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Abstract: The fusion of hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data
for classification has received widespread attention and has led to significant progress in research
and remote sensing applications. However, existing common CNN architectures suffer from the
significant drawback of not being able to model remote sensing images globally, while transformer
architectures are not able to capture local features effectively. To address these bottlenecks, this paper
proposes a classification framework for multisource remote sensing image fusion. First, a spatial and
spectral feature projection network is constructed based on parallel feature extraction by combining
HSI and LiDAR data, which is conducive to extracting joint spatial, spectral, and elevation features
from different source data. Furthermore, in order to construct local–global nonlinear feature mapping
more flexibly, a network architecture coupling together multiscale convolution and a multiscale vision
transformer is proposed. Moreover, a plug-and-play nonlocal feature token aggregation module
is designed to adaptively adjust the domain offsets between different features, while a class token
is employed to reduce the complexity of high-dimensional feature fusion. On three open-source
remote sensing datasets, the performance of the proposed multisource fusion classification framework
improves about 1% to 3% over other state-of-the-art algorithms.

Keywords: hyperspectral; LiDAR; fusion classification; transformer; feature fusion

1. Introduction

Hyperspectral sensors are capable of capturing images in dozens or hundreds of
narrow bands, thereby combining spectral and spatial information effectively. With their
unique spectral spatial combination structure, they are suitable for a wide range of applica-
tions, such as agriculture, aerospace, mineral exploration, etc. [1–3]. Hyperspectral image
classification technology aims to assign a class label to each pixel, which can effectively
improve the interpretation perception of hyperspectral images. With advancements in
sensor capability, more types of optical data can be acquired, such as LiDAR elevation
images, synthetic aperture radar (SAR), panchromatic images, and infrared images [4–6],
to name a few. Meanwhile, to improve the perception of hyperspectral images, combining
different source data for joint classification is a straightforward and effective method [7,8].
Hyperspectral images reflect the material spectral information of objects, but different
objects of the same material cannot be accurately distinguished from spectral information.
Typically, a concrete pavement and a concrete roof in a captured image share the same
spectral profile but have significant differences in spatial elevation features. In this study,
the elevation information from LiDAR is aggregated with hyperspectral images to aid in
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classification and to reduce the aforementioned phenomenon of homospectral dissimilarity
by utilizing the accurate height information from LiDAR [9].

In early research on hyperspectral image fusion classification, various machine-
learning-based approaches proved to be successful, including support vector machines
(SVMs) based on kernel function theory [10], logistic regression (LR) [11], and random for-
est algorithms (RF) [12]. Despite the excellent classification performance of these machine
learning methods, they rely heavily on hand-designed features and fall short in the ability
to extract deep features from hyperspectral images.

Since the advent of deep learning (DL) in the last decade, deep-learning-based clas-
sification techniques for hyperspectral image fusion have evolved rapidly [13]. Deep-
learning-based methods improve the understanding of remote sensing images by learning
the internal patterns of the data samples and mining the deep feature representation of
the data [14]. Likewise, deep learning networks have demonstrated powerful advantages
over traditional methods in many visual tasks. Representative deep learning frameworks
include recurrent neural networks (RNNs) [15], convolutional neural networks (CNNs) [16],
long short-term memory (LSTM) networks [17], etc. In particular, CNNs are commonly
employed in hyperspectral image processing tasks owing to the kernel acceptance field.
Furthermore, the field of hyperspectral image fusion classification has also experienced the
rapid development of deep learning technology based on convolutional neural networks. Li
et al. proposed a dual-branch network [18], which uses different branches to extract features
from hyperspectral images and LiDAR images and enhances the ability to extract features
from different sources. On this basis, the hierarchical random walk network (HRWN) [19]
utilizes the random walk algorithm to fuse the dual-branch features, which improves the
fusion effect and efficiency. In addition, Hong et al. designed the Couple CNN network [20],
which employs a spatial–spectral two-branch parameter sharing strategy to reduce the
semantic difference between the spatial–spectral features extracted from different sources
and to reduce the difficulty in fusing HSI and LiDAR image features. The hashing-based
deep metric learning (HDML) proposed by Song et al. employs an attention approach with
metric learning loss and also achieved excellent classification performance [21].

However, deep classification networks suffer from network degradation, especially
when dealing with high-dimensional hyperspectral data [22]. In the classification task, too
deep a network structure leads to feature dispersion and incomplete feature extraction,
thus reducing the classification accuracy. To address this problem, several studies have
employed attention mechanisms to restrict features and reuse features from different layers
to prevent feature degradation. Typically, the FusAtNet [23] network extracts features
from hyperspectral and LiDAR data using multilayer attention modules, then merges the
extracted features, resulting in excellent classification performance. And Li et al. proposed
the Sal2RN network and designed a feature-forward multiplexing module to fully integrate
features from different levels and overcome the problem of deep feature degradation [9].
Additionally, the convolutional network still suffers from a defect that prevents it from
effectively representing global features, and the fixed-size convolutional kernel limits its
ability to model global features. To counter this challenge, Yang et al. creatively proposed
the cascaded dilated convolutional network (CDCN) in their work [24], which utilizes the
stacked dilated convolution method to extend the receptive field of the convolution kernel
and to realize the interaction of features at different scales. And the CDCN enhances the
performance of the network when it comes to classification.

Recently, transformer architectures have become the backbone of many vision tasks,
and vision transformers have demonstrated a powerful performance in a variety of remote
sensing tasks [25]. Compared to CNN-based networks, the vision transformer architecture
can deal with the long-range dependency problem among data and better model the contex-
tual information of the data [26]. The transformer achieves global image modeling through
data slice embedding and self-attention mechanisms [27]. As a revolutionary paradigm for
hyperspectral image classification, SpectralFormer introduces the transformer architecture
network for the first time and adopts additional class tokens for feature representation [28].
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For the purpose of enhancing the feature aggregation ability of transformer networks, many
methods combine convolution with the characteristics of transformers in an effort to further
improve the accuracy of hyperspectral fusion classification. For instance, DHViT [29]
incorporates convolution and a vision transformer into its LiDAR and hyperspectral feature
extraction branches, which significantly enhances the robustness of the network. However,
for the hyperspectral patch input paradigm [30], the above ViT-based network can only
simulate the correlation between the current patch sizes and still lacks much feature inter-
action between different scales to effectively perceive the spatial diversity in the complex
geographic environment, which greatly affects the final performance of fusion classification.
Furthermore, the vanilla feature fusion method mostly performs feature concatenation,
ignoring the differences between different source features [31,32]. Specifically, the spectral,
spatial, and elevation features are spliced in the channel dimension, and there are semantic
differences among different features, which cannot effectively improve the fusion perfor-
mance [33]. For the purpose of reducing the feature drift between different modalities, a
more flexible fusion method should be developed to improve the efficiency of utilizing
multisource features.

