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Abstract: The Choushui River groundwater basin (CRGB) in Yunlin County, Taiwan, is a significant 

groundwater source for the western part of the region. However, increasing groundwater demand 

and human activities have triggered a potential crisis due to overexploitation. Therefore, ground-

water potential zone (GWPZ) maps are crucial for mapping groundwater resources and water re-

source management. This study employs the normalized index–overlay method and fuzzy extended 

analytical hierarchy process (FE-AHP) to map GWPZs cost-effectively. The methodology objectively 

incorporates weightings from various thematic layers by normalizing and correlating parameters 

with observed groundwater availability (GA). Site-specific observations, including aquifer thick-

ness, depth to the groundwater level, and porosity, inform GA calculations. Seven comprehensive 

layers derived from remote sensing (RS) data are processed to obtain weightings and ratings for the 

groundwater potential index (GWPI) in the CRGB. Selected parameters are categorized into hydro-

logical processes, human interventions, geological, and surface profiles. Hydrological processes in-

clude precipitation, modified normalized difference water index (MNDWI), and drainage density. 

Human interventions consist of the enhanced vegetation index (EVI) and normalized difference 

building index (NDBI). Surface profiles encompass the terrain ruggedness index (TRI) and slope, 

enhancing the study’s multi-criteria approach. The observed GA validates the GWPZ accuracy, clas-

sifying zones into five categories. According to the GWPI of FE-AHP, about 59.56% of the CRGB 

area can be categorized as “moderate” to “very good” potential groundwater recharge zones. Pear-

son’s correlation coefficient between GWPI and GA, based on FE-AHP, outperforms the conven-

tional AHP. This RS-based approach efficiently evaluates GA in aquifers with limited wells, high-

lighting crucial zones in CRGB’s proximal-fan and southeastern mid-fan for informed groundwater 

management strategies.  

Keywords: index–overlay method; groundwater potential zone; fuzzy extended-AHP;  

groundwater availability 

 

1. Introduction 

In principle, the presence of groundwater depends on the interactions among several 

factors, such as hydrological, climatic, ecological, geological, and biological factors [1]. 
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Identifying groundwater potential is essential for the local authorities to decide on a stra-

tegic plan for groundwater resource management in a vulnerable area. In most cases, 

groundwater recharge is mainly influenced by soil permeability and porosity, which refer 

to the geological structure, geomorphological setting, lineaments, slope, land use, soil tex-

ture, and land use or land cover [1]. Site-specific groundwater drilling and stratigraphy 

investigations are two reliable methods for investigating aquifer properties, but these 

methods are relatively costly in terms of time and investigation resources [2]. In recent 

years, the integration of remote sensing and Geographical Information System (GIS) ap-

plications has been used widely in most hydrological studies. Groundwater potential per-

tains to the total volume of permanent storage within the initial layer of aquifers, often 

referred to as groundwater availability (GA) [3]. 

Groundwater potential is primarily determined by the porosity of rocks and the ex-

tent of open spaces within them capable of storing water [3]. Groundwater potential is 

principally affected by the porosity of rocks and favorable topography. Global groundwa-

ter storage constitutes the most voluminous fresh water available for human consump-

tion. Conversely, the groundwater potential zone (GWPZ) encompasses a substantial and 

economically viable reservoir of groundwater resources, indicating a notable increase in 

groundwater availability [4]. Hence, investigating GWPZs is vital for estimating water re-

source reserves, zone budgeting, preservation of water quality, creating vulnerability 

maps, and effectively managing the environment. Most hydrogeological investigations 

and groundwater potential evaluations have traditionally been conducted using in situ 

measurements. However, these are not feasible in cases of limited funding or large area 

covers [3]. The latest improvements in GIS and RS technologies support advanced tools 

for groundwater monitoring and exploration [4]. Defining groundwater areas using GIS 

and RS becomes efficient and valuable in determining GWPZs [5].  

However, feature classes used to define the GWPZs vary through cases, and the the-

matic map selection is subjective depending on the perspectives of different problems. 

The multi-criteria decision analysis (MCDA) method is widely used and suitable for com-

plex and multi-criteria decision problems. Nevertheless, the potential of the MCDA tech-

nique in groundwater research is constrained by its limitation in accurately determining 

the appropriate weights for multi-thematic layers and their features. However, the MCDA 

technique is limited in potential groundwater research to choosing the correct weights for 

multi-thematic layers and the [5]. The AHP, proposed by Saaty (1980), can define the 

weights of multi-thematic layers with pairwise comparison [6]. However, there is a possi-

bility of inconsistency at some stage of pairwise comparison in the AHP method. Then, 

Van Laarhoven and Pedrycz (1983) included fuzzy AHP by adopting the conventional 

AHP approach. They have involved the fuzzy set theory as an alternative for deriving the 

weight of each criterion [7]. In addition, fuzzy numbers are more realistic for defining the 

weights of multi-factors with subjective judgments.  

At present, the AHP is often used to analyze multi-parameters because of its simplic-

ity and effectiveness in dealing with complex decision-making problems [6]. However, in 

practice, a classical problem has to be addressed in the current situation about the uncer-

tainty fuzziness and subjectivity in the conventional AHP, which makes the AHP method 

an inadequate tool for analyzing multi-layer data [8]. This limitation is overcome by inte-

grating fuzzy logic into the AHP methodology, resulting in the FE-AHP. FE-AHP was 

proposed by Chang (1992) and Chang (1996) as an extension of the approach proposed by 

Saaty [6,9,10]. In principle, the FE-AHP method uses a triangular fuzzy number (TFN) 

during the fuzzification process [11]. By including the fuzzy matrix in the AHP method, 

the FE-AHP method can involve the human condition to integrate people’s responses in 

decision making. As a result, the weighting of FE-AHP is closer to human reality than the 

conventional AHP method. Additionally, validations from previous studies indicated that 

the FE-AHP method held higher accuracy than the conventional AHP method based on 

expert validations [8].  
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Indeed, the AHP method has seen extensive application in recent decades and has 

proven successful in mapping groundwater potential zones [12–14]. The AHP is a conven-

tional index–overlay method that can predict groundwater vulnerability in different cli-

mate variations and human activities [15–17]. Applying the FE-AHP in mapping the 

GWPZ would improve the understanding of regional groundwater behavior in practical 

groundwater resource management. However, no previous studies have used the FE-

AHP based on comprehensive inputs for mapping the GWPZ. The present study aims to 

integrate multiple RS data and employ the FE-AHP to delineate the GWPZ. Specifically, 

the developed FE-AHP and normalized index–overlay methods are applied to the 

Choushui River groundwater basin (CRGB) in Western Taiwan. The CRGB has been an 

area with intensive agriculture and aquaculture developments. There are sufficient 

groundwater monitoring stations to characterize spatial variations in shallow groundwa-

ter resources. Based on the site-specific monitoring data, the proposed FE-AHP and the 

associated GWPZ will be validated. The proposed approach could be useful for efficiently 

estimating groundwater availability in the first layer of an aquifer system, in which the 

groundwater monitoring data and aquifer properties are limited.  

In the conventional AHP method, determining ranks for the AHP criteria requires 

expert judgments [18]. However, this study arranges the rank criteria based on the corre-

lation matrix of the thematic maps versus the GA criteria. The correlation is a control var-

iable for evaluating groundwater potential [3]. Specifically, the GA was derived based on 

observation data and will be used to validate the distribution of the final GWPI. In the 

present study, the AHP and FE-AHP were used to map groundwater potential zones to 

prove the concept of the proposed approach. For areas with limited groundwater moni-

toring systems, the GWPZ could provide input to policymakers and local authorities for 

effective and sustainable groundwater resource planning. 

2. Materials and Methods 

Mapping GWPZs is vital in addressing over pumping and promoting sustainable 

management for an aquifer system [19]. Specifically, they identify areas with high ground-

water availability and recharge potential, helping the policymaker to locate suitable ex-

traction sites [19]. This mapping provides valuable information on aquifers and vulnera-

bility, enabling regulators to set pumping limits and develop long-term management 

strategies [20]. An accurate map of a GWPZ also helps identify areas at risk of over pump-

ing, allowing targeted measures to prevent excessive extraction and mitigate negative im-

pacts. For many areas where groundwater monitoring and hydrogeological data are una-

vailable, GWPZs calculated based on remote sensing data are efficient for groundwater 

resource planning and development. In summary, mapping GWPZs informs sustainable 

groundwater resource allocation, balancing water demand and mitigating possible over-

exploitation effects [20]. The processes of mapping GWPZs involve assessing the subsur-

face characteristics, hydrogeological conditions, and various factors that might influence 

the availability and quality of groundwater [21]. 

2.1. Study Area 

The study area is in Yunlin County, Western part of Taiwan and known as the CRGB 

(see Figure 1a). The area of the CRGB is about 2500 km2, bounded by Pakuashan tableland 

and Douliu Hill on the east side and the coastal line of the Taiwan Strait on the west. The 

regional surface and groundwater flow are from the east to the west along the gradually 

changed land surface from Pakuashan table land and Douliu Hill. The Choushui River, 

which passes the gap between Pakuashan tableland and Douliu Hill, develops the main 

river system in the study area. Drilling logs conducted in CRGB found the existence of 

various aquifers and aquitards from the Holocene to Pleistocene sands, gravels, and im-

permeable marine mud layers [22]. River and marine sedimentation processes have de-

veloped a complex system consisting of multiple aquifers and aquitards. The non-marine 
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sequences were identified as aquifers. Because of the relatively high variation in the ter-

rain slope, the aquifers consist of coarse sediment ranging from medium sand to gravel 

with high permeability. On the other hand, marine sequences comprising fine sediment 

ranging from clay to fine sand with low permeability are classified as aquitards in the 

CRGB [23]. In the context of the CRGB, the proximal-fan formation represents an uncon-

fined aquifer. Aquitards are primarily situated in the distal-fan and mid-fan regions, dis-

tinct from the proximal-fan area. Based on the available logging data, the four aquifers are 

labeled “Aquifer 1” to “Aquifer 4” from top to bottom (Figure 1b).  

