fuzziness
is individuals grouping into some classes. At that point, it allows unclear boundaries or
bias for the threshold of each class [40]. Then, the ambiguous comparison of the judgment
can be characterized by fuzzy numbers. The TFN is a unique class of fuzzy numbers in
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which three real numbers define the membership: (l, m, u). A TFN is symbolized by (l,
m, u), where l, m, and u refer to the smallest, most promising, and largest possible values,
respectively (Equation (8)). In some cases, it could occur when the data are difficult to
specify precisely because of measurement or instrument error. However, an accurate height
measurement is rarely obtained in practice, with it usually slightly more or slightly less
than the real value. Thus, the measurement numbers can be written more accurately as the
TFN (Table 3). Figure 3a shows the conceptual structure of the TFN of the conventional
AHP method [41].

µA =


(x − l)/(m − l), l ≤ x ≤ m
(u − x)/(u − m), m ≤ x ≤ u

0 otherwise
(8)
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Si ≥
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S j

)
for FE-AHP, where the intersection

point “d” is between two fuzzy numbers
∼
Si and

∼
S j (modified from [42]).

To create a pairwise comparison of alternatives for each criterion, similar to the concept
of the conventional AHP method, a matrix of triangular fuzzy comparison can be defined
as follows (Equation (9)):

∼
A =

(∼
a ij

)
n×n

=


(1, 1, 1) (l12m12u12) · · · (l1nm1nu1n)

(l21m21u21) (1, 1, 1) · · · (l2nm2nu2n)
...

...
...

...
(ln1mn1un1) (ln2mn2un2) · · · (1, 1, 1)

 (9)

where
∼
a ij =

(
lijmijuij

)
=

∼
a
−1
ij =

(
1/uji, 1/mji, 1/lji

)
for i, j = 1, . . . n, and i ̸= j.

The total weights and preferences of alternatives could be developed from other
methods. In general, two alternative methods will be modeled in continuation. Figure 3
summarizes the conceptual structure of the conventional AHP and FE-AHP. The conven-
tional AHP uses a TFN to represent linguistic variables and capture imprecise judgments.
It consists of three parameters, including l (lower bound), m (modal value), and u (upper
bound) (see Figure 3a). TFNs are commonly used in the AHP to express linguistic terms,
such as “low”, “medium”, and “high”, or to represent uncertainty in pairwise comparisons.

The FE-AHP method was proposed by Chang (1996) [10,11]. The extended analysis of
Chang (1996) can be concisely described in several steps. First, compute the normalized
value for row sums by fuzzy arithmetic operations (Equation (10)):

∼
Si =

n

∑
j=1

∼
a ij ⊗

[∣∣∣∣∣ n

∑
k=1

n

∑
j=1

∼
akj

]−1

(10)
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where the notation ⊗ represents the extended multiplication of two fuzzy numbers. Second,
compute the degree of possibility using the following (Equation (11)):

V
(∼

Si ≥
∼
S j

)
= sup

y≥x

[
min

(∼
S j(x),

∼
Si(y)

)]
(11)

which can be equally written by (Equation (12)):

V
(∼

Si ≥
∼
S j

)
= hgt

(∼
Si ∩

∼
S j

)
=

∼
S j(d) =


1 mi ≥ mj

ui−lj

(ui−mi)+(mj−lj)
lj ≤ ui i, j = 1, . . . ., n; j ̸= i

0 otherwise

(12)

where
∼
Si = (limiui) and

∼
Sj =

(
ljmjuj

)
, and d is the ordinate of the highest intersection

point between µ∼
Si

, µ∼
S j

(see Figure 3b).

The FE-AHP method is an improved version of the AHP that introduces additional
features to handle more complex decision problems involving uncertainties. The FE-AHP
method incorporates fuzzy numbers to represent imprecise information, but instead of us-
ing TFNs, it uses fuzzy number intervals (Figure 3b). The representation of fuzzy numbers
in the FE-AHP is more flexible and allows for a more extensive range of uncertainty [43].

In the FE-AHP, a fuzzy number is represented as
∼
Si = (limiui), where (limiui) are

lower, modal, and upper values, respectively. Similarly, another fuzzy number
∼
Sj =

(
ljmjuj

)
can be defined (Figure 3b). The FE-AHP allows an intersection point “d” between two fuzzy

numbers
∼
Si and

∼
Sj. These fuzzy number intervals allow decision-makers to express their

preferences and judgments more detailed and nuancedly [43]. The FE-AHP also introduces
the concept of fuzzy pairwise comparison matrices, which capture the imprecise judg-
ments between criteria or alternatives. These matrices use fuzzy numbers or fuzzy number
intervals to accommodate uncertainty and imprecision during the decision-making process.

Third, calculate the degree of possibility of
∼
Si to be larger than all the other (n − 1)

convex fuzzy numbers
∼
S j (Equation (13)):

V
(∼

Si ≥
∼
S j

∣∣∣∣j = 1, . . . , n; j ̸= i = min
je(1,...,n)j ̸=i

V
(∼

Si ≥
∼
S j

)
, i = 1, . . . , n

)
(13)

Fourth, define the vector of priority W = (w1, . . . , w2)
Γ for the fuzzy comparison

matrix
∼
A as (Equation (14)):

wi =

V
(∼

Si ≥
∼
S j

∣∣∣∣j = 1, . . . , n; j ̸= i
)

∑n
k−1 V

(∼
Si ≥

∼
S j

∣∣∣∣j = 1, . . . , n; j ̸= k
) i = 1, . . . , n (14)

In summary, both TFNs for the AHP and FE-AHP methods involve fuzzy numbers.
The TFN relies on a triangular representation (l, m, u) to express imprecise judgments,
whereas FE-AHP employs fuzzy number intervals (limiui), to provide a more versatile
representation for capturing uncertainties and complex decision problems. In the FE-AHP
method, the degree of possibility is suggested for the ordering and the weights. In this
step, a pairwise comparison is made for every fuzzy weight by other fuzzy weights. The
conforming degree of possibility of being higher than other fuzzy weights is defined. The
minimum of the possibility is used as the overall score for each criterion.
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Table 3. The triangular fuzzy number of the FE-AHP method [44].