To address the above challenges, this paper proposes a fusion hyperspectral and
LiDAR classification architecture based on convolution and a transformer. The proposed
multibranch interaction structure captures features from three perspectives: spectral, spatial,
and elevation. This improves the effectiveness of the feature extraction network. Specifically,
our research focuses on analyzing both hyperspectral and LiDAR images simultaneously.
The transformer network framework combining multiscale convolution with multiscale
cross-attention is proposed for joint feature extraction. Finally, a multiscale token fusion
strategy is used to aggregate the extracted features. Overall, the main contributions of this
paper are summarized as follows:

(1) We propose a multisource remote sensing image classification framework that inte-
grates multiscale feature extraction with cross-attention learning representation based
on spectral–spatial feature tokens. This approach greatly improves the joint classifi-
cation performance, outperforming state-of-the-art (SOTA) methods with advanced
analytical capabilities.

(2) To consider the differences in spatial scale information of different classes, we propose
a Multi-Conv-Former Block (MCFB), a backbone feature extractor that combines
convolutional networks with multiscale transformer feature extraction. This strategy
skillfully captures complex edge details in HSI and LiDAR images and identifies the
spatial dependencies of multiscale transformer features, which facilitates the mining
of more representative perceptual features from different scales.

(3) We design a Cross-Token Fusion Module (CTFM) to maximize the fusion of HSI
and LiDAR feature tokens through a nonlocal cross-learning representation. This
strategy elevates shallow feature extraction to deep feature fusion, enhances the
synergy among multisource remote sensing image data, and realizes more cohesive
information integration.

The remainder of this article is organized as follows. Section 2 introduces the related
work in the research field, Section 3 introduces the network structure proposed in this paper
in detail, Section 4 demonstrates the experimental setup and analysis, Section 5 discusses
the results, and Section 6 concludes this paper.

2. Related Work

Within remote sensing image fusion classification, researchers have explored numer-
ous approaches to improve the accuracy and efficiency of multisource data integration.
These developments, from traditional to advanced algorithms, mark considerable progress
in addressing the complexities of multisource data fusion classification. Zhang et al. [34]
proposed the Adaptive Locality-Weighted Multi-source Joint Sparse Representation model
for multiple remote sensing data fusion classification. The method employs an adaptive
locality weight, calculated for each data source, to constrain sparse coefficients and address
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the instability in sparse decomposition, thereby enhancing the fusion of information from
various sources. Although the sparse representation yields better fusion performance, the
need for sparse optimization solving during fusion leads to its low efficiency, which may
limit the application of sparse representation fusion methods. Considering the differences
in data structure between HSI and LiDAR and the presence of non-negligible noise in
remotely sensed images, the two data sources are more suitably fused at the feature level
or decision level for delicate scene classification tasks. Rasti B et al. [35] proposed an
orthogonal total variation component fusion method. This method employs extinction pro-
files to extract spatial and elevation information from HSI and LiDAR features. However,
simple concatenation or stacking of high-dimensional features may lead to the Hughes
phenomenon during the feature-level fusion [36]. In order to solve this problem, most
studies utilize principal component analysis (PCA) to reduce the HSI data dimension-
ality [37]. Liao et al. [38] employed a SVM to classify spectral features, spatial features,
elevation features, and fusion features separately and then, based on the results of the four
classifications, to complete the decision-level fusion through the weighted vote. Although
traditional methods such as the above can achieve effective fusion of features, they rely on
efforts to design suitable extractors, which are otherwise prone to local differences due to
mismatches between images from multiple sources.

Deep learning can extract high-level semantic features from data end to end, achieving
more accurate classification results [39]. Xu et al. [18] proposed a novel two-tunnel CNN
framework for extracting spectral–spatial features from HSI. A CNN with a cascade block
was designed for feature extraction from other remote sensing data. The spatial and spectral
information of the HSI data was extracted using two-tunnel CNN branching, whereas the
spatial information of the other source data was extracted using cascaded network blocks.
Although the dual-branching network can extract information separately, it overlooks the
complementarity between multiple source images, which may lead to poor classification
performance after feature fusion.

Recent innovations in transformer architectures have opened new avenues in remote
sensing image processing. The ViT [25] introduces a groundbreaking approach to image
recognition by adapting attention mechanisms, treating images as sequences of patches. It
applies the transformer encoder directly to these sequences, preceding traditional convolu-
tional layers. Based on these architectures, DHViT [29] and FusAtNET [23] have introduced
remote sensing data processing changes by incorporating the transformer architecture.
DHViT’s innovation lies in its architecture that utilizes the powerful modeling capability of
long-range dependencies and strong generalization ability across different domains of the
transformer network, based exclusively on the self-attention mechanism. In comparison,
FusAtNET employs a dual-attention-based spectral–spatial multimodal fusion network,
which effectively utilizes a “self-attention” mechanism in HSI and a “cross-attention” mech-
anism using LiDAR modality. This approach allows for extracting and fusing spectral
and spatial features, improving fusion classification. Additionally, the HRWN [19] intro-
duced a two-branch CNN structure to extract spectral and spatial features. After that, the
predictive distributions and pixel affinities of the two-branch CNNs act as global prior
and local similarity, respectively, in the subsequent hierarchical random walk layers. This
model improves boundary localization and reduces spatial fragmentation in classification
maps to improve classification performance. However, despite their advancements, these
transformer-based methods face challenges such as potential overfitting from augmented
feature dimensionality and lack of research on the interactive perception of different modal
remote sensing data information, which may cause performance degradation.