The CRGB is an enormous alluvial plain in Central Western Taiwan. The alluvial fan 

is a crucial coastal aquifer that supports primary groundwater resources in the coastal 

region of Taiwan [24]. In the CRGB, groundwater dynamics are primarily influenced by 

direct precipitation and, to a certain extent, by local factors, as observed through river 

recharge [25]. With the non-uniform precipitation in time and space, the CRGB has regu-

larly faced a shortage of surface water in dry seasons. Therefore, groundwater resources 

support the demand for various water uses in dry seasons, leading to high variations in 

groundwater levels in wet and dry seasons. Such high variations in groundwater levels 

are one of the key factors that trigger land subsidence in the CRGB. The land subsidence 

issue in the alluvial fan of the Choushui River in Western Taiwan has severe consequences 

for human-made structures, including railroads and buildings [26]. Previous investiga-

tions have proposed that extracting groundwater from areas with high groundwater po-

tential could effectively balance the demand for groundwater resources and reduce land 

subsidence [27].  

 
 

(a) (b) 

Figure 1. (a) Choushui River groundwater basin (CRGB), overlaid by surface elevation data obtained 

from the SRTM, groundwater levels, and precipitation stations (CGS: WGS 1984) [28]; (b) the general 

hydrogeological profile for the Choushui River alluvial fan [27]. 

2.2. Datasets 

This section explains the data sources and types utilized in the study. The logging 

data, which consist of collected lithology data, were obtained from the Central Geological 

Survey (CGS) in Taiwan. The monthly average groundwater levels from 2006 to 2015 were 

collected by the Taiwan Water Resource Agency (WRA) from 31 groundwater wells in-

stalled in the first aquifer layer. The yearly precipitation data from 2006 to 2015 were de-

rived from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) 

dataset. CHIRPS has a spatial resolution of 5.5 km, which was resampled to 30 m for this 

study. CHIRPS data can be downloaded for free from https://data.chc.ucsb.edu/prod-

ucts/CHIRPS-2.0/ (accessed on 15 October 2023) . The enhanced vegetation index (EVI) 
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was downloaded from the sensor of the MCD12Q1. It has been demonstrated in previous 

investigations to be a more reliable representation of the vegetation index in atmospheric 

disturbance compared to the normalized difference vegetation index (NDVI) [29]. The EVI 

can be downloaded from https://modis.ornl.gov/globalsubset/ (accessed on 15 October 

2023) with a spatial resolution of 500 m. The land surface slope was obtained from the 

Shuttle Radar Topographic Mission (SRTM) dataset with a spatial resolution of 30 m, ac-

cessible at https://earthexplorer.usgs.gov/(accessed on 15 October 2023). The modified 

normalized difference water index (MNDWI) was derived from cloud-free Landsat 8 OLI 

(Operational Land Imager) Level 2 satellite images taken in 2015 and obtained from the 

United States Geological Survey (USGS). These images can also be accessed at 

https://earthexplorer.usgs.gov/ (accessed on 15 October 2023). Table 1 presents the Land-

sat 8 OLI/TIRS data bands, wavelengths, and resolutions used in the study. Multiple soft-

ware tools, including Matlab R2016b, ArcGIS 10.8, and the R 4.2.3 package, were utilized 

for data processing. 

Table 1. Landsat 8 OLI/TIRS data bands, wavelength, and resolution for the study. 

Band 

Landsat 8 Operational Land Imagers (OLIs) and Thermal Infrared Sensor 

(TIRS) 

Band Name 
Wavelength  

(Micrometers) 

Resolution  

(Meters) 

Band 1 Ultra-Blue 0.435–0.451 30 

Band 2 Blue 0.452–0.512 30 

Band 3 Green 0.533–0.590 30 

Band 4 Red 0.636–0.673 30 

Band 5 NIR 0.851–0.879 30 

Band 6 SWIR 1 1.566–1.651 30 

Band 7 SWIR 2 2.107–2.294 30 

Band 8 Panchromatic 0.503–0.676 15 

Band 9 Cirrus 1.363–1.384 30 

Band 10 TIRS 1 10.60–11.19 100∗(30) 

Band 11 TIRS 2 11.50–12.51 100∗(30) 

2.3. Methods 

Figure 2 presents the general flowchart in this study to map the GWPZ. The GWPZ 

was determined by calculating the GWPI for the entire groundwater basin [25]. The GWPI 

represents the complex interplay of socioeconomic factors, hydrometeorology, topogra-

phy, and land resources [26]. A GWPZ map employs a weighted index overlay concept, 

where weight values are assigned to each thematic layer [27]. As shown in the flowchart 

of Figure 2, the study determined the GA based on the collected site-specific data, includ-

ing the aquifer thickness of the first layer, groundwater depths, and the porosity of the 

shallow aquifer. The results of the GA were for the validation of the GWPZ. We then con-

ducted the Band Collection statistics for normalized thematic maps. The index–overlay 

method requires weightings and ratings for each specific thematic map. We utilized the 

FE-AHP to assess the thematic layers and define their weightings. The ratings and weight-

ings of the selected parameters were used to determine the GWPI for each cell in the map. 

Subsequently, the GWPZ map was generated based on the GWPI values.  

The study employed the direct calculations of groundwater volume in the first layer 

(i.e., the GA) and compared the GA with the obtained GWPZ to assess the accuracy of the 

GWPZ map. A Pearson correlation matrix between the GA and GWPZ was built to eval-

uate the linear relationship between the GA and GWPZ. This step aimed to examine the 

correlation between the GWPZ and the actual groundwater availability. On-site field ver-

ifications were also conducted by checking the selected high and low GWPZ areas in the 

https://earthexplorer.usgs.gov/
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CRGB. A Google Street map with high-resolution satellite images was able to provide spe-

cific references for the selected sites [29].  

 

Figure 2. The flowchart for mapping and validating the groundwater potential zone (GWPZ). 

2.3.1. Groundwater Availability (GA) 

In this study, groundwater availability accounted for the storage potential in the pore 

space of the shallow aquifer. Therefore, calculating the groundwater availability consid-

ered site-specific observations such as the aquifer thickness, depth to the groundwater 

level, and porosity of the aquifer materials. To quantify the groundwater availability, we 

calculated the groundwater volume within the pore space of the saturated portion in the 

first aquifer layer. It was calculated by subtracting the groundwater depth from the aqui-

fer thickness of the shallow aquifer and then multiplying the result by the porosity. Addi-

tionally, the flatness of the topography showed a noteworthy impact on lateral inflows, 

also known as the percolation rate. We considered the monthly averaged groundwater 

depth to identify seasonal groundwater fluctuations in the study area. February was char-

acterized as a dry month and was selected to represent the minimum amount of precipi-

tation received across the study area. Due to limited porosity data, a porosity map was 

derived based on the identified soil texture and integrated with the USDA survey data-

base [30] (see Table 2). The common porosity values in Table 2 were used in the study. For 

a specific location, higher groundwater availability could indicate a higher GWPI 

(groundwater potential index) and vice versa. In the study area, the calculation of the 

groundwater availability used the February groundwater levels obtained from 2006 to 

2015.  

Table 2. Porosity based on soil texture from Clapp and Hornberger (1978). 

Soil Texture Porosity [-] 

Sand 0.395 

Loamy sand 0.410 

Sandy loam 0.435 

Silt 0.485 

Loam 0.451 

Sandy clay loam 0.420 

Silty clay loam 0.477 

Clay loam 0.476 

Sandy clay 0.426 

Silty clay 0.492 

Clay 0.482 
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2.3.2. Analytic Hierarchy Process (AHP) 

The AHP, proposed by Saaty [6], has found extensive application in multi-criteria 

evaluation for decision-making scenarios involving conflicting and qualitative criteria. 

The AHP involves a structured approach of pairwise comparisons, utilizing a standard-

ized nine-level scale to determine the relative importance of criteria. The AHP involves a 

structured set of pairwise comparisons, utilizing a standardized nine-level scale to evalu-

ate the relative importance of criteria. Each criterion is assigned ratings or weights based 

on these comparisons, using values ranging from 1 to 9, reflecting the degree of im-

portance (from extremely less important to extremely more influential). The impact of fac-

tors or criteria on the decision-making process is quantified by combining this scale with 

the expertise and knowledge of specialists or users [31]. The AHP method allows for a 

comprehensive consideration of both subjective and objective evaluation measures while 

also providing a means to test the stability of evaluation methods and proposed options 

through specialists or decision-makers, thus reducing errors in decision making [31]. This 

study employed the results of the classical AHP for comparison purposes. Specifically, the 

maps of the GWPZs obtained from the conventional AHP and the FE-AHP were quanti-

tatively evaluated and assessed.  

Most studies utilizing multi-criteria evaluation, such as the AHP, rely on expert judg-

ment to rank the criteria. However, this study introduced a novel approach using a corre-

lation matrix between selected thematic maps derived from seven RS data and an inde-

pendent variable not included in the model. The study considered GA as the independent 

variable strongly correlated with the GWPI [3]. In AHP methods, the initial step involves 

tabulating the data based on Pearson’s correlation matrix built between the normalized 

thematic maps and groundwater availability. The correlation matrix among the thematic 

layers was generated using Band Collection Statistics in ArcGIS 10.8. This method allows 

for ranking each criterion of the GWPZ, providing a more objective approach than relying 

solely on expert judgment or the existing literature. Here, the z-score normalization or 

zero mean normalization method was employed to normalize the data. This normaliza-

tion method involves subtracting the mean (𝜇) of each feature and dividing it by the stand-

ard deviation (𝜎) [27]. 