AHP Scale Linguistic Variable
FE-AHP Scale

TFN Number Reciprocal

1 Equally important (1, 1, 1) (1, 1, 1)
2 Intermediate of 1 to 3 (1/2, 1, 3/2) (2/3, 1, 2)
3 Slightly important (1, 3/2, 2) (1/2, 2/3, 1)
4 Intermediate of 3 to 5 (3/2, 2, 5/2) (2/5, 1/2, 2/3)
5 Important (2, 5/2, 3) (1/3, 2/5, 1/2)
6 Intermediate of 5 to 7 (5/2, 3, 7/2) (2/7, 1/3, 2/5)
7 Strongly important (3, 7/2, 4) (1/4, 2/7, 1/3)
8 Intermediate of 7 to 9 (7/2, 4, 9/2) (2/9, 1/4), 2/7)
9 Extremely important (4, 9/2, 9/2) (2/9, 2/9, 1/4)

2.3.4. Groundwater Potential Index (GWPI)

The groundwater potential index (GWPI) is a dimensionless and quantification index
used to calculate potential groundwater scores in various areas by integrating thematic
layers and the corresponding weightings and ratings [28]. The GWPI can be determined by
integrating these thematic layers into a Geographic Information System (GIS) platform. The
ratings and weights of each class are defined using the fuzzy evaluation analytic hierarchy
process (FE-AHP) method. The GWPI can be calculated using the following equation
(Equation (15)):

GWPI = [(Pr ∗ Pw) + (DDr ∗ DDw) + (EVIr ∗ EVIw) + (MNDWIr ∗
MNDWIw) + (TRI ∗ TRIw) + (SLr ∗ SLw) + (NDBIr ∗ NDBIw)]

(15)

The equation for calculating the GWPI involves various parameters represented by
subscripts “r” (rating) and “w” (weight). These parameters include P for precipitation (mm),
DD for drainage density (km/km2), EVI for the enhanced vegetation index, MNDWI for
the modified normalized difference water index, TRI for the terrain ruggedness index, SL
for slope (degree), and NDBI for the normalized difference building index. The GWPI was
derived from seven thematic maps of RS data to generate the map for GWPZ. Each thematic
datum was converted into raster datasets using ArcGIS software. The GWPI was calculated
using the index–overlay method and used to create the final GWPZ map. The weighting
factors for all criteria were defined based on the location properties shown in Table 3. The
GWPZ map was divided into five classes, including very high, high, moderate, poor, and
very poor, using the natural break (Jenks) classification method. This method optimizes the
classification of values into different classes and provides a relative probability assessment
of groundwater potential resources [45]. Natural break (Jenks) is one of the clustering data
methods. This method uses an optimization process to find the best value classification
into different classes [45].

2.3.5. Validation of the GWPZ

First, the GWPZ map was validated using Pearson’s correlation matrix between
the GWPI and the direct calculation of the GA for the first aquifer layer in the CRGB.
Note that the GA was not included in the analysis of the GWPZ. The GA served as an
independent parameter that robustly confirmed the accuracy of the GWPZ. Initially, the GA
was solely utilized to determine the ranking and was not included in the GWPZ map. For
raster datasets, the correlation matrix provides cell values from one raster layer to another.
This correlation between layers enables the measurement of the degree of dependency
between them. Correlation values range from +1 to −1. A positive correlation indicates a
direct relationship between the layers, whereas a negative correlation signifies an inverse
relationship where the variables change in opposite directions. The study also conducted
validation based on ground checking. Google Earth provides satellite imagery with varying
spatial and temporal resolution [46]. The spatial resolution of Google Earth imagery varies
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depending on location and data availability. In densely populated areas or popular tourist
destinations, the spatial resolution tends to be higher, enabling more detailed views of
buildings, streets, and landmarks [46]. Conversely, remote or less frequented areas may
have a lower spatial resolution, resulting in less detailed information [46].

Second, delineating groundwater recharge potential zones involves a weighted over-
lay of different themes in the geospatial environment. This method serves as an indirect
measurement to identify potential zones but requires validation through direct observations
for accurate planning. The validation process is a crucial element in scientific research. A
random sampling technique is employed in the geospatial environment to validate the
groundwater recharge potential zones with actual recharge. Using Google Earth, multiple
locations were selected randomly to represent each class of the GWPZ, allowing for a
comprehensive assessment of the GWPZ’s accuracy. As a model consistency validation, lo-
cations were selected based on our knowledge of their real or physical profile. For instance,
the downstream area in Mailiao Haipu New Land, western Yunlin County, features diverse
land uses, including coastal uplift rejuvenation, siltation sites, saline ponds, aqua fisheries,
and sandbanks affected by monsoonal activity. Hypothesizing, Mailiao Haipu New Land
is expected to have a poor geopotential zone due to salty water and seawater intrusion.
Conversely, the upstream area includes agriculture and water resources, indicating a good
groundwater potential zone.

3. Results and Discussion
3.1. Estimation of the Groundwater Availability (GA)

The GA was calculated to determine the amount of water available in each cell of
the first aquifer layer. Figure 4 shows the result of the calculated GA. High GA was pre-
dominantly found in the proximal-fan area in the study area. This observation agrees with
previous research indicating that the proximal-fan has a higher potential for groundwater
recharge [47,48]. A higher groundwater recharge potential rate corresponds to a higher
likelihood of groundwater potential zones. Based on Pearson’s correlation matrix, the
parameter with the highest correlation to GA was precipitation, followed by drainage
density, EVI, MNDWI, TRI, slope, and NDBI (Table 4). Notably, a negative relationship was
observed between groundwater availability, MNDWI, and NDBI. Groundwater recharge
primarily occurs through the infiltration process of precipitation. In a regional groundwater
system, the proximal-fan, located in the upstream area with the highest elevation, serves
as the main recharge zone for the groundwater resource. The higher correlation between
precipitation and GA compared to other parameters can be attributed to the fact that the
Choushui River carries most of the groundwater resources originating from the precipita-
tion. The correlation r between GA and the precipitation was 0.68 for the study. Following
the precipitation, the second important parameter with a relatively strong correlation to
GA was the drainage density (DD), with a Pearson’s correlation of −0.66. The EVI showed
a slightly low correlation with GA compared to the correlation between precipitation and
GA (r = 0.64). In this model, EVI was used as a representation of vegetation cover. Previous
research has established a significant linear relationship between groundwater levels and
vegetation cover [49]. The presence of vegetation cover will support the percolation and
infiltration of water.
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Layers GA P DD EVI MNDWI TRI SL NDBI

