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Abstract: Deep Neural Network (DNN)-based point cloud semantic segmentation has presented sig-
nificant breakthrough using large-scale labeled aerial laser point cloud datasets. However, annotating
such large-scaled point clouds is time-consuming. Self-Supervised Learning (SSL) is a promising
approach to this problem by pre-training a DNN model utilizing unlabeled samples followed by
a fine-tuned downstream task involving very limited labels. The traditional contrastive learning
for point clouds selects the hardest negative samples by solely relying on the distance between the
embedded features derived from the learning process, potentially evolving some negative samples
from the same classes to reduce the contrastive learning effectiveness. This work proposes a hard-
negative sample-aware self-supervised contrastive learning algorithm to pre-train the model for
semantic segmentation. We designed a k-means clustering-based Absolute Positive And Negative
samples (AbsPAN) strategy to filter the possible false-negative samples. Experiments on two typical
ALS benchmark datasets demonstrate that the proposed method is more appealing than supervised
training schemes without pre-training. Especially when the labels are severely inadequate (10% of
the ISPRS training set), the results obtained by the proposed HAVANA method still exceed 94% of
the supervised paradigm performance with full training set.

Keywords: ALS point cloud; semantic segmentation; self-supervision; end-to-end

1. Introduction

Airborne Laser Scanning (ALS) point clouds provide a compact and effective represen-
tation of real-world 3D scenes, and have become a standard spatial-temporal geographic
data source [1]. However, the original point clouds only contain spatial coordinates or other
auxiliary information, prohibiting a computer from comprehending a scene and obtaining
structural information for subsequent applications. Thus, semantic segmentation assigns a
corresponding label to each point in the point cloud, which is a typical pre-task for complex
3D model reconstruction [2,3].

In the early stages, semantic segmentation commonly relied on supervised learning
methods that utilize hand-crafted features [4], which can be divided into two categories.
The first category is point-based methods, which are summarized by Weinmann et al. [5]
into four steps: neighborhood selection, feature extraction, feature selection, and supervised
classification, with the feature extraction stage having a significant impact on the final
classification results. The second category includes statistical contextual-based methods [6]
that exploit each point’s context characteristics and outperform point-based methods.
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Supervised paradigm machine learning based on hand-crafted features [7,8], and classical
classification algorithms, such as random forest [9] and SVM [10], completes supervised
semantic segmentation of ALS point clouds. However, these traditional handcrafted-
feature-based methods limit point cloud semantic understanding, as they heavily depend
on low-level features, have low accuracy, and have poor transferring abilities.

Along with the development of deep learning methods, researchers started to apply
the deep learning methods to solve point cloud semantic segmentation tasks. The first
attempt was to remap the point cloud (3D data) to image representation (2D data), on which
image semantic segmentation was performed, and the results were remapped into point
clouds (2D to 3D remapping) [11]. Aside from 2D Convolutional Neural Networks (CNNs),
some works tried to directly semantically segment the point clouds utilizing 3D CNN
solutions [12,13]. Unlike these methods involving regular CNN, Qi et al. [14] developed
PointNet, a pioneering point-based semantic segmentation network that directly exploited
irregular point clouds. Researchers also improved PointNet to PointNet++ [15], boosting
direct point cloud segmentation research, such as PointSIFT [16], PointCNN+A-XCRF [17],
and GACNN [18]. Nevertheless, these methods require many semantic annotations as
prior information, with point cloud labeling being time-consuming and challenging. To the
best of our knowledge, there is no point cloud dataset comparable to ImageNet.

The supervised learning paradigm based on the DNN method has obtained promis-
ing performance on point cloud semantic segmentation. This strategy requires many
labeled points to increase the model’s transferability and robustness, as the classification
quality relies heavily on high-quality and complete point cloud datasets. For 2D images,
researchers avoided over-reliance on semantic labels and solved the problem of the sam-
ples’ insufficient semantic annotation by proposing the few-shot learning method. Existing
works generate more samples [19], whereas other approaches focus on semi-supervised
learning [20] or weakly supervised learning [21]. Several recent studies have used the
self-supervised learning (SSL) paradigm to learn rich and diverse knowledge with fewer
semantic labels [22]. In terms of the self-supervised learning (SSL) paradigm in 2D images,
SSL is a viable alternative to solve the heavy reliance on manual labeling, as well as the
future direction for currently unsolved problems [23].