𝑣𝑖
′   =   

𝑣𝑖 −  𝜇

𝜎
 (1) 

where 𝑣𝑖 is the value of the criteria for every grid of 𝑖, 𝜇 is the expectation of the variable, 

𝜎 is the standard deviation of the variable, and the notation 𝑣𝑖
′ represents the z-score of 

the corresponding outlier. Reference data are presented in the form of seven data on the 

GWPI, which were ranked as reference partners, along with seven thematic maps. The 

seven thematic maps were then determined by considering the analysis of the needs and 

availability of RS data. However, the data types could be changed based on different sit-

uations and site-specific conditions. In this study, the selected parameters were based on 

the hydrology processes, human interventions, geological profile and surface profile [11]. 

For hydrological processes, they are characterized by specific parameters such as P (pre-

cipitation in mm), MNDWI (modified normalized difference water index), and DD (drain-

age density in km/km²). Human interventions are identified by parameters, namely, the 

EVI (enhanced vegetation index) and NDBI (normalized difference building index). Geo-

logical profile and surface profile are explained by TRI (terrain ruggedness index) and SL 

(slope in degrees), respectively. 

Note that the AHP involves breaking down the issue into a hierarchy of elements, 

specifically the criteria and the sub-criteria. In this study, the criteria consisted of the seven 

parameters, while the sub-criteria were the different ranges within each parameter.  

Precipitation (P). Precipitation is the primary source for groundwater recharge in aq-

uifer systems [11]. Hence, increasing precipitation represents the increasing groundwater 

potential over a specific area. Precipitation is closely related to the amount of surface water 

that infiltrates and percolates into the aquifer as the input for the groundwater recharge 
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[32]. As a result, a variation in the spatial intensity of precipitation is referred to as the 

variation in groundwater recharge rate across CRGB. The yearly precipitation data from 

2006 to 2015 were derived from the Climate Hazards Group InfraRed Precipitation With 

Station Data (CHIRPS) dataset.  

Drainage density (DD). The drainage density is the ratio of the stream segments in a 

specific area. Drainage is one of the crucial parameters in hydrogeological processes, 

which controls the interactions near land surfaces. In an aquifer system, the drainage den-

sity could significantly influence groundwater recharge. Lower groundwater infiltration 

happens in the media with higher drainage density. A higher drainage density associated 

with the lower soil permeability on land surfaces could lead to lower water infiltration 

and higher surface runoff. In the study, we employed the available line density algorithm 

in ArcGIS to calculate the drainage density in CRGB. Drainage density with the unit of 

km/km2 represents the closeness among the stream channels. 

Enhanced vegetation index (EVI). Areas with dense vegetation are hydrologically 

more stable due to their typically better soil infiltration properties, attributed to higher 

organic matter content. Different vegetation types respond differently to groundwater 

presence in aquifers [33]. NDVI is a conventional vegetation index, but recent studies sug-

gest that the EVI, with a more robust profile in areas with atmospheric disturbance, can 

be derived from Landsat 8–9 data [34]. Equation (2) outlines the general formula for de-

termining the EVI, covering the canopy background with the L value. Coefficients for at-

mospheric corrections and the blue band (B) are represented by C values, helping reduce 

noise induced by background, atmospheric conditions, and saturation in cloud-covered 

areas. 

𝐸𝑉𝐼 =  𝐺 ∗
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝑙𝑢𝑒 + 𝐿)
 (2) 

In Landsat 8–9, the EVI for the study area can be calculated by 2.5 ∗ ((Band 5–Band 

4)/(Band 5 + 6 ∗ Band 4–7.5 ∗ Band 2 + 1)). The EVI has a range between −1 and 1. When 

an area has an EVI closer to 1, then the vegetation over that area is very dense and has a 

higher value for groundwater potential, and vice versa. 

Modified normalized difference water index (MNDWI). The MNDWI was applied to 

detect the water bodies on the land surface [35]. The objective of the MNDWI is to reduce 

the effect of features in the built-up areas that are often detected together with open water 

like other indices. The algorithm of the MNDWI can be seen in Equation (3): 

𝑴𝑵𝑫𝑾𝑰 =  
(𝑮𝒓𝒆𝒆𝒏 − 𝑺𝑾𝑰𝑹𝟏)

(𝑮𝒓𝒆𝒆𝒏 + 𝑺𝑾𝑰𝑹𝟏)
 (3) 

Moreover, in the case of the modified normalized difference water index (MNDWI), 

the pixel values extracted from the Green (3rd band) and short-wave infrared SWIR1 (6th 

band) play a pivotal role. The synergistic utilization of these specific bands from the Land-

sat 8–9 satellite imagery facilitates a comprehensive analysis of water bodies, aiding in 

accurately delineating and characterizing aquatic features within the study area. 

Terrain ruggedness index (TRI). Topography is essential in controlling the spatial 

variability of hydrological processes such as surface and groundwater flow and soil mois-

ture. Topographic indices have been applied to represent the spatial pattern of soil mois-

ture [36]. The topographic ruggedness index to quantify the elevation difference between 

adjacent cells using DEM obtained from SRTM [36]. Terrain roughness, such as micro-

relief, terrain rugosity, ruggedness, surface roughness, and micro topography, can be de-

fined as the variation in elevation. A higher TRI value of a pixel translates to a more con-

siderable difference in altitude compared to the adjacent areas around that pixel. 

Slope (SL). Slope factors intensely affect the lateral and vertical flow of groundwater 

[33]. Previous investigations have recognized that the land surface slope considerably con-

trols the infiltration rate of surface water, which is mainly related to the groundwater re-

charge of an aquifer system (e.g., Ref. [37]). In principle, the percolation rate of surface 
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water has a negative linear interaction with the land surface slope because of the retention 

time of the surface runoff. The surface runoff is relatively lower in a gentle slope area than 

in a sloping area. Therefore, a gentle slope will lead to a higher rate of percolation. 

Normalized difference building index (NDBI). The conventional image classification 

technique is usually used to classify satellite images based on supervised and unsuper-

vised classification methods. However, these methods are ineffective, including steps with 

complex procedures. Specifically, the operations require composite bands and judgment 

parameters for the final results. The NDBI technique is more effective than conventional 

classification methods. The reflectance for built-up areas and bare lands is relatively 

higher for SWIR than for NIR. For a green surface, the reflection of NIR is higher than that 

of the SWIR spectrum. In contrast, water bodies cannot be detected by the infrared spec-

trum. The NDBI gives the following formula (Equation (4)):  

𝑵𝑫𝑩𝑰 =  
(𝑺𝑾𝑰𝑹 − 𝑵𝑰𝑹)

(𝑺𝑾𝑰𝑹 + 𝑵𝑰𝑹)
 (4) 

For Landsat 8 data, the NDBI can be calculated using the formula (Band 6–Band 5)/ 

(Band 6 + Band 5). Also, the NDBI has a value range between −1 and +1. A negative value 

of NDBI represents water bodies, whereas a positive value represents built-up areas. Iden-

tifying water bodies is essential to indicate the possible recharge zones for an aquifer sys-

tem. Note that the NDBI value for vegetation is generally lower than the NDBI value for 

water (see Tables A13 and A14 for details) [38]. 

The AHP requires constructing judgment matrices (𝐵𝑤) of size (n × n) through pair-

wise comparisons among the n criteria. The diagonal elements are all set to one in these 

matrices since they represent the same criterion. Subsequently, the relative weights for 

each matrix are determined by identifying the right eigenvector (w) corresponding to the 

largest eigenvalue (𝜆𝑚𝑎𝑥) (Equation (5)). 

𝐵𝑤 =  𝜆𝑚𝑎𝑥w (5) 

As the value of 𝜆𝑚𝑎𝑥 approaches the number of elements (𝑛) in the pairwise com-

parison matrix, the judgments in the matrix become increasingly consistent. Hence, the 

difference, 𝜆𝑚𝑎𝑥 − 𝑛, can be used as an indicator of inconsistency. To assess the coherence 

of the judgments, Saaty [30] introduced a consistency index (𝐶𝐼) to measure the agreement 

among the 𝐵  matrices, where 𝑏𝑖𝑗  ×  𝑏𝑗𝑘 =  𝑏𝑖𝑘.  The formula for calculating the con-

sistency index can be expressed as (Equation (6)): 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (6) 

Random pairwise comparisons on matrices of varying sizes determine the con-

sistency index. The random index (𝑅𝐼) can be calculated by averaging the consistency in-

dexes for each matrix size. The consistency ratio (𝐶𝑅) is subsequently defined as the ratio 

between the consistency index and the random index (𝑅𝐼) (Equation (7)). 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 (7) 

A 𝐶𝑅  value exceeding 0.1 indicates a significant inconsistency in the judgments 

made during the creation of the pairwise comparison matrix. Therefore, it is necessary to 

maintain a 𝐶𝑅 at ≤ 0.1 to ensure the stability of the array. The 𝐶𝑅 measures how con-

sistent the pairwise comparisons are in the AHP analysis. In addition, the 𝐶𝑅 is used to 

evaluate the reliability of the judgments made during the comparison process. Note that 

the significance of the difference between these two consistency ratios depends on the 

context and the specific threshold used in the model. In general, the lower the consistency 

ratio, the more reliable the judgments made in the analysis [39]. 
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2.3.3. Fuzzy Extended AHP (FE-AHP) 

Zadeh [11] introduced the fuzzy set theory in 1965. The study showed that using the 

membership functions by real numbers [0, 1] is acceptable. The process is called generali-

zation for a classic set theory. In principle, the primary characteristic of fuzziness is indi-

viduals grouping into some classes. At that point, it allows unclear boundaries or bias for 

the threshold of each class [40]. Then, the ambiguous comparison of the judgment can be 

characterized by fuzzy numbers. The TFN is a unique class of fuzzy numbers in which 

three real numbers define the membership: (l, m, u). A TFN is symbolized by (l, m, u), 

where l, m, and u refer to the smallest, most promising, and largest possible values, re-

spectively (Equation (8)). In some cases, it could occur when the data are difficult to spec-

ify precisely because of measurement or instrument error. However, an accurate height 

measurement is rarely obtained in practice, with it usually slightly more or slightly less 

than the real value. Thus, the measurement numbers can be written more accurately as 

the TFN (Table 3). Figure 3a shows the conceptual structure of the TFN of the conventional 

AHP method [41]. 