3. Methodology

In this section, the proposed fusion classification network is reviewed in detail, and
the innovations are presented separately.
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3.1. Overall Network Framework

The overall network framework of the proposed method is shown in Figure 1. In
contrast to traditional methods, this paper innovates a multibranch interactive feature
extraction structure to avoid the disadvantages of the separate extraction of each branch
of the multibranch network and adopts an interactive feature extraction method in the
extraction of LiDAR elevation information and hyperspectral spatial information. And an
additional spectral feature extraction branch is added to carry out the spectral information
modeling of hyperspectral data. To be specific, due to the high channel dimension of
hyperspectral images, it is necessary to reduce the dimensions of the data. In this paper,
principal component analysis is utilized to reduce the dimensions of the original data.
For the hyperspectral image X ∈ RH×W×D, where D is the number of dimensions of the
original data, there are X = [X1, X2, X3, ..., XD]. Where Xj(1 ≤ j ≤ D) represents the data
value at each channel, the zero-centered data X̃ are first obtained by de-meaning.
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Figure 1. The overall network framework of the proposed algorithm, in which the multiple data flow
processes are spectral feature extraction, spatial feature extraction, and LiDAR elevation feature extrac-
tion. In the figure, “T” represents the class token, and “concat” is the feature concatenation operation.

To decompose the covariance matrix using singular value decomposition (SVD) [40],
we need to construct and solve the following symmetric matrix:

M = (VΣTUT)(UΣVT) = VΣT(UTU)ΣVT = VΣTΣVT , (1)

M′
= (UΣVT)(VΣTUT) = UΣ(VTV)ΣTUT = UΣΣTUT . (2)

The matrix V is the matrix of eigenvalues corresponding to the original data X; take the first
C eigenvalues to form the matrix P; then, the data after dimension reduction are Xh = PX.

For the hyperspectral image input Xh as well as the LiDAR elevation input Xl , the
patch partition strategy is first to divide them into Xh

i ∈ Rr×r×C and Xl
i ∈ Rr×r×1, where

r is a hyperparameter representing the size of the input patch and C is the number of
channels for hyperspectral image dimensionality reduction. For the spatial part, we use the
Multi-Conv-Former Block (MCFB) for feature extraction, and in this block, we process both
hyperspectral spatial information and LiDAR elevation information:

Fspa = Γ{Xh
i , Xl

i}, (3)
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where Fspa represents the final spatial feature output, and Γ represents the MCFB feature
extraction module processing. The structure of this module will be explained in detail in
the next section.

For spectral dimension feature extraction, we adopt the ViT network with an additional
class token as the feature extractor, unlike the traditional ViT network; the pixel values
within different patches are divided in the embedding part, according to the data values of
different channel dimensions. The specific process is as follows.

First, for the hyperspectral data Xh, we divide them into a number of patches along
the channel dimension, denoted as Xspe

i , and then, we have

Xh = {Xspe
1 , Xspe

2 , . . . , Xspe
i }, 1 ≤ i ≤ C. (4)

After each set of patches is embedded by feature mapping, an additional set of class tokens
of the same scale is added as the input data for subsequent feature extraction:

S = {ξ(Xspe
i )||Ti}. (5)

In the formula, ξ represents the feature-mapping operation, which aims to map the channel
dimension data and convert the spatial features, and Ti represents the additional class token,
which is a vector of random initial values and is constantly updated with the learning of
the network to represent the category information of the group of features. The subsequent
linear transformations used for self-attention feature extraction are denoted as Wq, Wk,
and Wv:

Q = S · Wq, K = S · Wk, V = S · Wv. (6)

To summarize, the self-attention layer can be represented as follows:

Fspe = Attention(Q, K, V) = so f tmax(
QKT
√

d
). (7)

The extracted features in this part are denoted as Fspe. Then, Fspa and Fspe penetrate
the proposed Cross-Token Fusion Module for feature fusion to generate a more robust
feature output.

Output = σ(Φ(Fspa, Fspe)), (8)

where Φ represents the proposed CTFM method, and σ represents the classification
head output.

3.2. Multi-Conv-Former Feature Extraction

The CNN architecture lacks global modeling capability, and the transformer architec-
ture lacks local spatial feature extraction capability. In this section, the proposed Multi-
Conv-Former feature extraction module will be introduced in detail. This module includes
a hierarchical multiscale convolution as a shallow feature extraction network and a multi-
scale cross-attention feature extraction module for multiscale features. The combination
of the two structures improves the feature sensing capability and the robustness of the
extracted features. Specifically, the overall process is as follows.

For hyperspectral image input Xh and LiDAR elevation input Xl , two-dimensional
convolution is first used for multiscale feature extraction. In this work, three levels of
multiscale feature output are used to achieve spatial size reduction and channel-scale
high-dimensional mapping. The initially selected patch input size is 11 × 11. In the first
stage, two consecutive convolutional layers are used with kernel sizes of 7 × 7 and 3 × 3
and a padding size of 1. At the same time, Batch Norm is applied for normalization. In
both the second and third stages, two consecutive convolutional layers are of size 3 × 3,
with padding size 1. The final feature sizes of the three scales obtained are Xs1 ∈ R1×1×256,
Xs2 ∈ R3×3×128, and Xs3 ∈ R7×7×64. It is worth noting that a global averaging pooling layer
is employed after each layer for sizing. Finally, depth-separable convolution is utilized
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to map the extracted hierarchical multiscale features and transform them into data input
patterns for the transformer architecture.

Qi, Ki, Vi = PointWise(DepthWise(Xsi)), i = 1, 2, 3. (9)

Similar to the spectral branching operation, class tokens are added to the feature embedding
for each scale. After that, the multiattention mechanism is used to extract features at
different scales.

headn = Attention(Qi, Ki, Vi), 1 ≤ n ≤ h, (10)

Fi = MultiHead(Qi, Ki, Vi) = Concat(head1, head2, . . . , headh), (11)

where Fi denotes the feature output of Conv-Former, whose dimensions are consistent with
the input dimensions.