GA 1.00 0.68 −0.66 0.64 −0.62 −0.52 −0.50 0.48
P 0.68 1.00 −0.61 0.77 0.60 0.65 0.65 −0.59
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3.2. Thematic Layers of the GWPZ

We considered seven reference variables to calculate the GWPI for the CRGB. These
variables include precipitation (P), drainage density (DD), enhanced vegetation index
(EVI), modified normalized difference water index (MNDWI), terrain ruggedness index
(TRI), slope (SL), and normalized difference building index (NDBI). These variables are
determined based on the availability of the RS data, which may vary depending on site-
specific conditions. By including multiple parameters, the weighting of the factors is
less likely to be dominated by a specific criterion, allowing for a more comprehensive
representation of the system complexity. Table 5 summarizes the weightings and ratings
obtained from conventional AHP and FE-AHP analyses. The detailed calculations of the
weightings for the AHP and FE-AHP are listed in Appendix A.

The AHP and FE-AHP utilize the GA to rank and arrange the thematic parameters
in the study. After the parameter arrangement was completed, the data were used to
calculate the AHP and FE-AHP. However, the notable difference between the AHP and
FE-AHP is that despite using a similar scale, the FE-AHP generated more reasonable
weights between the criteria and smoother ratings. The differences in weightings and
ratings are not as contrasting in the FE-AHP compared to the AHP, allowing for a smoother
transition in the FE-AHP [39]. For example, in the AHP, the weight difference between
all criteria and the rating within a criterion is more contrasting and rough. One instance
is the precipitation rating for sub-parameters in the interval 2088–2547, which gives the
value of 0.4537, followed by a rating of 0.2667 for the interval 1830–2087. However, the
FE-AHP assigns ratings of 0.3870 and 0.3042 for similar sub-parameters, resulting in a more
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gradual and smoother change. In summary, while both the AHP and FE-AHP employ GA
for parameter ranking, the FE-AHP demonstrates a more reasonable weight distribution
between criteria and smoother transitions in ratings compared to the conventional AHP.
This characteristic of the FE-AHP contributes to a more refined and consistent decision-
making process (see Table 5).

Table 5. Classification of thematic layers of the GWPZs in the CRGB based on the AHP and FE-
AHP methods.

Parameters Sub-Parameters
AHP FE-AHP

Weight Rating Weight Rating

P

1117–1442

0.3354

0.0488

0.2661

0.0171
1443–1616 0.0817 0.0909
1617–1829 0.1491 0.2008
1830–2087 0.2667 0.3042
2088–2547 0.4537 0.3870

DD

0–1.71

0.2320

0.4456

0.2277

0.3870
1.72–3.06 0.2690 0.3042
3.07–4.23 0.1512 0.2008
4.24–5.53 0.0827 0.0909
5.54–9.56 0.0514 0.0171

EVI

−0.29–(−0.01)

0.1597

0.0588

0.1877

0.093
−0.02–0.16 0.0972 0.143
0.17–0.27 0.1590 0.1957
0.28–0.33 0.2591 0.2501
0.34–0.50 0.4258 0.3182

MNDWI
−0.60–(−0.11)

0.1105
0.6080

0.1338
0.5584

−0.12–0 0.2721 0.3446
0–0.23 0.1199 0.097

TRI

0–0.78

0.0755

0.4162

0.1025

0.2949
0.79–1.96 0.2618 0.2473
1.97–4.32 0.1611 0.1979
4.33–9.82 0.0986 0.1502

9.83–50.12 0.0624 0.1098

SL
0–2.0

0.0512
0.5813

0.0594
0.4803

>2.1–6.0 0.3092 0.3052
>6.0 0.1096 0.2145

NDBI

−0.39–(−0.16)

0.0358

0.3913

0.0229

0.2487
−0.15–(−0.09) 0.2572 0.2225
−0.08–(−0.03) 0.1691 0.1976
−0.02–(−0.01) 0.1100 0.1693

0.00–0.32 0.0724 0.1620

Figure 5 compares consistency ratios (CRs) between the conventional AHP and FE-
AHP for the pairwise comparison matrix of thematic parameters and the sub-criteria. It is
recognized that the CR should be greater than 0 and less than 0.1. A lower CR is generally
preferred. A lower CR signifies a higher level of consistency in the judgments, indicating
that the decision-maker’s preferences are more dependable and logical. Conversely, a higher
CR suggests more significant inconsistency, implying possible conflicts or contradictions in
the decision-maker’s preferences. Figure 5 shows that results from the FE-AHP method
exhibit generally lower CR values than those obtained from the AHP method, indicating
that the FE-AHP method holds a higher level of consistency and reliability. The following
sections focus on the results and discussion of the maps for the thematic parameters in
the study.
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3.2.1. Precipitation (P)

Figure 6 shows the year-averaged distribution of the precipitation in the CRGB. In
general, the distribution of the precipitation is consistent with the land surface elevation of
the groundwater basin, varying from the coastal area in the east to the mountain area in the
east (see Figure 1). The considerable precipitation variation in space has made the proximal-
fan an excellent recharge zone for the aquifer system. According to previous investigations,
the areas with lower (or higher) precipitation were assigned a lower (or higher) rating
value [50,51]. Tables A1 and A2 show the detailed calculation of the weightings and
ratings [11].
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3.2.2. Drainage Density (DD)