𝜇𝐴 = {
(𝑥 − 𝑙)/(𝑚 − 𝑙), 𝑙 ≤ 𝑥 ≤ 𝑚

(𝑢 − 𝑥)/(𝑢 − 𝑚), 𝑚 ≤ 𝑥 ≤ 𝑢
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

  
             (a)        (b) 

Figure 3. Triangular membership function (TFN) and the intersection between AHP and FE-AHP. 

The structure of TFN between AHP and FE-AHP can be listed as follows: (a) the structure of the 

TFN for conventional AHP; (b) the degree of possibility of 𝑉(�̃�𝑖 ≥ �̃�𝑗) for FE-AHP, where the inter-

section point “d” is between two fuzzy numbers �̃�𝑖 and �̃�𝑗 (modified from [42]). 

To create a pairwise comparison of alternatives for each criterion, similar to the con-

cept of the conventional AHP method, a matrix of triangular fuzzy comparison can be 

defined as follows (Equation (9)): 

Ã = (ãij)n x n
= [

(1,1,1 (l12m12u12) ⋯ (l1nm1nu1n)

(l21m21u21) (1,1,1) ⋯ (l2nm2nu2n)
⋮ ⋮ ⋮ ⋮

(ln1mn1un1) (ln2mn2un2) ⋯ (1,1,1)

] (9) 

where  ãij = (lijmijuij) = ãij
−1 = (1/uji, 1/mji, 1/lji) for i, j = 1, … n , and  i ≠ j. 

The total weights and preferences of alternatives could be developed from other 

methods. In general, two alternative methods will be modeled in continuation. Figure 3 

summarizes the conceptual structure of the conventional AHP and FE-AHP. The conven-

tional AHP uses a TFN to represent linguistic variables and capture imprecise judgments. 

It consists of three parameters, including l (lower bound), m (modal value), and u (upper 

bound) (see Figure 3a). TFNs are commonly used in the AHP to express linguistic terms, 

such as “low”, “medium”, and “high”, or to represent uncertainty in pairwise compari-

sons. 

The FE-AHP method was proposed by Chang (1996) [10,11]. The extended analysis 

of Chang (1996) can be concisely described in several steps. First, compute the normalized 

value for row sums by fuzzy arithmetic operations (Equation (10)): 



Remote Sens. 2024, 16, 502 11 of 31 
 

 

S̃i = ∑ ãij

n

j=1

⊗ [|∑ ∑ ãkj

n

j=1

n

k=1

]

−1

 (10) 

where the notation ⊗ represents the extended multiplication of two fuzzy numbers. Sec-

ond, compute the degree of possibility using the following (Equation (11)): 

V(�̃�𝑖 ≥ �̃�𝑗) = sup
y≥x

[min (�̃�𝑗(𝑥), �̃�𝑖(𝑦))] (11) 

which can be equally written by (Equation (12)): 

V(S̃i ≥ S̃j) = hgt (S̃i  ∩  S̃j) =  S̃j(𝑑)  =

 {

1                    mi ≥ mj 
𝑢𝑖−𝑙𝑗

(𝑢𝑖−𝑚𝑖)+(𝑚𝑗−𝑙𝑗)
𝑙𝑗 ≤ 𝑢𝑖    𝑖, 𝑗 = 1, … . , 𝑛; 𝑗 ≠ 𝑖

0                   otherwise

  
(12) 

where  �̃�𝑖 = (𝑙𝑖𝑚𝑖𝑢𝑖)  and �̃�j = (𝑙𝑗𝑚𝑗𝑢𝑗) ,  and d is the ordinate of the highest intersection 

point between 𝜇S̃i
, 𝜇S̃j

 (see Figure 3b). 

The FE-AHP method is an improved version of the AHP that introduces additional 

features to handle more complex decision problems involving uncertainties. The FE-AHP 

method incorporates fuzzy numbers to represent imprecise information, but instead of 

using TFNs, it uses fuzzy number intervals (Figure 3b). The representation of fuzzy num-

bers in the FE-AHP is more flexible and allows for a more extensive range of uncertainty 

[43].  

In the FE-AHP, a fuzzy number is represented as S̃i = (𝑙𝑖𝑚𝑖𝑢𝑖), where (𝑙𝑖𝑚𝑖𝑢𝑖) are 

lower, modal, and upper values, respectively. Similarly, another fuzzy number �̃�j =

(𝑙𝑗𝑚𝑗𝑢𝑗) can be defined (Figure 3b). The FE-AHP allows an intersection point ‘‘d’’ between 

two fuzzy numbers S̃i  and �̃�j.  These fuzzy number intervals allow decision-makers to 

express their preferences and judgments more detailed and nuancedly [43]. The FE-AHP 

also introduces the concept of fuzzy pairwise comparison matrices, which capture the im-

precise judgments between criteria or alternatives. These matrices use fuzzy numbers or 

fuzzy number intervals to accommodate uncertainty and imprecision during the decision-

making process.  

Third, calculate the degree of possibility of �̃�𝑖 to be larger than all the other (n − 1) 

convex fuzzy numbers S̃j (Equation (13)): 

V(�̃�𝑖 ≥ �̃�𝑗|𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑖 = min
je(1,…,n)j≠i

V(�̃�𝑖 ≥ �̃�𝑗), 𝑖 = 1, … , 𝑛 (13) 

Fourth, define the vector of priority W = (w1, … , w2)Γ for the fuzzy comparison ma-

trix Ã as (Equation (14)): 

wi =
V(S̃i ≥ S̃j|j = 1, … , n; j ≠ i)

∑ V(S̃i ≥ S̃j|j = 1, … , n; j ≠ k)n
k−1

  i = 1, … , n (14) 

In summary, both TFNs for the AHP and FE-AHP methods involve fuzzy numbers. 

The TFN relies on a triangular representation (l, m, u) to express imprecise judgments, 

whereas FE-AHP employs fuzzy number intervals (𝑙𝑖𝑚𝑖𝑢𝑖), to provide a more versatile 

representation for capturing uncertainties and complex decision problems. In the FE-AHP 

method, the degree of possibility is suggested for the ordering and the weights. In this 

step, a pairwise comparison is made for every fuzzy weight by other fuzzy weights. The 

conforming degree of possibility of being higher than other fuzzy weights is defined. The 

minimum of the possibility is used as the overall score for each criterion.  
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Table 3. The triangular fuzzy number of the FE-AHP method [44]. 

AHP Scale Linguistic Variable 
FE-AHP Scale 

TFN Number Reciprocal 

1 Equally important (1, 1, 1) (1, 1, 1) 

2 Intermediate of 1 to 3 (1/2, 1, 3/2) (2/3, 1, 2) 

3 Slightly important (1, 3/2, 2) (1/2, 2/3, 1) 

4 Intermediate of 3 to 5 (3/2, 2, 5/2) (2/5, 1/2, 2/3) 

5 Important (2, 5/2, 3) (1/3, 2/5, 1/2) 

6 Intermediate of 5 to 7 (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

7 Strongly important (3, 7/2, 4) (1/4, 2/7, 1/3) 

8 Intermediate of 7 to 9 (7/2, 4, 9/2) (2/9, 1/4), 2/7) 

9 Extremely important (4, 9/2, 9/2) (2/9, 2/9, 1/4) 

2.3.4. Groundwater Potential Index (GWPI) 

The groundwater potential index (GWPI) is a dimensionless and quantification index 

used to calculate potential groundwater scores in various areas by integrating thematic 

layers and the corresponding weightings and ratings [28]. The GWPI can be determined 

by integrating these thematic layers into a Geographic Information System (GIS) platform. 

The ratings and weights of each class are defined using the fuzzy evaluation analytic hi-

erarchy process (FE-AHP) method. The GWPI can be calculated using the following equa-

tion (Equation (15)): 

GWPI = [(Pr ∗ Pw) + (DDr ∗ DDw) + (EVIr ∗EVIw) + (MNDWIr ∗ 

MNDWIw) + (TRI ∗ TRIw) + (SLr ∗ SLw) + (NDBIr ∗ NDBIw)] 
(15) 

The equation for calculating the GWPI involves various parameters represented by 

subscripts “r” (rating) and “w” (weight). These parameters include P for precipitation 

(mm), DD for drainage density (km/km2), EVI for the enhanced vegetation index, MNDWI 

for the modified normalized difference water index, TRI for the terrain ruggedness index, 

SL for slope (degree), and NDBI for the normalized difference building index. The GWPI 

was derived from seven thematic maps of RS data to generate the map for GWPZ. Each 

thematic datum was converted into raster datasets using ArcGIS software. The GWPI was 

calculated using the index–overlay method and used to create the final GWPZ map. The 

weighting factors for all criteria were defined based on the location properties shown in 

Table 3. The GWPZ map was divided into five classes, including very high, high, moder-

ate, poor, and very poor, using the natural break (Jenks) classification method. This 

method optimizes the classification of values into different classes and provides a relative 

probability assessment of groundwater potential resources [45]. Natural break (Jenks) is 

one of the clustering data methods. This method uses an optimization process to find the 

best value classification into different classes [45].  