After extracting the features at different scales by multiple attention, in order to
reduce the complexity of subsequent fusion, we choose the previously added learnable
class tokens for feature representation. The randomly generated Tcls at the time of input
embedding is continuously updated with network training and has the ability to represent
features. Therefore, we utilize this Tcls alone for subsequent processing. Finally, class
tokens of different scales are concatenated along the channel dimension to generate the
final classification token T f us.

T f us = {Tl1||Tl2||Tl3}, (12)

where the symbol || represents the concatenation operation along the channel dimen-
sion. The subsequent T f us is passed through the data stream as an input to the feature
fusion module.

3.3. Cross-Token Fusion Module

In this subsection, we introduce the token fusion method. Ordinary fusion strategies
are fused in the channel dimension, ignoring the distinction between features from diverse
sources and modalities. Based on the different classes of markers extracted in the feature
extraction part, we design the nonlocal token fusion module, which models the relationship
between diverse sources, reduces the intra-class variance, and avoids the phenomenon of
excessive differences in the features of various modalities.

The specific flow of the proposed Cross-Token Fusion Module is shown in Figure 2.
Specifically, for the Tspe and T f us extracted previously, linear transformations are used
to obtain linear mappings Query(Q), Key(Q), and Value(V). For different features, we
denote the spectral feature as Qspe, Kspe, and Vspe and the spatial fusion feature as Q f us,
K f us, and V f us. Unlike the traditional self-attention mechanism, the values of the two
types of features are exchanged in order to realize the attentional interaction between
different features. After that, a convolution with a kernel size of 1 × 1 is adopted for linear
transformation. This operation is denoted as the Conv Flow. The Conv Flow is used for the
two obtained groups of Q, K, and V values. Matrix multiplication is then performed on K
and Q to obtain the self-attention matrix ξ. This process can be described as follows:

ξspe = Kspe · Qspe, (13)

ξ f us = K f us · Q f us. (14)

Next, multiply the mixed attention matrix with the extracted V features to obtain the
attention-enhanced mixed features.

Ospe = V f us · So f t(ξspe) + Tspe, (15)

O f us = Vspe · So f t(ξ f us) + T f us, (16)
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where Ospe and O f us denote the spatial and spectral feature outputs of the spatial feature
modulation enhancement, respectively. The final feature outputs are concatenated along
the channel dimension:

Output = {Ospe∥O f us}, (17)

where ∥ is a concatenation operation that joins the features from the Cross-Token Fusion in
the channel dimension to obtain the final output features, which are then processed by the
classification header of the fully connected layer for the final output.

Spatial

Tokens

Q

K

V

S

Spectral

Tokens

Q

K

V

S

C

Conv Flow Data Flow Multiplication

S Softmax Matrix Addition C Concatenate

Figure 2. The structure diagram of the Cross-Token Fusion Module.

4. Experiments and Analysis

Three publicly available multisource remote sensing datasets were employed to evalu-
ate the performance of the proposed network experimentally. First, a description of the
selected datasets employed in the experiment is provided. An elaboration on the specific
experimental settings follows this. Then, the ablation experiments performed on the roles
and functionalities of different modules within the proposed framework are described.
Finally, the experimental outcomes underscore the superior performance of the proposed
framework relative to existing techniques.

4.1. Data Descriptions

In order to evaluate the effectiveness of the proposed network framework, three
datasets containing HSI and LiDAR data were selected for the experiments: Houston2013,
Trento, and MUUFL. Table 1 details the names of land-cover categories, the number of
training samples, and the number of test samples for these datasets.

(1) Houston2013 Dataset:

The Houston2013 dataset, sourced from the 2013 IEEE GRSS Data Fusion Contest, en-
compasses the University of Houston campus and its adjoining regions [41]. The Compact
Airborne Spectrographic Imager collected the HSI, and the NSF-funded Center for Airborne
Laser Mapping captured the LiDAR. The dataset’s dimensions stand at 349 × 1905 pixels,
boasting a spatial resolution of 2.5 m. The HSI data feature 144 spectral bands spanning a
wavelength range of 0.38 to 1.05 µm. For the same region, the LiDAR data for the identical
region comprise a single band. This scene contains fifteen different classes of interest. To
enhance clarity and comprehensive understanding, Figure 3 shows supplemental visual
depictions, including a pseudo-color composite of the HSI data, a grayscale rendition of
the LiDAR data, and an associated ground-truth map.
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Figure 3. Houston dataset. (a) Pseudo-color composite image based on bands 59, 26, and 18 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

Table 1. Training and test sample numbers for Houston2013, Trento, and MUUFL.

Houston2013 Dataset Trento Dataset MUUFL Dataset

No. Class Name Training Test Class Name Training Test Class Name Training Test
1 Healthy grass 198 1053 Apple trees 129 3905 Trees 100 23,146
2 Stressed grass 190 1064 Buildings 125 2778 Mostly grass 100 4170
3 Synthetic grass 192 505 Ground 105 374 Ground surface 100 6782
4 Trees 188 1056 Woods 154 8969 Dirt 100 1726
5 Soil 186 1056 Vineyard 184 10,317 Road 100 6587
6 Water 182 143 Roads 122 3052 Water 100 366
7 Residential 196 1072 Building shadow 100 2133
8 Commercial 191 1053 Building 100 6140
9 Road 193 1059 Sidewalk 100 1285

10 Highway 191 1036 Yellow curb 100 83
11 Railway 181 1054 Cloth panels 100 169
12 Parking lot1 192 1041
13 Parking lot2 184 285
14 Tennis court 181 247
15 Running track 187 473

Total 2832 12,197 Total 819 29,395 Total 1100 52,587

(2) Trento Dataset:

The Trento dataset, captured over a rural landscape in southern Trento, Italy, was
sourced using the AISA Eagle hyperspectral imaging system [35,42]. This system is
equipped with the AISA Eagle sensor, which captures 63 spectral bands across a wavelength
spectrum of 0.42 to 0.99 µm. Complementing the HSI, LiDAR data were gathered using
the Optech Airborne Laser Terrain Mapper (ALTM) 3100EA sensor, represented in a single
raster format. This dataset spans 600 × 166 pixels, maintaining a spatial resolution of 1 m
and containing six different classes of interest. For visualization and analytical purposes,
Figure 4 shows a pseudo-color composite of the HSI data, a grayscale representation of the
LiDAR data, and an associated ground-truth map, respectively.
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(3) MUUFL Dataset:

The MUUFL Gulfport dataset was captured over the Gulf Park campus of the Uni-
versity of Southern Mississippi in November 2010 by the reflective optics system imaging
spectrometer sensor [43]. The HSI was collected by the ITRES Compact Airborne Spectro-
graphic Imager (CASI-1500) sensor, and the ALTM sensor captured LiDAR data. Initially,
the HSI imagery incorporated 72 bands, but the first and last 4 bands were excluded due to
noise considerations, leading to 64 bands. The LiDAR component comprises 2 elevation
rasters with a 1.06 µm wavelength. Both modalities are coregistered, rendering a dataset
dimension of 325 × 220 pixels, with a spatial resolution of 0.54 m × 1 m. There are eleven
different classes of interest in this scene. Figure 5 shows the HSI data, LiDAR imagery, and
the corresponding ground-truth map, respectively.

Figure 4. Trento dataset. (a) Pseudo-color composite image based on bands 20, 16, and 4 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

Figure 5. MUUFL dataset. (a) Pseudo-color composite image based on bands 30, 20, and 10 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

4.2. Experimental Settings

Four widely used quantitative metrics were computed to measure the classification
performance of the proposed methodology compared to other existing models. These met-
rics include the overall accuracy (OA), average accuracy (AA), Kappa coefficient (Kappa),
and per-class accuracy. A superior score for these indicators signifies enhanced classifica-
tion accuracy. To eliminate the bias caused by random initialization factors of framework
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parameters in learning-based models, each experiment was repeated ten times to obtain
the average value of each quantitative metric.

Experimentation was conducted on a desktop PC with an Intel Core i9-12900 processor,
2.40 GHz CPU, 64 GB RAM, and an NVIDIA GeForce RTX 3080 GPU. All experiment
operations were facilitated using the PyTorch framework version 2.0.

4.3. Parameter Analysis

The classification performance and the training process are closely related to sev-
eral hyperparameters, which were analyzed, including the patch size, reduced spectral
dimension, attention heads, multiscale spatial feature extraction, and learning rate. In
the following experiments, the settings and tuning of hyperparameters depended on the
training dataset. Specifically, after setting the hyperparameters, the model was trained
using the training dataset, and then the performance of the network on the test dataset
was evaluated.

(1) Patch Size:

The patch size refers to the size of a small square area for HSI or LiDAR data input,
denoted as r. Other hyperparameter values were fixed when evaluating the effect of r.
Then, r was selected from a candidate set {9, 11, 13, 15, 17} to evaluate its effect. Since the
Multi-Conv-Former Block module combines maximum pooling with convolutional layers
to accomplish multiscale feature extraction, the network cannot achieve multiscale effects
if the patch size is less than 9. Based on our empirical study, the features extracted by
various values of r yield different classification performances. Figure 6a shows the Kappa
coefficient of the proposed network framework at different patch sizes. As can be seen,
when r is set to 11, the optimal Kappa is achieved in the three datasets.

(a) (b) (c)

(d) (e) (f)

Figure 6. Influence of different parameters on the Kappa coefficient. (a) Patch size. (b) Reduced
spectral dimension. (c) Spectral feature extraction module attention heads. (d) Multiscale cross-
attention spatial feature extraction module attention heads. (e) Multiscale spatial feature extraction.
(f) Learning rate.
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(2) Reduced Spectral Dimension:

Reduced Spectral Dimension means using the SVD method to reduce the spectral
dimension and extracting only the first c principal components. c was selected from a candi-
date set {20, 25, 30, 35, 40} to evaluate its effect. Figure 6b shows the Kappa coefficient of the
proposed network framework at different reduced spectral dimensions. This trend shows
that as c increases, the Kappa value initially increases and then decreases. When the spectral
dimension equals 30, the proposed network can achieve the best classification results.

(3) Attention Heads:

Both the spectral feature extraction module and the multiscale cross-attention spatial
feature extraction module utilize the multihead attention mechanism, and the attention
heads are represented by h and n, respectively. Multihead attention is employed to learn
the correspondences between different representational subspaces, where each head cor-
responds to an independent subspace of feature representation. Therefore, the number
of attention heads can affect the capacity of the transformer to represent features and,
thus, the classification performance. Figure 6c,d shows the changes in Kappa with h and
n on the three datasets, and the candidate set of attention heads is {2, 4, 6, 8, 10, 12}. The
experimental results show that the reasonable h and n are 6 and 4, respectively.

(4) Multiscale Spatial Feature Extraction:

The multiscale spatial feature extraction technique is employed in the backbone net-
work to capture the complex unstructured edge details of different target classes. Three
levels of downsampling of spatial dimensions are performed on HSI and LiDAR images.
The multistage downsampling ratios are (s1× s1), (s2× s2), and (s3× s3). Since maximum
pooling and convolutional layers are used by multiscale feature extraction, s1, s2, and s3 are
selected from the candidate set {(1, 3, 7), (2, 4, 9), (1, 5, 11), (2, 5, 10)} to evaluate the effect
of different spatial scales. Figure 6e shows the Kappa coefficient of the proposed network
framework at different scales of spatial feature. It is obvious that the Kappa value reaches
the optimum when the multispatial feature sizes are s1 = 1, s2 = 3, and s3 = 7.

(5) Learning Rate:

The learning rate L is a critical hyperparameter that controls the speed at which the
objective function converges to the local optimum. In the experiments, the learning rate
was methodically searched for in a candidate set: {1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4,
1 × 10−3, 3 × 10−3}. The experimental results obtained by setting different values of L are
shown in Figure 6f. It can be observed that the optimal learning rate is 1 × 10−3.

4.4. Ablation Analysis

(1) Ablation Analysis of Different Modal Data Inputs

Two experimental frameworks were established to analyze the impact of different
source data inputs on the model classification performance. The first experiment only used
HSI data as an input, while the second was limited to LiDAR data input. The experimental
results are shown in Table 2. HSI data can be used to distinguish targets of different
materials, while LiDAR data provide rich spatial domain elevation information, enhancing
the characterization of scenes in HSI. The comparison of OA, Kappa, and AA on the three
datasets shows that the backbone network proposed in this paper based on multisource
data fusion has a better classification performance. These experimental results confirm that
customized fusion networks can effectively utilize information from multisource data to
improve classification performance.
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Table 2. Ablation analysis of different modal data inputs.