Several SSL methods have been proposed for 3D data in recent years. Under the
self-supervised mode, the auxiliary task exploited useful information from relevant tasks
and learned weight to guide the point cloud semantic segmentation task, with a stronger
inductive bias applied to concerned tasks. The SSL pattern has greater potential in real-
world semantic understanding applications [24–30]. Sauder and Sievers [29] performed
feature learning by restoring the point cloud’s voxel positions and focusing on verifying
the model’s reconstruction reliability. Similarly, Poursaeed et al. [30] proposed a method
to predict rotations as the auxiliary task target. However, the corresponding learned fea-
tures were only validated on shape classification and key-point detection tasks. Sharma
and Kaul [24] used a cover tree to encode point cloud hierarchical partitioning, where
the proposed method generated variable-sized subsets with class labels. Liu et al. [25]
built contrastive learning for multi-modal RGB-D scans, while Rao et al. [27] proposed a
bidirectional reasoning scheme between the local structures and the global forms, taking un-
supervised learning representation from data structures into account. Some works [26,28]
used contrastive learning by constructing a positive and negative sample mining strat-
egy. Nevertheless, these methods lack strong feature learning ability, and the traditional
hardest negative mining strategy applied on point clouds encounters negative sample
impure problem [26], resulting in the quantity of negative points adding very little to the
ability of the model learning. As a result, this paper concentrated on SSL for point clouds
semantic segmentation.

To alleviate the reliance on point cloud annotation data, a self-supervised learning
strategy for point cloud semantic segmentation, named HAVANA, which employed a
mass of unlabeled points to pre-train a network for subsequent point cloud semantic
segmentation tasks. Specially, we designed a k-means clustering guided negative samples
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selection method for the effectiveness of contrastive learning. Our main contributions are
summarized as follows:

1. A self-supervised contrastive learning scheme is introduced for point cloud semantic
segmentation. The meaningful information representation of unlabeled large-scale
ALS point clouds is learned using contrastive learning, and then transferred to small
local samples for high-level semantic segmentation tasks, resulting in improved
semantic segmentation performance.

2. We design AbsPAN, a strategy for selecting positive and negative samples for con-
trastive learning. This strategy employs an unsupervised clustering algorithm to
remove potentially false-negative samples, ensuring that contrastive learning obtains
meaningful information.

3. When full of training data are used, the proposed method performed better than
the strategy of training from scratch. This means that self-supervised learning is a
promising way to improve the performance of deep learning methods for point cloud
semantic segmentation.

The remainder of the paper is organized as follows: Section 2 describes the proposed
method, and Section 3 illustrates the experiments and analyzes the corresponding results.
And, finally, Section 4 concludes this work and gives some outlooks.

2. Methodology
2.1. Overview

The proposed self-supervised learning paradigm for point clouds is illustrated in
Figure 1. Our technique aims to utilize unlabeled ALS point clouds to learn spatial invari-
ance by designing self-supervised signals and transferring them to semantic segmentation
tasks to reduce the reliance on semantic labels. The proposed method consists of two parts.
In the self-supervised pre-training part, contrastive learning is performed on a large-scaled
unlabeled point cloud by employing a kernel point fully convolutional network (KP-FCNN)
as the backbone. In Figure 1, Scene 1 and Scene 2 refer to two augmented mini-batches of
training data. Note that in each epoch of pre-training, we utilize two different augmentation
approaches to a same subset of unlabeled point clouds. In the supervised fine-tuning part,
the pre-trained weight initiates the downstream semantic segmentation network training
and fine-tuning weight on a few labeled point clouds.

Figure 1. The self-supervised learning paradigm for point cloud semantic segmentation.
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2.2. Point Cloud Contrastive Learning

Self-supervised learning can be implemented by utilizing a variety of specially de-
signed supervised signals, with contrastive learning being selected due to its high repre-
sentation learning ability. Contrastive learning is an unsupervised approach whose goal is
to learn a mapping relationship from the original feature to the embedding space so that
the distance function is used to pull positive samples closer together and negative samples
apart [31]. Our distance metric function focuses on triplets with hard-negative mining [32].
In particular, as shown in Equation (1), for any anchors x, the objective of the contrastive
learning is to obtain an embedding function that meets the following criteria:

L
(

f (x), f
(
x+

))
>> L

(
f (x), f

(
x−

))
(1)

where x+ are positive samples, and denote points similar or congruent to anchors x. x−

are negative samples, and denote points dissimilar to anchors x. L is the distance metric
function used to measure the similarity between features.

The developed contrastive learning framework is illustrated in Figure 2. The auxiliary
pre-training task is described in Section 2.2.1. For the point cloud feature embedding,
KP-FCNN is selected as the backbone network and described in Section 2.2.2. The key point
of contrastive learning is to construct positive and negative samples. To ensure the purity
of these samples, a negative samples mining method based on k-means clustering named
“Absolute Positive And Negative samples” (AbsPAN) is proposed and described in detail
in Section 2.2.3. Our method optimizes a contrastive loss Lc on the extracted high-level
features V for a set of a random geometrically transformed point cloud; it is completed by
using KP-FCNN. The designed contrastive loss Lc is described in Section 2.2.4.