2.3.5. Validation of the GWPZ 

First, the GWPZ map was validated using Pearson’s correlation matrix between the 

GWPI and the direct calculation of the GA for the first aquifer layer in the CRGB. Note 

that the GA was not included in the analysis of the GWPZ. The GA served as an inde-

pendent parameter that robustly confirmed the accuracy of the GWPZ. Initially, the GA 

was solely utilized to determine the ranking and was not included in the GWPZ map. For 

raster datasets, the correlation matrix provides cell values from one raster layer to another. 

This correlation between layers enables the measurement of the degree of dependency 

between them. Correlation values range from +1 to −1. A positive correlation indicates a 

direct relationship between the layers, whereas a negative correlation signifies an inverse 

relationship where the variables change in opposite directions. The study also conducted 
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validation based on ground checking. Google Earth provides satellite imagery with vary-

ing spatial and temporal resolution [46]. The spatial resolution of Google Earth imagery 

varies depending on location and data availability. In densely populated areas or popular 

tourist destinations, the spatial resolution tends to be higher, enabling more detailed 

views of buildings, streets, and landmarks [46]. Conversely, remote or less frequented ar-

eas may have a lower spatial resolution, resulting in less detailed information [46].  

Second, delineating groundwater recharge potential zones involves a weighted over-

lay of different themes in the geospatial environment. This method serves as an indirect 

measurement to identify potential zones but requires validation through direct observa-

tions for accurate planning. The validation process is a crucial element in scientific re-

search. A random sampling technique is employed in the geospatial environment to vali-

date the groundwater recharge potential zones with actual recharge. Using Google Earth, 

multiple locations were selected randomly to represent each class of the GWPZ, allowing 

for a comprehensive assessment of the GWPZ’s accuracy. As a model consistency valida-

tion, locations were selected based on our knowledge of their real or physical profile. For 

instance, the downstream area in Mailiao Haipu New Land, western Yunlin County, fea-

tures diverse land uses, including coastal uplift rejuvenation, siltation sites, saline ponds, 

aqua fisheries, and sandbanks affected by monsoonal activity. Hypothesizing, Mailiao 

Haipu New Land is expected to have a poor geopotential zone due to salty water and 

seawater intrusion. Conversely, the upstream area includes agriculture and water re-

sources, indicating a good groundwater potential zone. 

3. Results and Discussion 

3.1. Estimation of the Groundwater Availability (GA) 

The GA was calculated to determine the amount of water available in each cell of the 

first aquifer layer. Figure 4 shows the result of the calculated GA. High GA was predom-

inantly found in the proximal-fan area in the study area. This observation agrees with 

previous research indicating that the proximal-fan has a higher potential for groundwater 

recharge [47,48]. A higher groundwater recharge potential rate corresponds to a higher 

likelihood of groundwater potential zones. Based on Pearson’s correlation matrix, the pa-

rameter with the highest correlation to GA was precipitation, followed by drainage den-

sity, EVI, MNDWI, TRI, slope, and NDBI (Table 4). Notably, a negative relationship was 

observed between groundwater availability, MNDWI, and NDBI. Groundwater recharge 

primarily occurs through the infiltration process of precipitation. In a regional groundwa-

ter system, the proximal-fan, located in the upstream area with the highest elevation, 

serves as the main recharge zone for the groundwater resource. The higher correlation 

between precipitation and GA compared to other parameters can be attributed to the fact 

that the Choushui River carries most of the groundwater resources originating from the 

precipitation. The correlation r between GA and the precipitation was 0.68 for the study. 

Following the precipitation, the second important parameter with a relatively strong cor-

relation to GA was the drainage density (DD), with a Pearson’s correlation of −0.66. The 

EVI showed a slightly low correlation with GA compared to the correlation between pre-

cipitation and GA (r = 0.64). In this model, EVI was used as a representation of vegetation 

cover. Previous research has established a significant linear relationship between ground-

water levels and vegetation cover [49]. The presence of vegetation cover will support the 

percolation and infiltration of water. 
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Figure 4. The calculated groundwater availability (GA) based on the site-specific observations (PCS: 

UTM zone 51N). 

Table 4. Correlation matrix between GA and thematic layers. 

Layers GA P DD EVI MNDWI TRI SL NDBI 

GA 1.00 0.68 −0.66 0.64 −0.62 −0.52 −0.50 0.48 

P 0.68 1.00 −0.61 0.77 0.60 0.65 0.65 −0.59 

DD −0.66 −0.61 1.00 −0.39 −0.39 −0.39 −0.39 −0.39 

EVI 0.64 0.77 −0.39 1.00 −0.76 −0.76 −0.76 −0.76 

MNDWI −0.62 0.60 0.50 −0.76 1.00 0.38 0.38 0.38 

TRI −0.52 0.65 0.50 −0.43 0.38 1.00 0.61 0.61 

SL −0.50 0.65 0.49 −0.45 0.20 0.61 1.00 −0.36 

NDBI 0.48 −0.59 0.33 −0.73 0.23 −0.42 −0.36 1.00 

3.2. Thematic Layers of the GWPZ 

We considered seven reference variables to calculate the GWPI for the CRGB. These 

variables include precipitation (P), drainage density (DD), enhanced vegetation index 

(EVI), modified normalized difference water index (MNDWI), terrain ruggedness index 

(TRI), slope (SL), and normalized difference building index (NDBI). These variables are 

determined based on the availability of the RS data, which may vary depending on site-

specific conditions. By including multiple parameters, the weighting of the factors is less 

likely to be dominated by a specific criterion, allowing for a more comprehensive repre-

sentation of the system complexity. Table 5 summarizes the weightings and ratings ob-

tained from conventional AHP and FE-AHP analyses. The detailed calculations of the 

weightings for the AHP and FE-AHP are listed in Appendix A.  

The AHP and FE-AHP utilize the GA to rank and arrange the thematic parameters in 

the study. After the parameter arrangement was completed, the data were used to calcu-

late the AHP and FE-AHP. However, the notable difference between the AHP and FE-

AHP is that despite using a similar scale, the FE-AHP generated more reasonable weights 

between the criteria and smoother ratings. The differences in weightings and ratings are 

not as contrasting in the FE-AHP compared to the AHP, allowing for a smoother transition 

in the FE-AHP [39]. For example, in the AHP, the weight difference between all criteria 

and the rating within a criterion is more contrasting and rough. One instance is the pre-

cipitation rating for sub-parameters in the interval 2088–2547, which gives the value of 

0.4537, followed by a rating of 0.2667 for the interval 1830–2087. However, the FE-AHP 
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assigns ratings of 0.3870 and 0.3042 for similar sub-parameters, resulting in a more grad-

ual and smoother change. In summary, while both the AHP and FE-AHP employ GA for 

parameter ranking, the FE-AHP demonstrates a more reasonable weight distribution be-

tween criteria and smoother transitions in ratings compared to the conventional AHP. 

This characteristic of the FE-AHP contributes to a more refined and consistent decision-

making process (see Table 5).  

Table 5. Classification of thematic layers of the GWPZs in the CRGB based on the AHP and FE-AHP 

methods. 

Parameters Sub-Parameters 
AHP FE-AHP 

Weight Rating Weight Rating 

P 

1117–1442 

0.3354 

0.0488 

0.2661 

0.0171 

1443–1616 0.0817 0.0909 

1617–1829 0.1491 0.2008 

1830–2087 0.2667 0.3042 

2088–2547 0.4537 0.3870 

DD 

0–1.71 

0.2320 

0.4456 

0.2277 

0.3870 

1.72–3.06 0.2690 0.3042 

3.07–4.23 0.1512 0.2008 

4.24–5.53 0.0827 0.0909 

5.54–9.56 0.0514 0.0171 

EVI 

−0.29–(−0.01) 

0.1597 

0.0588 

0.1877 

0.093 

−0.02–0.16 0.0972 0.143 

0.17–0.27 0.1590 0.1957 

0.28–0.33 0.2591 0.2501 

0.34–0.50 0.4258 0.3182 

MNDWI 

−0.60–(−0.11) 

0.1105 

0.6080 

0.1338 

0.5584 

−0.12–0 0.2721 0.3446 

0–0.23 0.1199 0.097 

TRI 

0–0.78 

0.0755 

0.4162 

0.1025 

0.2949 

0.79–1.96 0.2618 0.2473 

1.97–4.32 0.1611 0.1979 

4.33–9.82 0.0986 0.1502 

9.83–50.12 0.0624 0.1098 

SL 

0–2.0 

0.0512 

0.5813 

0.0594 

0.4803 

>2.1–6.0 0.3092 0.3052 

>6.0 0.1096 0.2145 

NDBI 

−0.39–(−0.16) 

0.0358 

0.3913 

0.0229 

0.2487 

−0.15–(−0.09) 0.2572 0.2225 

−0.08–(−0.03) 0.1691 0.1976 

−0.02–(−0.01) 0.1100 0.1693 

0.00–0.32 0.0724 0.1620 

Figure 5 compares consistency ratios (CRs) between the conventional AHP and FE-

AHP for the pairwise comparison matrix of thematic parameters and the sub-criteria. It is 

recognized that the CR should be greater than 0 and less than 0.1. A lower CR is generally 

preferred. A lower CR signifies a higher level of consistency in the judgments, indicating 

that the decision-maker’s preferences are more dependable and logical. Conversely, a 

higher CR suggests more significant inconsistency, implying possible conflicts or contra-

dictions in the decision-maker’s preferences. Figure 5 shows that results from the FE-AHP 

method exhibit generally lower CR values than those obtained from the AHP method, 

indicating that the FE-AHP method holds a higher level of consistency and reliability. The 
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following sections focus on the results and discussion of the maps for the thematic param-

eters in the study. 