Cases
Houston2013 Trento MUUFL

OA Kappa AA OA Kappa AA OA Kappa AA

HSI 89.51% 0.8866 90.94% 95.37% 0.9386 95.22% 89.42% 0.8630 91.18%
LiDAR 58.04% 0.5480 60.24% 89.25% 0.8564 79.68% 54.31% 0.4414 59.78%

HSI + LiDAR 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

(2) Ablation Analysis of Multiscale cross-attention Spatial Feature

The proposed spatial feature extractor module, Multi-Conv-Former Block, injects
texture features from HSI and LiDAR at three scales (i.e., 1 × 1, 3 × 3, and 7 × 7 spatial
downsampling resolutions). To demonstrate the advantages of the backbone network at
multiple spatial scales, we conducted an ablation study, and the results are shown in Table 3.
Note that the first three rows of the table are equivalent to using usual feature extraction
methods when using single-scale spatial features. From Table 3, it can be seen that, when
multiscale spatial feature extraction is utilized, the classification performance is improved,
as when injecting the 7 × 7 spatial scale feature into the backbone for the Houston2013
dataset. Furthermore, as seen from the last row of Table 3, the classification performance is
best when we implement three different spatial scales for the backbone. Specifically, the
utilization of multiscale feature extraction has resulted in a noteworthy improvement in
the overall classification accuracy of the backbone network. The improvement ranges from
a minimum of 0.22% to a maximum of 3.20% across the three datasets compared to the
feature extraction backbone network that solely relied on a single scale. This finding high-
lights the potential of multiscale feature extraction in enhancing the backbone network’s
classification accuracy.

Table 3. Ablation analysis of multiscale spatial feature scale.

Case Houston2013 Trento MUUFL

1 × 1 3 × 3 7 × 7 OA Kappa AA OA Kappa AA OA Kappa AA

✓ - - 90.41% 0.8959 90.74% 97.98% 0.9731 96.98% 89.26% 0.8596 89.93%
- ✓ - 92.54% 0.9137 92.75% 97.53% 0.9669 93.97% 89.52% 0.8633 90.80%
- - ✓ 92.88% 0.9140 92.46% 95.47% 0.9401 94.75% 89.85% 0.8676 90.59%
✓ ✓ - 91.53% 0.9080 92.64% 97.82% 0.9709 95.08% 90.21% 0.8707 88.10%
✓ - ✓ 93.08% 0.9237 93.19% 98.17% 0.9814 98.00% 89.89% 0.8680 90.23%
- ✓ ✓ 92.48% 0.9183 93.22% 98.62% 0.9816 93.83% 89.72% 0.8691 90.63%
✓ ✓ ✓ 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

(3) Ablation Analysis of Feature Fusion

To fully utilize and fuse the spectral and spatial information, a Cross-Token Fusion
Module combines cross-attention and is designed to learn spectral and multiscale spatial
features. This section evaluates the impact of the Cross-Token Fusion Module within our
proposed classification network. The baseline module for this analysis is established by
omitting the Cross-Token Fusion Module and instead employing a simple cascaded ap-
proach. The baseline employs a cascade-based feature flattened and concatenated network.
Table 4 lists the classification performance experimental results of using two different fusion
modules. The proposed model exhibits a significant improvement in comparison to the
baseline network, particularly on the Houston2013 dataset. The performance of the model
is reflected in the observed OA gain of 3.76%, K gain of 0.0401, and AA gain of 3.42%. The
proposed model can combine shallow features with deep features, effectively integrate
the spectral and multiscale spatial feature information of HSI and LiDAR, enhance the
collaboration between multisource remote sensing impact data, and significantly improve
the classification results.
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Table 4. Ablation analysis of feature fusion.

Cases
Houston2013 Trento MUUFL

OA Kappa AA OA Kappa AA OA Kappa AA

Baseline 89.34% 0.8843 90.23% 98.35% 0.9780 97.04% 90.27% 0.8710 89.31%
Proposed 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

4.5. Classification Results and Analysis

Comparative experiments were conducted to evaluate the effectiveness of the pro-
posed model. For this purpose, several representative classification methods were selected,
including classical methods such as CNN-PPF [44] and 3DCNN [45]. The two-branch
CNN network [18], known for its ability to process both spectral and spatial information
simultaneously, was also included. Additionally, ViT [25] and SpectralFormer [28] were
integrated to highlight the superior performance of the proposed network. These models
are based on advanced transformer architecture. Finally, advanced fusion and classification
networks such as Couple CNN [20] and HRWN [19] were incorporated to evaluate multi-
source fusion models extensively, ensuring a comprehensive assessment against current
state-of-the-art methodologies.

(1) Quantitative Results and Analysis

The OA, Kappa, AA, and per-class accuracy of the proposed method and each com-
parative method are reported in Tables 5–7 for the Houston2013, Trento, and MUUFL
datasets, respectively. The optimal results are highlighted in bold in each table, while the
second best results are underlined. The values of the evaluation indicators clearly show
that the proposed framework outperforms comparison methods, often reporting results
with higher accuracy.