Figure 7 illustrates the drainage density results for a 1 km by 1 km cell size in the
crucial agricultural regions of Western Taiwan. The well-developed drainage system, de-
signed for agricultural purposes, includes lined channels to prevent surface water leakage.
Higher drainage density correlates with increased surface runoff, potentially impacting
groundwater potential negatively. Detailed calculations for the drainage density weighting
and ratings in the AHP and FE-AHP methods are listed in Tables A3 and A4, respectively.
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3.2.3. Enhanced Vegetation Index (EVI)

Figure 8 displays the distribution of the EVI in the study area, revealing that the
southeastern part of the CRGB exhibits denser vegetation cover. This denser vegetation
suggests a heightened likelihood of groundwater potential in that specific region (Figure 8).
For a comprehensive understanding of the assessment methodologies, detailed weightings
and ratings for the AHP and FE-AHP methods can be found in Tables A5 and A6 in
Appendix A.
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3.2.4. The Modified Normalized Difference Water Index (MNDWI)

Figure 9 depicts the MNDWI results for the study area, where a high and positive
MNDWI value indicates a likelihood of groundwater potential, representing the wetness of
an area. However, the MNDWI cannot differentiate between salty and freshwater bodies,
as it relies on spectral characteristics. Notably, the Mailiao Haipu New Land in the western
part of Yunlin County features diverse land uses, including coastal uplift rejuvenation,
siltation sites, saline ponds, aqua fisheries, and sandbanks affected by monsoonal activ-
ity [52]. The MNDWI can enhance groundwater potential assessment by identifying surface
water bodies or wet areas, including saline ponds along the coastal line in the CRGB’s
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western region. Detailed weightings and ratings for the AHP and FE-AHP methods are in
Tables A7 and A8 in Appendix A.
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Figure 9. The modified normalized difference water index (MNDWI) obtained based on Landsat
(PCS: UTM zone 51N).

3.2.5. Terrain Ruggedness Index (TRI)

Understanding the groundwater potential of a particular location is intricately linked
to the dynamics of water bodies on the land surface and their infiltration into the aquifer
system. The fate of precipitation or surface runoff is closely tied to the terrain characteristics,
especially the altitude differences across the landscape. A lower terrain ruggedness index
(TRI) value signifies a landscape with relatively low altitude variations, indicating a higher
potential for groundwater retention [53]. This insight underscores the significance of the
TRI in assessing the groundwater potential zone within the CRGB region (Figure 10). The
detailed weightings and ratings of TRI for both the analytical hierarchy process (AHP)
and fuzzy evaluation analytical hierarchy process (FE-AHP) methodologies can be found
in Tables A9 and A10 in Appendix A, providing a comprehensive foundation for further
analysis and interpretation
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3.2.6. Slope

Figure 11 shows the cell-based slope values estimated based on the DEM from the
SRTM. The result reveals that the slope could vary from 0 to 30 in the study area. The CRBG
is bounded by Pakuashan tableland and Douliu Hill in the east (Figure 1a). The high-slope
zones are mostly in the upstream areas along the Pakuashan tableland and Douliu Hill
of the CRGB. There are few spots with high slope values in the southeastern areas near
the Douliu Hill. In general, low-slope areas dominate the entire CRGB, showing high
infiltration potential in the CRGB. In the study, a cell with a low slope value was assigned a
high weight for the AHP and FE-AHP methods. Tables A11 and A12 in Appendix A show
the details of the estimated weightings for the study area. The slopes were categorized into
three different intervals based on the slope values from 0.0◦ to 6.0◦.
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3.2.7. Normalized Difference Building Index (NDBI)

Figure 12 provides a comprehensive visualization of the normalized difference build-
ing index (NDBI) distribution across the CRGB region. The analysis of the NDBI reveals
prominent land use types within CRGB, predominantly comprising vegetation and water
bodies. Interestingly, the overall extent of built-up areas appears relatively limited, empha-
sizing the predominantly natural landscape of the region. This observation is crucial for
understanding the interplay between land cover characteristics, particularly the scarcity of
built-up areas, and their potential implications for the groundwater potential zone within
the CRGB.



Remote Sens. 2024, 16, 502 20 of 29

Remote Sens. 2024, 16, 502 20 of 31 
 

 

3.2.7. Normalized Difference Building Index (NDBI) 
Figure 12 provides a comprehensive visualization of the normalized difference build-

ing index (NDBI) distribution across the CRGB region. The analysis of the NDBI reveals 
prominent land use types within CRGB, predominantly comprising vegetation and water 
bodies. Interestingly, the overall extent of built-up areas appears relatively limited, em-
phasizing the predominantly natural landscape of the region. This observation is crucial 
for understanding the interplay between land cover characteristics, particularly the scar-
city of built-up areas, and their potential implications for the groundwater potential zone 
within the CRGB. 

 
Figure 12. The distribution of NDBI estimated based on Landsat data (PCS: UTM zone 51N). 

3.3. Delineation of the Groundwater Potential Zone (GWPZ) 
The GWPI values obtained from Eq. (15) were the basis for obtaining the GWPZ in 

the CRGB. The seven thematic layers were considered to assess the groundwater potential 
(i.e., groundwater availability, GA) in the study area. Figure 13 shows the result using the 
weightings and ratings calculated from the conventional AHP and FE-AHP. The charac-
teristics of the AHP and FE-AHP made the weightings and ratings different in terms of 
both the values and variations within intervals (see Table 5). Tables A15 and A16 in Ap-
pendix A show the detailed weighting matrices of the selected parameters for the AHP 
and FE-AHP. Based on the calculation, the groundwater potential index for the study area 
ranges from 0.06 to 0.39, with a standard deviation of 0.05 for AHP and FE-AHP. A natural 
break grouping scheme based on Jenk’s optimization method was used to define the range 
of each class for the maps of the GWPZ.  