 

Figure 5. The consistency ratios (CRs) of AHP and FE-AHP for the pairwise comparison matrix. 

3.2.1. Precipitation (P) 

Figure 6 shows the year-averaged distribution of the precipitation in the CRGB. In 

general, the distribution of the precipitation is consistent with the land surface elevation 

of the groundwater basin, varying from the coastal area in the east to the mountain area 

in the east (see Figure 1). The considerable precipitation variation in space has made the 

proximal-fan an excellent recharge zone for the aquifer system. According to previous 

investigations, the areas with lower (or higher) precipitation were assigned a lower (or 

higher) rating value [50,51]. Tables A1 and A2 show the detailed calculation of the weight-

ings and ratings [11]. 

 

Figure 6. The year-averaged precipitation observed based on the CHIRPS data (PCS: UTM zone 

51N). 

3.2.2. Drainage Density (DD) 

Figure 7 illustrates the drainage density results for a 1 km by 1 km cell size in the 

crucial agricultural regions of Western Taiwan. The well-developed drainage system, de-

signed for agricultural purposes, includes lined channels to prevent surface water leakage. 

Higher drainage density correlates with increased surface runoff, potentially impacting 
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groundwater potential negatively. Detailed calculations for the drainage density 

weighting and ratings in the AHP and FE-AHP methods are listed in Tables A3 and A4, 

respectively. 

 

Figure 7. The drainage density (km/km2) derived by the DEM SRTM (PCS: UTM zone 51N). 

3.2.3. Enhanced Vegetation Index (EVI) 

Figure 8 displays the distribution of the EVI in the study area, revealing that the 

southeastern part of the CRGB exhibits denser vegetation cover. This denser vegetation 

suggests a heightened likelihood of groundwater potential in that specific region (Figure 

8). For a comprehensive understanding of the assessment methodologies, detailed weight-

ings and ratings for the AHP and FE-AHP methods can be found in Tables A5 and A6 in 

Appendix A. 

 

Figure 8. The enhanced vegetation index (EVI) calculated for the study area (PCS: UTM zone 

51N). 
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3.2.4. The Modified Normalized Difference Water Index (MNDWI) 

Figure 9 depicts the MNDWI results for the study area, where a high and positive 

MNDWI value indicates a likelihood of groundwater potential, representing the wetness 

of an area. However, the MNDWI cannot differentiate between salty and freshwater bod-

ies, as it relies on spectral characteristics. Notably, the Mailiao Haipu New Land in the 

western part of Yunlin County features diverse land uses, including coastal uplift rejuve-

nation, siltation sites, saline ponds, aqua fisheries, and sandbanks affected by monsoonal 

activity [52]. The MNDWI can enhance groundwater potential assessment by identifying 

surface water bodies or wet areas, including saline ponds along the coastal line in the 

CRGB’s western region. Detailed weightings and ratings for the AHP and FE-AHP meth-

ods are in Tables A7 and A8 in Appendix A. 

 

Figure 9. The modified normalized difference water index (MNDWI) obtained based on Landsat 

(PCS: UTM zone 51N). 

3.2.5. Terrain Ruggedness Index (TRI) 

Understanding the groundwater potential of a particular location is intricately linked 

to the dynamics of water bodies on the land surface and their infiltration into the aquifer 

system. The fate of precipitation or surface runoff is closely tied to the terrain characteris-

tics, especially the altitude differences across the landscape. A lower terrain ruggedness 

index (TRI) value signifies a landscape with relatively low altitude variations, indicating 

a higher potential for groundwater retention [53]. This insight underscores the signifi-

cance of the TRI in assessing the groundwater potential zone within the CRGB region 

(Figure 10). The detailed weightings and ratings of TRI for both the analytical hierarchy 

process (AHP) and fuzzy evaluation analytical hierarchy process (FE-AHP) methodolo-

gies can be found in Tables A9 and A10 in Appendix A, providing a comprehensive foun-

dation for further analysis and interpretation 
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Figure 10. The terrain ruggedness index derived by DEM obtained from SRTM (PCS: UTM zone 

51N). 

3.2.6. Slope 

Figure 11 shows the cell-based slope values estimated based on the DEM from the 

SRTM. The result reveals that the slope could vary from 0 to 30 in the study area. The 

CRBG is bounded by Pakuashan tableland and Douliu Hill in the east (Figure 1a). The 

high-slope zones are mostly in the upstream areas along the Pakuashan tableland and 

Douliu Hill of the CRGB. There are few spots with high slope values in the southeastern 

areas near the Douliu Hill. In general, low-slope areas dominate the entire CRGB, showing 

high infiltration potential in the CRGB. In the study, a cell with a low slope value was 

assigned a high weight for the AHP and FE-AHP methods. Tables A11 and A12 in Appen-

dix A show the details of the estimated weightings for the study area. The slopes were 

categorized into three different intervals based on the slope values from 0.0° to 6.0°. 

 

Figure 11. The cell-based slope values estimated by DEM SRTM (PCS: UTM zone 51N). 
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3.2.7. Normalized Difference Building Index (NDBI) 

Figure 12 provides a comprehensive visualization of the normalized difference build-

ing index (NDBI) distribution across the CRGB region. The analysis of the NDBI reveals 

prominent land use types within CRGB, predominantly comprising vegetation and water 

bodies. Interestingly, the overall extent of built-up areas appears relatively limited, em-

phasizing the predominantly natural landscape of the region. This observation is crucial 

for understanding the interplay between land cover characteristics, particularly the scar-

city of built-up areas, and their potential implications for the groundwater potential zone 

within the CRGB. 

 

Figure 12. The distribution of NDBI estimated based on Landsat data (PCS: UTM zone 51N). 

3.3. Delineation of the Groundwater Potential Zone (GWPZ) 

The GWPI values obtained from Eq. (15) were the basis for obtaining the GWPZ in 

the CRGB. The seven thematic layers were considered to assess the groundwater potential 

(i.e., groundwater availability, GA) in the study area. Figure 13 shows the result using the 

weightings and ratings calculated from the conventional AHP and FE-AHP. The charac-

teristics of the AHP and FE-AHP made the weightings and ratings different in terms of 

both the values and variations within intervals (see Table 5). Tables A15 and A16 in Ap-

pendix A show the detailed weighting matrices of the selected parameters for the AHP 

and FE-AHP. Based on the calculation, the groundwater potential index for the study area 

ranges from 0.06 to 0.39, with a standard deviation of 0.05 for AHP and FE-AHP. A natural 

break grouping scheme based on Jenk’s optimization method was used to define the range 

of each class for the maps of the GWPZ.  

The classification of the GWPZ was carried out using the AHP and FE-AHP methods, 

identifying five distinct groundwater potential zones, including very good, good, moder-

ate, poor, and very poor (Figure 13). The result obtained from the FE-AHP demonstrated 

a relatively smooth and reasonable variation in the GWPZ. However, the result from the 

AHP showed clear patterns that the precipitation distribution might control. In addition, 

the FE-AHP result could capture the contribution from other parameters, such as those 

from DD (Figure 7), EVI (Figure 8), and MNDWI (Figure 9). These parameters are essential 

features for the mid-fan and distal-fan areas in the CRGB. The general behavior shows 

that the most favorable groundwater potential zones, classified as “good” and “very 

good”, are predominantly concentrated in the mid-fan and proximal-fan, respectively. 

The mid-fan and proximal-fan are indicated as areas closest to excellent potential for 

groundwater resources (Figure 13). The regions at the proximal-fan of the Choushui 
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River’s alluvial fan exhibit notably high groundwater recharge potential (GRP) levels. 

Conversely, distal-fan areas register lower GRP levels, classified as poor and very poor. In 

addition, regions with a moderate GRP are primarily located along the Choushui River. 

Based on the study of Tsai et al. (2015), a proximal-fan mainly consists of grave deposits, 

which supports a higher GRP. In conclusion, there was agreement between, and relevance 

in, the GWPZ and GRP maps proposed by Tsai et al. (2015) [47,48].  

Figure 13a and 13b show that the areas with groundwater potential vary across the 

study region. The proximal fan, an upstream area, has “very good” potential for ground-

water in the CRGB region. The “very good” potential is linked to abundant rainfall, sparse 

drainage paths, higher dense vegetation covers, rougher terrain, and steeper slopes, ex-

cluding the presence of water bodies. The lack of water bodies in a high-elevation area 

indicates a scarcity of surface water. Such behavior can also reduce surface water loss, 

increase infiltration, and create favorable hydrogeological conditions for groundwater re-

charge [38]. These factors collectively support higher groundwater potential in such areas. 

More rainfall indicates that more water recharges the groundwater. With fewer natural 

drainages, water can seep and recharge the groundwater reservoir more effectively. Plants 

play a vital role in boosting groundwater potential by using water and letting it infiltrate 

the ground. Rougher landscapes could slow surface water movement, allowing more time 

for water to penetrate and recharge the groundwater. These combined features signify 

areas with promising groundwater potential.  