Figure 2. Illustration of contrastive learning. For the backbone network, the green bars are encoders
and the purple bars are decoders. The circled part of the red line represents our “AbsPAN” strategy
selecting both positive and negative samples and optimizing the loss function.

2.2.1. Auxiliary Pre-Task

Inspired by [28], the auxiliary tasks achieve point equivariance concerning a set of ran-
dom similarity transformations (composed of rotation transformation and scaling; all the
similarity transformations hereafter are referred to as rotation transformation and scaling).
Concretely, similar to other metric learning algorithms [33–35], we define a pair of matching
points as a positive pair if they refer to the same point, otherwise they form a negative pair.
As illustrated in Figure 2, given a point cloud dataset X = {x1, . . ., xi, . . ., xN}, where N is



Remote Sens. 2024, 16, 485 5 of 18

number of all points, a spherical subset X′ is selected from X by using the random picking
strategy using in KP-FCNN, and then two random similarity transformations T1 and T2
are applied to X′ to obtain pair block X1 = {x1

1, . . ., xi
1, . . ., xn

1}, X2 = {x1
2, . . ., xi

2, . . ., xn
2}.

For each point in block xi
1, there is a corresponding point xj

2 in block X2, (xi
1, xj

2) are
matching points across two blocks. The unsupervised contrastive learning aims at extract-
ing embedding features vs = f (Xs), s = {1, 2}, where the embedding function f maps
the block to the feature space through the KP-FCNN framework, and X1 is mapped to
V1 = {v1

1, . . ., vi
1, . . ., vn

1}, X2 is mapped to V2 = {v1
2, . . ., vi

2, . . ., vn
2}. The matched (positive)

point features (vi
1, vj

2) must be similar to each other and different from unmatched (neg-
ative) point features vk

2. Contrastive learning accomplishes this goal by minimizing the
contrastive loss function Lc (see Section 2.2.4).

2.2.2. Backbone Network

Since a large amount of data are utilized for pre-training in the proposed contrastive
learning strategy, we adopt the KP-FCNN [36] as the backbone network. Because the
KP-FCNN stores the data to be processed locally at each layer, this pre-processing step is
performed prior to training. Such a strategy increases the training speed. Considering the
feature learning ability, the KP-FCNN utilizes strong deformable kernel convolution, which
leads to improved object geometry awareness and information aggregation of adjacent
categories without confusing them.

The architecture of KP-FCNN is illustrated in Figure 3. The network operates directly
on point clouds with position and features. This network uses a kernel point convolution to
compute features. In practice, the input of KP-FCNN is a scene block Xs. In the five-layer
encoder, regular grid sampling is utilized as the downsampling method. In the four-layer
decoder, the upsampling method utilizes the nearest sampling. At the end of the forward
pass, a feature vector Vs, each having 64 dimensions, is obtained.

Figure 3. Illustration of the backbone network. The encoder (the first five layers) contains two
convolutional blocks, kernel point convolution (KPConv) and strided kernel point convolution.
The decoder (the last four layers) uses the nearest upsampling, ensuring that the pointwise feature
is added up. The features transferred from the encoder layer are concatenated to the upsampled
ones by skip links. The concatenated features are processed by the unary convolution, which is the
equivalent of shared multi-layer perceptron (MLP) in PointNet.

It is worth noting that self-supervised learning network weights are used for initial-
izing semantic segmentation weights. Slightly different from the pre-training backbone
network, a layer of unary convolution is added to the last layer and then realizes the con-
version of 64 dimensions to the Dout dimension in the downstream semantic segmentation
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task; Dout is the number of categories. We chose KP-FCNN as a feature extractor, which
can be replaced by other deep learning frameworks.

2.2.3. AbsPAN: Negative Samples Mining Based on Clustering

The PointContrast uses the hardest-negative mining scheme (referred to as the hardest-
negative mining method hereafter) for subsequent point cloud semantic segmentation [28].
However, changing the number of negatives has no discernible effect on segmentation
results [28,37]. This phenomenon contradicts our expectations. This could be because that
the hardest negative pairs belong to the same semantic category. To address the issue,
we propose a negative samples mining scheme named Absolute Positive and Negative
Samples (AbsPAN). The AbsPAN is defined as “a set of representative embeddings of
semantically similar instances”, with a focus on identifying “distinguishing negatives”.

Figure 4 illustrated the proposed schematic diagram of the negative samples mining
processing. To alleviate the problem that the hardest negative pairs may belong to the
same category, the transformed block 1 and 2 are clustered via an unsupervised clustering
scheme based on k-means clustering. The clustering processing is performed on traditional
handcrafted features, which are listed in Table 1. Because other information, such as inten-
sity, is often unreliable, these features are calculated solely using x-y-z coordinates. For each
sample i, the used geometric are calculated based on covariance tensor ∑i, as shown in
Equation (2).