Table 5. Classification performance obtained using different methods for the Houston2013 dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 83.00% 98.30% 83.10% 82.43% 85.31% 82.72% 81.86% 82.34%
2 84.12% 98.68% 84.87% 84.87% 83.79% 80.45% 100.00% 93.70%
3 100% 99.53% 100% 99.80% 99.05% 99.60% 95.25% 99.60%
4 88.54% 94.30% 92.14% 92.06% 92.30% 92.42% 96.12% 98.58%
5 100% 98.82% 97.73% 100% 100% 97.73% 99.53% 99.81%
6 97.20% 89.45% 68.53% 97.20% 97.28% 95.80% 94.41% 100%
7 83.40% 79.89% 87.33% 92.91% 89.33% 74.44% 83.12% 76.40%
8 46.25% 82.41% 70.75% 96.01% 93.74% 42.55% 76.73% 94.11%
9 84.04% 79.36% 84.51% 84.99% 88.66% 65.25% 79.32% 93.77%

10 56.37% 84.96% 62.64% 67.47% 86.17% 50.77% 78.86% 90.73%
11 80.08% 72.32% 76.47% 98.57% 92.75% 71.44% 88.71% 97.34%
12 87.42% 80.55% 91.26% 96.15% 96.47% 56.00% 87.32% 99.71%
13 82.81% 89.73% 8.12% 84.91% 91.93% 64.21% 72.63% 78.60%
14 100% 99.74% 100% 100% 100% 100% 100% 100%
15 98.94% 99.34% 98.93% 99.58% 100% 98.52% 100% 100%

AA(%) 84.81% 89.82% 82.70% 91.79% 90.47% 78.13% 88.91% 93.65%
OA(%) 81.69% 88.54% 80.42% 90.58% 89.67% 74.36% 88.01% 93.10%
Kappa 0.803 0.8761 0.8124 0.8978 0.8828 72.43 0.8699 0.9251

Concretely, Table 5 shows that for the Houston dataset, the OA, Kappa, and AA
values of the proposed framework were 93.10%, 0.9251, and 93.65%, respectively, which
are competitive in the HSI and LiDAR joint classification task. Furthermore, the proposed
framework outperformed other state-of-the-art methods such as Couple CNN, HRWN,
and SpectralFormer. Specifically, the proposed framework achieved a classification average
accuracy that was 1.86% higher than Couple CNN. Additionally, it outperformed HRWN
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and SpectralFormer by 3.18% and 4.74%, respectively. The proposed network integrates
multiscale convolution with cross-attention, effectively addressing the limitations of global
modeling and local feature extraction. As a result, the network can simultaneously extract
spatial features from diverse sources and capture the delicate edge intricacies of the object
under scrutiny. For instance, in Table 5, the Houston2013 datasets No. 9 and No. 10
represent “road” and “highway”, respectively. The proposed model achieves per-class
classification accuracy of 93.77% and 90.73% for these two datasets, which is significantly
higher than other methods.

Table 6. Classification performance obtained using different methods for the MUUFL dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 88.34% 82.27% 86.88% 94.66% 95.20% 87.62% 88.83% 93.95%
2 81.49% 81.04% 77.19% 85.08% 84.72% 81.29% 66.62% 82.09%
3 77.25% 67.58% 83.57% 77.04% 72.93% 59.99% 71.73% 88.60%
4 93.57% 85.64% 95.71% 97.45% 98.20% 82.73% 88.47% 96.76%
5 88.90% 83.00% 94.55% 86.18% 85.35% 80.12% 84.21% 90.18%
6 99.18% 91.34% 61.20% 100% 100% 84.97% 92.62% 99.73%
7 90.06% 86.12% 83.54% 95.59% 94.33% 79.79% 86.45% 87.29%
8 81.12% 71.94% 94.79% 96.16% 92.82% 82.88% 83.37% 95.44%
9 72.14% 71.39% 63.97% 74.86% 64.36% 71.67% 74.24% 74.32%

10 80.72% 91.73% 54.22% 96.39% 85.54% 97.59% 89.16% 93.98%
11 97.63% 95.89% 94.08% 99.41% 97.63% 95.86% 96.45% 98.22%

AA(%) 86.40% 82.54% 80.87% 90.44% 88.28% 82.24% 83.83% 90.96%
OA(%) 85.53% 79.32% 86.95% 91.17% 89.32% 81.23% 83.24% 91.41%
Kappa 0.8122 0.7364 0.8301 0.8745 0.8589 0.7564 0.7818 0.8869

Table 7. Classification performance obtained using different methods for the Trento dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 97.13% 99.22% 91.45% 99.13% 89.29% 87.35% 96.08% 99.64%
2 92.12% 90.50% 97.83% 95.43% 91.22% 81.21% 95.86% 99.28%
3 98.93% 97.90% 92.48% 99.73% 83.72% 96.79% 95.99% 98.93%
4 99.10% 97.05% 98.31% 99.51% 98.08% 97.42% 97.99% 100.00%
5 96.71% 94.09% 99.86% 98.84% 100% 74.66% 95.25% 98.57%
6 68.32% 79.48% 83.08% 93.25% 87.27% 69.95% 57.76% 93.28%

AA(%) 94.14% 93.04% 96.19% 98.19% 95.55% 84.57% 92.37% 98.28%
OA(%) 92.05% 93.86% 93.84% 97.24% 91.60% 83.70% 89.82% 98.67%
Kappa 0.9216 0.9183 0.9419 0.9758 0.9403 0.7844 0.8982 0.9822

The proposed framework has demonstrated promising results for the MUUFL dataset,
achieving an OA of 91.41%, Kappa of 0.8869, and AA of 90.96%, as presented in Table 6.
These results indicate a slight advantage over the Couple CNN method. However, the
classification results of the advanced HRWN method are unsatisfactory, with an overall
accuracy that is more than 2% lower than that of the proposed method. This lower per-
formance can be attributed to the spatial features, which may cause overfitting or even
misclassification of the image under limited training sample conditions. However, the
adjacent intervals of different land cover classes within MUUFL images are relatively small,
and the distribution of the same land cover class needs to be more scattered, which may
lead to highly mixed pixels in the boundary areas, thus complicating classification. This
problem caused each method to obtain a low level of accuracy when classifying the No. 9
class, “sidewalks”, in the MUUFL dataset.

As for the Trento dataset, Table 7 shows that the proposed method not only pro-
duces the highest OA (98.67%), Kappa (0.9822), and AA (98.28%), but also most of the
classes surpass other methodologies in terms of classification accuracy (e.g., “Apple Trees”,
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“Buildings”, “Woods”, “Roads”). The above results directly indicate that multiscale feature
extraction using a cross-learning representation based on spectral–spatial feature labeling
can significantly improve the classification performance.

(2) Visual Evaluation and Analysis

The classification maps obtained by various comparison methods and the proposed
method using the MUUFL, Houston2013, and Trento datasets are presented in Figures 7, 8 and 9,
respectively. The proposed method exhibits more distinct boundaries compared to other
methods, indicating its superior classification performance. This observation is consistent
with the overall accuracy results of the quantitative analysis.