In the mid-fan, the “good” category of groundwater potential results from moderate-

to-low precipitation, ensuring gradual surface water retention. The drainage density is 

also moderate-to-low, indicating fewer pathways for water to drain quickly. In addition, 

moderate-to-very-dense vegetation cover reduces surface runoff through evapotranspira-

tion, aiding water infiltration into the soil. The area’s moderate-to-high wetness indicates 

ample soil moisture, supporting gradual groundwater recharge. The smoother terrain and 

flatter slopes further slow surface water flow, giving water more time to penetrate and 

recharge the groundwater table. These combined factors create a balanced environment 

for effective groundwater replenishment without excessive water loss. These favorable 

conditions enhance the potential for sustained groundwater replenishment, contributing 

to the overall “good” groundwater potential in the area. The distal-fan area stands out as 

having predominantly very poor groundwater potential. The result is characterized by 

various factors that contribute to this classification. Firstly, this region receives the lowest 

precipitation levels, limiting the amount of water that can infiltrate the ground and re-

charge the groundwater. In addition, the area exhibits the highest drainage density, im-

plying an extensive network of natural pathways for water to drain away and reduce 

groundwater recharge. In the study, the total weightings for the precipitation and drain-

age density dominate the calculation of the GWPZ. The vegetation and water body in-

dexes show a relatively limited contribution to the overall GWPZ.  
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(a) (b) 

Figure 13. The maps of groundwater potential zone (GWPZ) for CRGB based on the results obtained 

from (a) conventional AHP and (b) FE-AHP methods. 

Figure 14 shows the distribution of the areas for different classifications of GWPZs in 

the CRGB. The comparison highlights the AHP’s tendency to provide more distinct cate-

gorizations than the FE-AHP. The categorization of GWPZ areas indicates that the FE-

AHP achieves a more realistic and balanced distribution across groundwater potential 

categories due to its integration of fuzzy logic and linguistic variables. When observing 

the distribution range, the total area for each GWPZ category based on the FE-AHP ap-

pears to exhibit a more realistic and balanced representation across groundwater potential 

categories than the AHP (see Figure 14). This distribution range implies that the FE-AHP 

provides a broader representation of categories by effectively integrating fuzzy logic and 

linguistic variables. 

In summary, the result of the FE-AHP method lies in its specific feature to handle 

uncertainty, incorporate linguistic variables, offer a broader representation of categories, 

and allow for flexible weightings. These combined aspects position the FE-AHP as a pow-

erful tool for groundwater potential assessment. This advanced approach enhances the 

FE-AHP to produce a smoother, more realistic, and well-balanced distribution of ground-

water potential compared to the traditional AHP method. A smoother, more realistic, and 

well-balanced distribution of GWPZ could improve benefit judgment for groundwater 

management based on remote sensing data. 

  
(a) (b) 

Figure 14. Percentage of area for the basin-fan in CRGB based on (a) conventional AHP and (b) FE-

AHP methods. The green, red and blue graph are for the proximal-fan, mid-fan and distal-fan, re-

spectively. 
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3.4. Performance of the GWPI 

Table 6 shows the Pearson correlation matrix between the GWPI (groundwater po-

tential index) and direct measurements of the GA (groundwater availability). In Table 6, 

the Pearson’s correlation coefficient between the GWPI and GA for the AHP and FE-AHP 

was determined to be 0.56 (moderate correlation) and 0.67 (high correlation), respectively, 

which indicates a strong positive correlation for the GWPI of the FE-AHP and conven-

tional AHP (i.e., the correlation r > 0.50) [54]. The overall correlation between the GWPI 

and GA showed that the FE-AHP method obtains a better match of GA than the conven-

tional AHP method. Furthermore, the associated P-value was found to be less than 0.01, 

providing further evidence of the statistical significance of the correlation. This strong cor-

relation underscores the relationship between the GWPI and groundwater availability. 

The high correlation between the GWPI and GA also proves the concept that remote sens-

ing data applied to modified index–overlay approaches could provide efficient estima-

tions of groundwater potential for shallow aquifers. 

An area with a higher GWPI value often exhibits a greater capacity to recharge and 

store groundwater, thus correlating with higher groundwater availability. The GWPI acts 

as an indicator of groundwater potential, suggesting areas with potential for sustainable 

groundwater replenishment. However, it is important to acknowledge local variations in 

this relationship based on the hydrogeological conditions of a specific area. For instance, 

an area might display a high GWPI due to favorable surface characteristics, but if the un-

derlying aquifer is shallow or overexploited, the actual groundwater availability might be 

limited. Understanding this relationship is crucial for effective groundwater resource 

management, aiding in identifying areas with significant groundwater potential and sus-

tainably aligning groundwater usage to ensure long-term availability and prevent over-

exploitation.  

Table 6. Pearson’s correlation matrix of GA, GWPI for AHP, and GWPI for FE-AHP. 

Layers GA GWPI (AHP) GWPI (FE-AHP) 

GA 1.00 0.56 0.67 

GWPI (AHP) 0.56 1.00 0.56 

GWPI (FE-AHP) 0.67 0.88 1.00 

Figure 15 shows the selected sites to check the results obtained from the FE-AHP 

method. The aquaculture farms along the west coast of the CRGB area are indicated as 

lying in the “very poor” class of GWPZ because of the low precipitation, relatively high 

drainage density, and low vegetation. Our results show large water bodies distributed 

along the coastal line on the western side of the CRGB. In the CRGB, the “poor” class of 

GWPZ is primarily found in areas covered by bare soil, built-up structures, and artificial 

materials. These land use features could decrease groundwater infiltration into the aqui-

fer. On the other hand, the “moderate”, “good”, and “very good” classes of GWPZ are 

closely associated with the presence of ponds, minimal built-up areas, and higher vegeta-

tion cover, which contribute to groundwater recharge. Ground checking confirms con-

sistency between the GWPZ map and land use. 
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Figure 15. Field surveys for different classes of GWPZs at selected sites using images from Google 

Street View. The purple line corresponds to distinct locations defined by each class of GWPZ, while 

the black line represents the proximal-fan, mid-fan, and distal-fan categories as illustrated in Figure 

1. 

4. Conclusions 

This study integrated the normalized index–overlay method and the fuzzy extended 

analytical hierarchy process (FE-AHP) to map cost-effective GWPZs. The proposed nor-

malized index–overlay method collects the weightings and ratings of several prospective 

thematic layers. A more realistic approach to weighting parameters is achieved by nor-

malizing and correlating the parameters with observed groundwater availability (GA) as 

a baseline for ranking parameter layers. The observed GA was calculated based on site-

specific observations such as the aquifer thickness, depth to the groundwater level, and 

porosity of the aquifer materials. Seven comprehensive thematic layers from remote sens-

ing (RS) data were processed to obtain the weightings and ratings of the groundwater 

potential index (GWPI) for the Choushui River groundwater basin (CRGB) in Western 

Taiwan. In the study, the selection of parameters was based on hydrological processes, 

human interventions, the geological profile, and the surface profile. Hydrological pro-

cesses were characterized by specific parameters such as P (precipitation in mm), MNDWI 

(modified normalized difference water index), and DD (drainage density in km/km²). Hu-

man interventions were identified by two parameters, namely, the EVI (enhanced vegeta-

tion index) and NDBI (normalized difference building index). The geological profile and 

surface profile were explained by the TRI (terrain ruggedness index) and SL (slope in de-

grees), respectively. 

In the study, the conventional AHP method was employed for comparison purposes 

in the mapping of the GWPZ. FE-AHP could yield smooth thresholds of each selected 

class in specific factors. The site chosen to prove the proposed concept in the study was 

the CRGB. The AHP and FE-AHP results show that the estimated groundwater potential 

map matched the groundwater availability derived from the direct measurements field 

data. The FE-AHP method demonstrated more reasonable weight distribution and 

smoother transitions in ratings, offering a refined and consistent decision-making process. 

Based on consistency ratios (CRs), the FE-AHP method consistently showed lower CR 

values than the AHP method, indicating higher reliability and consistency in decision-
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making preferences. The proposed approach could be useful for efficiently estimating 

groundwater availability in a shallow aquifer system, in which groundwater monitoring 

data and aquifer properties are insufficient or unavailable.  

The groundwater potential varies in the CRGB region. The proximal-fan, upstream, 

boasts “very good” potential due to abundant rainfall, low drainage density, dense vege-

tation, rough terrain, and steep slopes, excluding water bodies. The absence of water bod-

ies at higher elevations implies less surface water loss and more groundwater recharge. 

Lower drainage density facilitates effective seepage and recharge. In the mid-fan, “good” 

groundwater potential results from moderate-to-low precipitation, allowing gradual ab-

sorption. The distal-fan area predominantly shows “very poor” groundwater potential 

due to low precipitation, high drainage density impeding recharge, limited vegetation, 

and a minimal contribution of water bodies due to possible salinity. 

The GWPZ map delineates five distinct groundwater potential zones. According to 

the GWPI from the AHP and FE-AHP (“moderate” to “very good” categories), about 

49.00% and 59.56% of the CRGB area can be categorized as potential groundwater re-

charge zones, respectively. In summary, the advantage of the FE-AHP method lies in its 

capacity to handle uncertainty, integrate linguistic variables, provide a broader represen-

tation of categories, and allow for flexible weighting. Therefore, the FE-AHP method 

could produce a smoother, more realistic, and more well-balanced distribution of ground-

water potential compared to the conventional AHP method.  

The findings of this study establish an initial framework for understanding the 

groundwater potential zones in the CRGB, laying the foundation for sustainable ground-

water resource management in the basin. Given the generalizable characteristics and log-

ical conditions employed in this approach, it can be adapted and implemented in other 

regions with necessary adjustments. The results of the GWPZ map can serve as valuable 

guidelines for future planning endeavors related to sustainable groundwater recharge in 

the CRGB. These insights empower policymakers to make informed decisions regarding 

groundwater resource management. 

In this study, the remote sensing data did not directly obtain the key aquifer proper-

ties such as the thickness, hydraulic conductivity, and types of soil material. All these site-

specific observations could be costly because of the time and resources devoted to them. 