The classification of the GWPZ was carried out using the AHP and FE-AHP methods, 
identifying five distinct groundwater potential zones, including very good, good, moder-
ate, poor, and very poor (Figure 13). The result obtained from the FE-AHP demonstrated 
a relatively smooth and reasonable variation in the GWPZ. However, the result from the 
AHP showed clear patterns that the precipitation distribution might control. In addition, 
the FE-AHP result could capture the contribution from other parameters, such as those 
from DD (Figure 7), EVI (Figure 8), and MNDWI (Figure 9). These parameters are essential 
features for the mid-fan and distal-fan areas in the CRGB. The general behavior shows 
that the most favorable groundwater potential zones, classified as “good” and “very 
good”, are predominantly concentrated in the mid-fan and proximal-fan, respectively. 
The mid-fan and proximal-fan are indicated as areas closest to excellent potential for 
groundwater resources (Figure 13). The regions at the proximal-fan of the Choushui 

Figure 12. The distribution of NDBI estimated based on Landsat data (PCS: UTM zone 51N).

3.3. Delineation of the Groundwater Potential Zone (GWPZ)

The GWPI values obtained from Equation (15) were the basis for obtaining the GWPZ
in the CRGB. The seven thematic layers were considered to assess the groundwater po-
tential (i.e., groundwater availability, GA) in the study area. Figure 13 shows the result
using the weightings and ratings calculated from the conventional AHP and FE-AHP. The
characteristics of the AHP and FE-AHP made the weightings and ratings different in terms
of both the values and variations within intervals (see Table 5). Tables A15 and A16 in
Appendix A show the detailed weighting matrices of the selected parameters for the AHP
and FE-AHP. Based on the calculation, the groundwater potential index for the study area
ranges from 0.06 to 0.39, with a standard deviation of 0.05 for AHP and FE-AHP. A natural
break grouping scheme based on Jenk’s optimization method was used to define the range
of each class for the maps of the GWPZ.
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from (a) conventional AHP and (b) FE-AHP methods.

The classification of the GWPZ was carried out using the AHP and FE-AHP methods,
identifying five distinct groundwater potential zones, including very good, good, moderate,
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poor, and very poor (Figure 13). The result obtained from the FE-AHP demonstrated a
relatively smooth and reasonable variation in the GWPZ. However, the result from the
AHP showed clear patterns that the precipitation distribution might control. In addition,
the FE-AHP result could capture the contribution from other parameters, such as those
from DD (Figure 7), EVI (Figure 8), and MNDWI (Figure 9). These parameters are essential
features for the mid-fan and distal-fan areas in the CRGB. The general behavior shows that
the most favorable groundwater potential zones, classified as “good” and “very good”, are
predominantly concentrated in the mid-fan and proximal-fan, respectively. The mid-fan
and proximal-fan are indicated as areas closest to excellent potential for groundwater
resources (Figure 13). The regions at the proximal-fan of the Choushui River’s alluvial fan
exhibit notably high groundwater recharge potential (GRP) levels. Conversely, distal-fan
areas register lower GRP levels, classified as poor and very poor. In addition, regions with
a moderate GRP are primarily located along the Choushui River. Based on the study of
Tsai et al. (2015), a proximal-fan mainly consists of grave deposits, which supports a higher
GRP. In conclusion, there was agreement between, and relevance in, the GWPZ and GRP
maps proposed by Tsai et al. (2015) [47,48].

Figure 13a,b show that the areas with groundwater potential vary across the study
region. The proximal fan, an upstream area, has “very good” potential for groundwater in
the CRGB region. The “very good” potential is linked to abundant rainfall, sparse drainage
paths, higher dense vegetation covers, rougher terrain, and steeper slopes, excluding the
presence of water bodies. The lack of water bodies in a high-elevation area indicates
a scarcity of surface water. Such behavior can also reduce surface water loss, increase
infiltration, and create favorable hydrogeological conditions for groundwater recharge [38].
These factors collectively support higher groundwater potential in such areas. More rainfall
indicates that more water recharges the groundwater. With fewer natural drainages, water
can seep and recharge the groundwater reservoir more effectively. Plants play a vital role in
boosting groundwater potential by using water and letting it infiltrate the ground. Rougher
landscapes could slow surface water movement, allowing more time for water to penetrate
and recharge the groundwater. These combined features signify areas with promising
groundwater potential.

In the mid-fan, the “good” category of groundwater potential results from moderate-
to-low precipitation, ensuring gradual surface water retention. The drainage density is
also moderate-to-low, indicating fewer pathways for water to drain quickly. In addition,
moderate-to-very-dense vegetation cover reduces surface runoff through evapotranspira-
tion, aiding water infiltration into the soil. The area’s moderate-to-high wetness indicates
ample soil moisture, supporting gradual groundwater recharge. The smoother terrain and
flatter slopes further slow surface water flow, giving water more time to penetrate and
recharge the groundwater table. These combined factors create a balanced environment
for effective groundwater replenishment without excessive water loss. These favorable
conditions enhance the potential for sustained groundwater replenishment, contributing
to the overall “good” groundwater potential in the area. The distal-fan area stands out
as having predominantly very poor groundwater potential. The result is characterized
by various factors that contribute to this classification. Firstly, this region receives the
lowest precipitation levels, limiting the amount of water that can infiltrate the ground
and recharge the groundwater. In addition, the area exhibits the highest drainage density,
implying an extensive network of natural pathways for water to drain away and reduce
groundwater recharge. In the study, the total weightings for the precipitation and drainage
density dominate the calculation of the GWPZ. The vegetation and water body indexes
show a relatively limited contribution to the overall GWPZ.

Figure 14 shows the distribution of the areas for different classifications of GWPZs
in the CRGB. The comparison highlights the AHP’s tendency to provide more distinct
categorizations than the FE-AHP. The categorization of GWPZ areas indicates that the
FE-AHP achieves a more realistic and balanced distribution across groundwater potential
categories due to its integration of fuzzy logic and linguistic variables. When observing



Remote Sens. 2024, 16, 502 22 of 29

the distribution range, the total area for each GWPZ category based on the FE-AHP
appears to exhibit a more realistic and balanced representation across groundwater potential
categories than the AHP (see Figure 14). This distribution range implies that the FE-AHP
provides a broader representation of categories by effectively integrating fuzzy logic and
linguistic variables.

Remote Sens. 2024, 16, 502 22 of 31 
 

 

  

(a) (b) 

Figure 13. The maps of groundwater potential zone (GWPZ) for CRGB based on the results obtained 
from (a) conventional AHP and (b) FE-AHP methods. 