Figure 7. Classification maps using different methods on the Houston2013 dataset. (a) CNN-PPF
(81.69%). (b) 3D CNN (88.54%). (c) Two-Branch (80.42%). (d) Couple CNN (90.58%). (e) HRWN
(89.67%). (f) ViT (74.36%). (g) SpectralFormer (88.01%). (h) Proposed (93.10%). (i) Ground-truth map.

Figure 8. Classification maps using different methods on the Trento dataset. (a) CNN-PPF (92.05%).
(b) 3D CNN (93.86%). (c) Two-Branch (93.84%). (d) Couple CNN (97.24%). (e) HRWN (91.60%).
(f) ViT (83.70%). (g) SpectralFormer (89.82%). (h) Proposed (98.67%). (i) Ground-truth map.
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Specifically, the proposed method is more accurate in classifying irregularly distributed
small scene features because it employs the Multi-Conv-Former Block to extract multiscale
spatial features. For instance, in Figure 8, the strip distribution terrain in the Trento
dataset No. 6 is shown in blue, which represents “Roads”. The classification boundary
of the proposed model is significantly better than the remaining models. On the right
side of Figure 7, the long strip-shaped terrain in the Houston2013 dataset No. 11 is
represented in purple, representing “Railway”. The classification completeness of the
proposed model is significantly better than the remaining models. Certain classifications
within the remaining datasets also manifested analogous visual outcomes. However,
the proposed model requires further improvement in accurately classifying extensive
continuous features. For instance, in the Trento dataset, a small section of the No. 5
“vineyard” that is depicted in green is wrongly classified as “apple trees” or “ground”. To
address this issue, the design of the shallow CNN needs to be carefully considered.

Figure 9. Classification maps using different methods on the MUUFL dataset. (a) CNN-PPF (85.53%).
(b) 3D CNN (79.32%). (c) Two-Branch (86.95%). (d) Couple CNN (91.17%). (e) HRWN (89.32%).
(f) ViT (81.23%). (g) SpectralFormer (83.24%). (h) Proposed (91.41%). (i) Ground-truth map.

5. Discussion

While remote sensing hyperspectral data capture abundant spectral information, it can
be challenging to differentiate between ground objects with similar spectral characteristics.
However, LiDAR data can offer additional context to overcome this challenge. This paper
explores the structural relationships between various data types and proposes a feature-
level fusion technique that blends HSI and LiDAR data. This innovative approach enables
us to extract and fuse features efficiently, significantly improving the classification accuracy.

Our research proposed a novel joint convolutional cross-ViT framework for HSI and
LiDAR data fusion classification. The proposed framework was tested for classification
accuracy on three publicly available datasets, as reported in Tables 5–7.

(1) Our study compared the proposed framework with several state-of-the-art methods,
including Coupled CNN, HRWN, and SpectralFormer. According to Tables 5–7,
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the proposed model shows superior classification accuracy compared to the other
models. The Houston2013 dataset has the most classes of interest, and each class is
spatially dispersed. However, the proposed framework effectively captures complex
edge details from three perspectives (spectral, spatial, and elevation) by adopting the
multibranch interaction structure of MCFB, achieving good classification accuracy.
For the MUUFL dataset, the spatial complexity of class distribution may lead to
misclassification. As a result, the proposed model only slightly outperformed the
other methods on this dataset. The Trento dataset features easily distinguishable
contours for each class; thus, our framework and others show notable classification
accuracy. However, our framework uses CTFM to maximize the fusion of HSI and
LiDAR feature tokens through a nonlocal cross-learning representation. This strategy
significantly enhances the synergy among multisource remote sensing image data,
elevating shallow feature extraction to deep feature fusion and enhancing the efficacy
of feature extraction. As a result, our framework outperforms others in terms of
classification accuracy.

(2) The difference in the classification accuracy of the proposed model on the Hous-
ton2013, Trento, and MUUFL datasets can be attributed to the unusual characteristics
of each dataset. The urban and semi-urban environments in the Houston2013 and
MUUFL datasets pose more complex classification challenges to the classification
model than the rural Trento dataset. The Trento dataset exhibits higher performance
metrics, primarily due to its data characteristics and land cover distribution. As
illustrated in Figure 8, each class in the Trento dataset exhibits a more blocky and
concentrated distribution pattern. In contrast, the Houston2013 dataset, shown in
Figure 7, contains 15 different classes that are spatially dispersed, and the MUUFL
dataset, depicted in Figure 9, contains 11 classes that are more messy and intertwined,
making the classification task more difficult. Moreover, these datasets have specific
differences in spatial resolution and spectral quality. With its multiscale feature ex-
traction, the proposed algorithm effectively utilizes spatial and spectral features of
varying scales, showing adaptability to different datasets. This approach allows
the algorithm to maintain high classification accuracy across various environments,
especially in datasets with complex urban structures.

(3) Although the proposed framework performs well in HSI and LiDAR data fusion
classification, its computational complexity still needs to be improved. The data
processing approach, which combines the MCFB and the CTFM, effectively improves
classification accuracy but requires substantial computational resources. This chal-
lenge points to our future work focusing on optimizing the network architecture to
enhance the model’s usability in processing remote sensing images.

6. Conclusions

In this paper, a multisource fusion classification paradigm for hyperspectral and
LiDAR images is proposed, which achieves excellent classification accuracy. In order
to solve the chronic defect of CNN architecture that lacks global modeling capability,
this work designed the excellent Multi-Conv-Former Block to combine the advantages of
convolutional and transformer architectures and, at the same time, introduces a multiscale
structure so that the network perceives the global–local joint information at different scales,
which improves the classification accuracy. In addition, in order to further improve the
feature fusion effect of multisource information, this work designed a Cross-Token Fusion
Module feature fusion architecture, which uses the nonlocal structure to fuse the features
of different modalities, and the lightweight category token used for fusion reduces the
complexity of the high-dimensional features, improves the fusion efficiency, and at the
same time provides more robust features for the final classification. Overall, the fusion
classification network proposed in this paper achieves excellent classification performance
on three publicly available hyperspectral datasets, proving the effectiveness and innovation
of this method.
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