Additional remote sensing technologies could be useful to improve the analysis of 

groundwater potential. Further validation of this approach could be conducted through 

monitoring groundwater well discharge and step drawdown pumping well tests at vari-

ous CRGB locations. Such tests would evaluate specific yields across different GWPZs, 

allowing a thorough examination of groundwater resources in shallow aquifer systems.  
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Appendix A 

Table A1. Comparison matrix and significance weighting values of precipitation (AHP). 

 1117–1442 1443–1616 1617–1829 1830–2087 2088–2547 Weight 

1117–1442 1.00 0.50 0.25 0.20 0.14 0.0488 

1443–1616 2.00 1.00 0.50 0.25 0.20 0.0817 

1617–1829 4.00 2.00 1.00 0.50 0.25 0.1491 

1830–2087 5.00 4.00 2.00 1.00 0.50 0.2667 

2088–2547 7.00 5.00 4.00 2.00 1.00 0.4537 

Table A2. Comparison matrix and significance weighting values of precipitation (FE-AHP). 

 1117–1442 1443–1616 1617–1829 1830–2087 2088–2547 Weight 

1117–1442 (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) (1/3, 2/5, 1/2) (2/7, 1/3, 2/5) 0.0171 

1443–1616 (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) (1/3, 2/5, 1/2) 0.0909 

1617–1829 (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) 0.2008 

1830–2087 (2, 5/2, 3) (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) (2/3, 1, 2) 0.3042 

2088–2547 (5/2, 3, 7/2) (2, 5/2, 3) (3/2, 2, 5/2) (1/2, 1, 3/2) (1, 1, 1) 0.3870 

Table A3. Pairwise comparison matrix and significance weighting of drainage density (AHP). 

 0–1.71 1.72–3.06 3.07–4.23 4.24–5.54 5.55–9.56 Weight 

0–1.71 1.00 2.00 4.00 5.00 6.00 0.4456 

1.72–3.06 0.50 1.00 2.00 4.00 5.00 0.2690 

3.07–4.23 0.25 0.50 1.00 2.00 4.00 0.1512 

4.24–5.54 0.20 0.25 0.50 1.00 2.00 0.0827 

5.55–9.56 0.17 0.20 0.25 0.50 1.00 0.0514 

Table A4. Pairwise comparison matrix and significance weighting of drainage density (FE-AHP). 

 0–1.71 1.72–3.06 3.07–4.23 4.24–5.54 5.55–9.56 Weight 

0–1.71 (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) (2, 5/2, 3) (5/2, 3, 7/2) 0.3870 

1.72–3.06 (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) (2, 5/2, 3) 0.3042 

3.07–4.23 (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (3/2, 2, 5/2) 0.2008 

4.24–5.54 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.0909 

5.55–9.56 (2/7, 1/3, 2/5) (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/3, 1, 2) (1,1, 1) 0.0171 

Table A5. Comparison matrix and significance weighting values of EVI (AHP). 

 −0.29–(−0.01) −0.02–0.16 0.17–0.27 0.28–0.33 0.34–0.50 Weight 

−0.29–(−0.01) 1.00 0.50 0.30 0.30 0.20 0.0588 

−0.02–0.16 2.00 1.00 0.50 0.30 0.30 0.0972 

0.17–0.27 3.00 2.00 1.00 0.50 0.30 0.1590 

0.28–0.33 4.00 3.00 2.00 1.00 0.50 0.2591 

0.34–0.50 6.00 4.00 3.00 2.00 1.00 0.4258 
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Table A6. Comparison matrix and significance weighting values of EVI (FE-AHP). 

 −0.29–(−0.01) −0.02–0.16 0.17–0.27 0.28–0.33 0.34–0.50 Weight 

−0.29–(−0.01) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2, 2/3) (2/7, 1/3, 2/5) 0.0930 

−0.02–0.16 (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2, 2/3) 0.1430 

0.17–0.27 (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) (1/2, 2/3, 1) 0.1957 

0.28–0.33 (3/2, 2, 5/2) (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) (2/3, 1, 2) 0.2501 

0.34–0.50 (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 3/2, 2) (1/2, 1, 3/2) (1,1, 1) 0.3182 

Table A7. Comparison matrix and significance weighting values of MNDWI (AHP). 

 −0.60–(−0.11) −0.12–0 0–0.23 Weight 

−0.60–(−0.11) 1.00 3.00 4.00 0.6080 

−0.12–0 0.30 1.00 3.00 0.2721 

0–0.23 0.30 0.30 1.00 0.1199 

Table A8. Comparison matrix and significance weighting values of MNDWI (FE-AHP). 

 −0.60–(−0.11) −0.12–0 0–0.23 Weight 

−0.60–(−0.11) (1, 1, 1) (1, 3/2, 2) (3/2, 2, 5/2) 0.5584 

−0.12–0 (1/2, 2/3, 1) (1, 1, 1) (1, 3/2, 2) 0.3446 

0–0.23 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (1, 1, 1) 0.0970 

Table A9. Comparison matrix and significance weighting values of TRI (AHP). 

 0–0.78 0.79–1.96 1.97–4.32 4.33–9.82 9.83–50.12 Weight 

0–0.78 1.00 2.00 3.00 4.00 5.00 0.4162 

0.79–1.96 0.50 1.00 2.00 3.00 4.00 0.2618 

1.97–4.32 0.30 0.50 1.00 2.00 3.00 0.1611 

4.33–9.82 0.30 0.30 0.50 1.00 2.00 0.0986 

9.83–50.12 0.20 0.30 0.30 0.50 1.00 0.0624 

Table A10. Comparison matrix and significance weighting values of TRI (FE-AHP). 

 0–0.78 0.79–1.96 1.97–4.32 4.33–9.82 9.83–50.12 Weight 

0–0.78 (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (2, 5/2, 3) 0.2949 

0.79–1.96 (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) 0.2473 

1.97–4.32 (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) 0.1979 

4.33–9.82 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.1502 

9.83–50.12 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) 0.1098 

Table A11. Comparison matrix and significance weighting values of slope (AHP). 

 0–2.0° 2.1–6.0° >6.0° Weight 

0–2.0° 1.00 2.00 5.00 0.5813 

2.1–6.0° 0.50 1.00 3.00 0.3092 

>6.0° 0.20 0.30 1.00 0.1096 
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Table A12. Comparison matrix and significance weighting values of slope (FE-AHP). 

 0–2.0° 2.1–6.0° >6.0° Weight 

0–2.0° (1,1, 1) (1/2, 1, 3/2) (2, 5/2, 3) 0.4803 

2.1–6.0° (1/2, 2/3, 1) (1,1, 1) (1, 3/2, 2) 0.3052 

>6.0° (1/3, 2/5, 1/2) (2/3, 1, 2) (1,1, 1) 0.2145 

Table A13. Comparison matrix and significance weighting values of NDBI (AHP). 

 −0.39–(−0.16) −0.15–(−0.09) −0.08–(−0.03) −0.02–(-0.01) 0.00–0.32 Weight 

−0.39–(−0.16) 1.00 2.00 3.00 3.00 4.00 0.3913 

−0.15–(−0.09) 0.50 1.00 2.00 3.00 3.00 0.2572 

−0.08–(−0.03) 0.30 0.50 1.00 2.00 3.00 0.1691 

−0.02–(−0.01) 0.30 0.30 0.50 1.00 2.00 0.1100 

0.00–0.32 0.30 0.30 0.30 0.50 1.00 0.0724 

Table A14. Comparison matrix and significance weighting values of NDBI (FE-AHP). 

 −0.39–(−0.16) −0.15–(−0.09) −0.08–(−0.03) −0.02–(-0.01) 0.00–0.32 Weight 

−0.39–(−0.16) (1,1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (1, 3/2, 2) (3/2, 2, 5/2) 0.2487 

−0.15–(−0.09) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (1, 3/2, 2) 0.2225 

−0.08–(−0.03) (1/3, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2 (1, 3/2, 2) 0.1976 

−0.02–(−0.01) (1/3, 2/3, 1) (1/2, 2/3, 1) (2/3, 1, 2) (1,1, 1) (1/2, 1, 3/2) 0.1693 

0.00–0.32 (2/5, ½, 2/3) (1/2, 2/3, 1) (1/2, 2/3, 1) (2/3, 1, 3) (1,1, 1) 0.1620 

Table A15. Comparison matrix and significance weighting values of using parameters (AHP). 

 Precipitation Drainage Density EVI MNDWI TRI Slope NDBI Weight 

Precipitation 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.3354 

Drainage Density 2.00 1.00 0.50 0.33 0.25 0.20 0.17 0.2320 

EVI 3.00 2.00 1.00 0.50 0.33 0.25 0.20 0.1597 

MNDWI 4.00 3.00 2.00 1.00 0.50 0.33 0.25 0.1105 

TRI 5.00 4.00 3.00 2.00 1.00 0.50 0.33 0.0755 

Slope  6.00 5.00 4.00 3.00 2.00 1.00 0.50 0.0755 

NDBI 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.0512 

Table A16. Comparison matrix and significance weighting values of using parameters (FE-AHP). 

 
Precipita-

tion 

Drainage 

Density 
EVI MNDWI TRI Slope NDBI Weight 

Precipitation (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2, 5/2, 3) (5/2, 3, 7/2) 0.2661 

Drainage Density (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2, 5/2, 3) 0.2277 

EVI (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) (3/2, 2, 5/2) 0.1877 

MNDWI (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) (3/2, 2, 5/2) 0.1338 

TRI (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) (1, 3/2, 2) 0.1025 

Slope  (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) (1/2, 1, 3/2) 0.0594 

NDBI (2/7, 1/3, 2/5) (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (1, 1, 1) 0.0229 
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