Figure 14 shows the distribution of the areas for different classifications of GWPZs in 
the CRGB. The comparison highlights the AHP’s tendency to provide more distinct cate-
gorizations than the FE-AHP. The categorization of GWPZ areas indicates that the FE-
AHP achieves a more realistic and balanced distribution across groundwater potential 
categories due to its integration of fuzzy logic and linguistic variables. When observing 
the distribution range, the total area for each GWPZ category based on the FE-AHP ap-
pears to exhibit a more realistic and balanced representation across groundwater potential 
categories than the AHP (see Figure 14). This distribution range implies that the FE-AHP 
provides a broader representation of categories by effectively integrating fuzzy logic and 
linguistic variables. 

In summary, the result of the FE-AHP method lies in its specific feature to handle 
uncertainty, incorporate linguistic variables, offer a broader representation of categories, 
and allow for flexible weightings. These combined aspects position the FE-AHP as a pow-
erful tool for groundwater potential assessment. This advanced approach enhances the 
FE-AHP to produce a smoother, more realistic, and well-balanced distribution of ground-
water potential compared to the traditional AHP method. A smoother, more realistic, and 
well-balanced distribution of GWPZ could improve benefit judgment for groundwater 
management based on remote sensing data. 

  
(a) (b) 

Figure 14. Percentage of area for the basin-fan in CRGB based on (a) conventional AHP and (b) FE-
AHP methods. The green, red and blue graph are for the proximal-fan, mid-fan and distal-fan, re-
spectively. 

Figure 14. Percentage of area for the basin-fan in CRGB based on (a) conventional AHP and (b) FE-AHP
methods. The green, red and blue graph are for the proximal-fan, mid-fan and distal-fan, respectively.

In summary, the result of the FE-AHP method lies in its specific feature to handle
uncertainty, incorporate linguistic variables, offer a broader representation of categories,
and allow for flexible weightings. These combined aspects position the FE-AHP as a
powerful tool for groundwater potential assessment. This advanced approach enhances
the FE-AHP to produce a smoother, more realistic, and well-balanced distribution of
groundwater potential compared to the traditional AHP method. A smoother, more
realistic, and well-balanced distribution of GWPZ could improve benefit judgment for
groundwater management based on remote sensing data.

3.4. Performance of the GWPI

Table 6 shows the Pearson correlation matrix between the GWPI (groundwater po-
tential index) and direct measurements of the GA (groundwater availability). In Table 6,
the Pearson’s correlation coefficient between the GWPI and GA for the AHP and FE-AHP
was determined to be 0.56 (moderate correlation) and 0.67 (high correlation), respectively,
which indicates a strong positive correlation for the GWPI of the FE-AHP and conven-
tional AHP (i.e., the correlation r > 0.50) [54]. The overall correlation between the GWPI
and GA showed that the FE-AHP method obtains a better match of GA than the conven-
tional AHP method. Furthermore, the associated P-value was found to be less than 0.01,
providing further evidence of the statistical significance of the correlation. This strong
correlation underscores the relationship between the GWPI and groundwater availability.
The high correlation between the GWPI and GA also proves the concept that remote sensing
data applied to modified index–overlay approaches could provide efficient estimations of
groundwater potential for shallow aquifers.

Table 6. Pearson’s correlation matrix of GA, GWPI for AHP, and GWPI for FE-AHP.

Layers GA GWPI (AHP) GWPI (FE-AHP)

GA 1.00 0.56 0.67
GWPI (AHP) 0.56 1.00 0.56

GWPI (FE-AHP) 0.67 0.88 1.00

An area with a higher GWPI value often exhibits a greater capacity to recharge and
store groundwater, thus correlating with higher groundwater availability. The GWPI acts
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as an indicator of groundwater potential, suggesting areas with potential for sustainable
groundwater replenishment. However, it is important to acknowledge local variations in
this relationship based on the hydrogeological conditions of a specific area. For instance,
an area might display a high GWPI due to favorable surface characteristics, but if the un-
derlying aquifer is shallow or overexploited, the actual groundwater availability might be
limited. Understanding this relationship is crucial for effective groundwater resource man-
agement, aiding in identifying areas with significant groundwater potential and sustainably
aligning groundwater usage to ensure long-term availability and prevent overexploitation.

Figure 15 shows the selected sites to check the results obtained from the FE-AHP
method. The aquaculture farms along the west coast of the CRGB area are indicated as
lying in the “very poor” class of GWPZ because of the low precipitation, relatively high
drainage density, and low vegetation. Our results show large water bodies distributed
along the coastal line on the western side of the CRGB. In the CRGB, the “poor” class of
GWPZ is primarily found in areas covered by bare soil, built-up structures, and artificial
materials. These land use features could decrease groundwater infiltration into the aquifer.
On the other hand, the “moderate”, “good”, and “very good” classes of GWPZ are closely
associated with the presence of ponds, minimal built-up areas, and higher vegetation cover,
which contribute to groundwater recharge. Ground checking confirms consistency between
the GWPZ map and land use.
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4. Conclusions

This study integrated the normalized index–overlay method and the fuzzy extended
analytical hierarchy process (FE-AHP) to map cost-effective GWPZs. The proposed nor-
malized index–overlay method collects the weightings and ratings of several prospective
thematic layers. A more realistic approach to weighting parameters is achieved by nor-
malizing and correlating the parameters with observed groundwater availability (GA)
as a baseline for ranking parameter layers. The observed GA was calculated based on
site-specific observations such as the aquifer thickness, depth to the groundwater level,
and porosity of the aquifer materials. Seven comprehensive thematic layers from remote
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sensing (RS) data were processed to obtain the weightings and ratings of the groundwater
potential index (GWPI) for the Choushui River groundwater basin (CRGB) in Western
Taiwan. In the study, the selection of parameters was based on hydrological processes,
human interventions, the geological profile, and the surface profile. Hydrological pro-
cesses were characterized by specific parameters such as P (precipitation in mm), MNDWI
(modified normalized difference water index), and DD (drainage density in km/km2).
Human interventions were identified by two parameters, namely, the EVI (enhanced veg-
etation index) and NDBI (normalized difference building index). The geological profile
and surface profile were explained by the TRI (terrain ruggedness index) and SL (slope in
degrees), respectively.

In the study, the conventional AHP method was employed for comparison purposes
in the mapping of the GWPZ. FE-AHP could yield smooth thresholds of each selected class
in specific factors. The site chosen to prove the proposed concept in the study was the
CRGB. The AHP and FE-AHP results show that the estimated groundwater potential map
matched the groundwater availability derived from the direct measurements field data.
The FE-AHP method demonstrated more reasonable weight distribution and smoother
transitions in ratings, offering a refined and consistent decision-making process. Based
on consistency ratios (CRs), the FE-AHP method consistently showed lower CR values
than the AHP method, indicating higher reliability and consistency in decision-making
preferences. The proposed approach could be useful for efficiently estimating groundwater
availability in a shallow aquifer system, in which groundwater monitoring data and aquifer
properties are insufficient or unavailable.

The groundwater potential varies in the CRGB region. The proximal-fan, upstream,
boasts “very good” potential due to abundant rainfall, low drainage density, dense vegeta-
tion, rough terrain, and steep slopes, excluding water bodies. The absence of water bodies
at higher elevations implies less surface water loss and more groundwater recharge. Lower
drainage density facilitates effective seepage and recharge. In the mid-fan, “good” ground-
water potential results from moderate-to-low precipitation, allowing gradual absorption.
The distal-fan area predominantly shows “very poor” groundwater potential due to low
precipitation, high drainage density impeding recharge, limited vegetation, and a minimal
contribution of water bodies due to possible salinity.

The GWPZ map delineates five distinct groundwater potential zones. According
to the GWPI from the AHP and FE-AHP (“moderate” to “very good” categories), about
49.00% and 59.56% of the CRGB area can be categorized as potential groundwater recharge
zones, respectively. In summary, the advantage of the FE-AHP method lies in its capacity
to handle uncertainty, integrate linguistic variables, provide a broader representation of
categories, and allow for flexible weighting. Therefore, the FE-AHP method could produce
a smoother, more realistic, and more well-balanced distribution of groundwater potential
compared to the conventional AHP method.

The findings of this study establish an initial framework for understanding the ground-
water potential zones in the CRGB, laying the foundation for sustainable groundwater
resource management in the basin. Given the generalizable characteristics and logical
conditions employed in this approach, it can be adapted and implemented in other regions
with necessary adjustments. The results of the GWPZ map can serve as valuable guidelines
for future planning endeavors related to sustainable groundwater recharge in the CRGB.
These insights empower policymakers to make informed decisions regarding groundwater
resource management.

In this study, the remote sensing data did not directly obtain the key aquifer prop-
erties such as the thickness, hydraulic conductivity, and types of soil material. All these
site-specific observations could be costly because of the time and resources devoted to
them. Additional remote sensing technologies could be useful to improve the analysis of
groundwater potential. Further validation of this approach could be conducted through
monitoring groundwater well discharge and step drawdown pumping well tests at various



Remote Sens. 2024, 16, 502 25 of 29

CRGB locations. Such tests would evaluate specific yields across different GWPZs, allowing
a thorough examination of groundwater resources in shallow aquifer systems.
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Appendix A

Table A1. Comparison matrix and significance weighting values of precipitation (AHP).

1117–1442 1443–1616 1617–1829 1830–2087 2088–2547 Weight

1117–1442 1.00 0.50 0.25 0.20 0.14 0.0488
1443–1616 2.00 1.00 0.50 0.25 0.20 0.0817
1617–1829 4.00 2.00 1.00 0.50 0.25 0.1491
1830–2087 5.00 4.00 2.00 1.00 0.50 0.2667
2088–2547 7.00 5.00 4.00 2.00 1.00 0.4537

Table A2. Comparison matrix and significance weighting values of precipitation (FE-AHP).

1117–1442 1443–1616 1617–1829 1830–2087 2088–2547 Weight

1117–1442 (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) (1/3, 2/5, 1/2) (2/7, 1/3, 2/5) 0.0171
1443–1616 (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) (1/3, 2/5, 1/2) 0.0909
1617–1829 (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) 0.2008
1830–2087 (2, 5/2, 3) (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) 0.3042
2088–2547 (5/2, 3, 7/2) (2, 5/2, 3) (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) 0.3870

Table A3. Pairwise comparison matrix and significance weighting of drainage density (AHP).

0–1.71 1.72–3.06 3.07–4.23 4.24–5.54 5.55–9.56 Weight

0–1.71 1.00 2.00 4.00 5.00 6.00 0.4456
1.72–3.06 0.50 1.00 2.00 4.00 5.00 0.2690
3.07–4.23 0.25 0.50 1.00 2.00 4.00 0.1512
4.24–5.54 0.20 0.25 0.50 1.00 2.00 0.0827
5.55–9.56 0.17 0.20 0.25 0.50 1.00 0.0514

Table A4. Pairwise comparison matrix and significance weighting of drainage density (FE-AHP).

0–1.71 1.72–3.06 3.07–4.23 4.24–5.54 5.55–9.56 Weight

0–1.71 (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) (2, 5/2, 3) (5/2, 3, 7/2) 0.3870
1.72–3.06 (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) (2, 5/2, 3) 0.3042
3.07–4.23 (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) 0.2008
4.24–5.54 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.0909
5.55–9.56 (2/7, 1/3, 2/5) (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) 0.0171
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Table A5. Comparison matrix and significance weighting values of EVI (AHP).

−0.29–(−0.01) −0.02–0.16 0.17–0.27 0.28–0.33 0.34–0.50 Weight

−0.29–(−0.01) 1.00 0.50 0.30 0.30 0.20 0.0588
−0.02–0.16 2.00 1.00 0.50 0.30 0.30 0.0972
0.17–0.27 3.00 2.00 1.00 0.50 0.30 0.1590
0.28–0.33 4.00 3.00 2.00 1.00 0.50 0.2591
0.34–0.50 6.00 4.00 3.00 2.00 1.00 0.4258

Table A6. Comparison matrix and significance weighting values of EVI (FE-AHP).

−0.29–(−0.01) −0.02–0.16 0.17–0.27 0.28–0.33 0.34–0.50 Weight

−0.29–(−0.01) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2,
2/3) (2/7, 1/3, 2/5) 0.0930

−0.02–0.16 (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2, 2/3) 0.1430
0.17–0.27 (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) 0.1957
0.28–0.33 (3/2, 2, 5/2) (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) 0.2501
0.34–0.50 (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) 0.3182

Table A7. Comparison matrix and significance weighting values of MNDWI (AHP).

−0.60–(−0.11) −0.12–0 0–0.23 Weight

−0.60–(−0.11) 1.00 3.00 4.00 0.6080
−0.12–0 0.30 1.00 3.00 0.2721
0–0.23 0.30 0.30 1.00 0.1199

Table A8. Comparison matrix and significance weighting values of MNDWI (FE-AHP).

−0.60–(−0.11) −0.12–0 0–0.23 Weight

−0.60–(−0.11) (1, 1, 1) (1, 3/2, 2) (3/2, 2, 5/2) 0.5584
−0.12–0 (1/2, 2/3, 1) (1, 1, 1) (1, 3/2, 2) 0.3446
0–0.23 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (1, 1, 1) 0.0970

Table A9. Comparison matrix and significance weighting values of TRI (AHP).

0–0.78 0.79–1.96 1.97–4.32 4.33–9.82 9.83–50.12 Weight

0–0.78 1.00 2.00 3.00 4.00 5.00 0.4162
0.79–1.96 0.50 1.00 2.00 3.00 4.00 0.2618
1.97–4.32 0.30 0.50 1.00 2.00 3.00 0.1611
4.33–9.82 0.30 0.30 0.50 1.00 2.00 0.0986

9.83–50.12 0.20 0.30 0.30 0.50 1.00 0.0624

Table A10. Comparison matrix and significance weighting values of TRI (FE-AHP).

0–0.78 0.79–1.96 1.97–4.32 4.33–9.82 9.83–50.12 Weight

0–0.78 (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (2, 5/2, 3) 0.2949
0.79–1.96 (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) 0.2473
1.97–4.32 (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) 0.1979
4.33–9.82 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.1502
9.83–50.12 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) 0.1098

Table A11. Comparison matrix and significance weighting values of slope (AHP).

0–2.0◦ 2.1–6.0◦ >6.0◦ Weight

0–2.0◦ 1.00 2.00 5.00 0.5813
2.1–6.0◦ 0.50 1.00 3.00 0.3092

>6.0◦ 0.20 0.30 1.00 0.1096
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Table A12. Comparison matrix and significance weighting values of slope (FE-AHP).

0–2.0◦ 2.1–6.0◦ >6.0◦ Weight

0–2.0◦ (1,1, 1) (1/2, 1, 3/2) (2, 5/2, 3) 0.4803
2.1–6.0◦ (1/2, 2/3, 1) (1,1, 1) (1, 3/2, 2) 0.3052

>6.0◦ (1/3, 2/5, 1/2) (2/3, 1, 2) (1,1, 1) 0.2145

Table A13. Comparison matrix and significance weighting values of NDBI (AHP).

−0.39–(−0.16) −0.15–(−0.09) −0.08–(−0.03) −0.02–(−0.01) 0.00–0.32 Weight

−0.39–(−0.16) 1.00 2.00 3.00 3.00 4.00 0.3913
−0.15–(−0.09) 0.50 1.00 2.00 3.00 3.00 0.2572
−0.08–(−0.03) 0.30 0.50 1.00 2.00 3.00 0.1691
−0.02–(−0.01) 0.30 0.30 0.50 1.00 2.00 0.1100

0.00–0.32 0.30 0.30 0.30 0.50 1.00 0.0724

Table A14. Comparison matrix and significance weighting values of NDBI (FE-AHP).

−0.39–(−0.16) −0.15–(−0.09) −0.08–(−0.03) −0.02–(−0.01) 0.00–0.32 Weight

−0.39–(−0.16) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (1, 3/2, 2) (3/2, 2, 5/2) 0.2487
−0.15–(−0.09) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (1, 3/2, 2) 0.2225
−0.08–(−0.03) (1/3, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2 (1, 3/2, 2) 0.1976
−0.02–(−0.01) (1/3, 2/3, 1) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.1693

0.00–0.32 (2/5, ½, 2/3) (1/2, 2/3, 1) (1/2, 2/3, 1) (2/3, 1, 3) (1,1, 1) 0.1620

Table A15. Comparison matrix and significance weighting values of using parameters (AHP).

Precipitation Drainage Density EVI MNDWI TRI Slope NDBI Weight

Precipitation 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.3354
Drainage
Density 2.00 1.00 0.50 0.33 0.25 0.20 0.17 0.2320

EVI 3.00 2.00 1.00 0.50 0.33 0.25 0.20 0.1597
MNDWI 4.00 3.00 2.00 1.00 0.50 0.33 0.25 0.1105

TRI 5.00 4.00 3.00 2.00 1.00 0.50 0.33 0.0755
Slope 6.00 5.00 4.00 3.00 2.00 1.00 0.50 0.0755
NDBI 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.0512

Table A16. Comparison matrix and significance weighting values of using parameters (FE-AHP).

Precipitation Drainage
Density EVI MNDWI TRI Slope NDBI Weight

Precipitation (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2, 5/2, 3) (5/2, 3, 7/2) 0.2661
Drainage
Density (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2, 5/2, 3) 0.2277

EVI (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) 0.1877
MNDWI (2/5, 1/2,

2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) 0.1338

TRI (2/5, 1/2,
2/3)

(2/5, 1/2,
2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) 0.1025

Slope (1/3, 2/5,
1/2)

(2/5, 1/2,
2/3)

(2/5, 1/2,
2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) 0.0594

NDBI (2/7, 1/3,
2/5)

(1/3, 2/5,
1/2)

(2/5, 1/2,
2/3)

(2/5, 1/2,
2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) 0.0229
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