Σi =
1
N ∑

n∈CN
i

(cn − c̄)(cn − c̄) (2)

where CN
i is the N nearest point set to Ci, c̄ is the medoid in CN

i . In Table 1, the eigenvalues
λ1 ⩾ λ2 ⩾ λ3 ⩾ 0 and corresponding eigenvectors e1, e2, e3 can be composed to describe
geometric properties. Four handcrafted features, such as surface variation, verticality,
normal vector Nz and planarity, were selected for the clustering by referring to the relevance
metric in previous work [4]. These features are compact and robust, and are profitable for
k-means clustering. The details can be found in [4].

Figure 4. Illustration of negative samples mining processing: (a) raw point clouds; (b) clustering
results, (c) hardest negative candidates, (d) AbsPAN results. Among them, the orange points represent
block 1, and the green points represent block 2; (c) is in the embedding feature space of the network;
(b) is the clustering result by k-means in geometric feature space, the red points represent cluster 1,
and the blue points represent cluster 2.
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Table 1. Geometric features of the 3D point cloud.

Geometric Feature Design Formulas

Planarity (λ2 − λ3)/λ1
Surface Variation λ3/(λ1 + λ2 + λ3)

Verticality 1 − |e3[2]|
Normal Vector Nx, Ny, Nz

Based on clustering, a pseudo label is assigned to each point as shown in Figure 4b.
After that, sample pairs are selected as follows:

• N1 (N1 is experimentally set to 4096 in this paper) anchor point xi
1 is randomly selected

in block 1. Then, correspondence matched point xj
2 is chosen as the positive sample

for each anchor point xi
1;

• N2 (N2 is experimentally set to 2048 in this paper) anchor points are randomly selected

from the pair (xi
1, xj

2) for the hardest negative sample selection. To ensure that the
negative sample belongs to a different category, the point with the closest features (the
feature is embedded by the KP-FCNN) to point xi

1 in block 2 is chosen as the hardest
negative sample candidate and denoted as xk−

2 . If the pseudo label of xk−
2 is not equal

to xj
2, xk−

2 is a true candidate for the hardest negative sample of xi
1. Otherwise, xk−

2
will be removed and the next point with the nearest feature will be validated until the
true candidate is obtained. After getting the hardest negative sample of xi

1 in block

2, the same process will be performed for the xj
2 to search for the hardest negative

sample xk−
1 in block 1.

Take Figure 4c,d as an example; if only the embedded feature distance is used as in
the hardest negative mining algorithm, points x2

1 and x2
2 in Figure 4c are regarded as the

hardest negative pair. However, these points belonging to the same category would confuse
contrastive learning. Based on the pseudo label, points x2

1 and x3
2 will be selected as the true

hardest negative pair (see Figure 4d) because they are not in the same cluster (see Figure 4b
with different colors).

2.2.4. Loss Function Design

After obtaining the negative samples, it is necessary to develop a proper loss func-
tion to mine the contrastive semantic information of four types of points (xi

1, xj
2, x−1 , x−2 ).

Inspired by the Hardest-Contrastive loss function [35], the loss function for the auxiliary
task is defined as:

Lc = ∑
(i,j)∈θ


[
d
(

vi
1, vj

2

)
− tp

]2

+

|θ| +
0.5

[
tn − Q

(
vi

1, vk
2, ci,k

)]2

+

|θi|
+

0.5
[
tn − Q

(
vk

1, vj
2, ck,j

)]2

+∣∣θj
∣∣

 (3)

where the first part of Equation (3) is used to pull closer positive pairs in the learned feature
space, and the latter two parts of Equation (3) are used to push apart negative samples.
θ is a set of matched (positive) pairs, the hardest negative sample is defined as the point

closest to the positive pair in the L2 standardized feature space, L2 =
√

∑m(v1 − v2)
2,

m is the output feature dimension by KP-FCNN. vi
1 and vj

2 are output features of the

matched pair, vk is the hardest negative sample. d(vi
1, vj

2) is the distance between vi
1 and vj

2.
ci,k = {1, i f g(xi

1 ̸= xk
2); else0}, where g(·) is the cluster obtained from k-means clustering

in handcrafted geometric features space. Q(vi
1, vk

2, ci,k) is the nearest distance between the
feature of a negative pair under the condition that g(xi

1 ̸= xk
2), Q(vi

1, vk
2, ci,k) for the xk

1 and

xj
2 similarly. [x]+ = max(0, x), |θ| denotes number of the valid mined negative sample for

vj
2. tp and tn are the margins of positive and negative pairs.
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3. Experiments

This section evaluates the proposed self-supervised learning method on several bench-
mark ALS point clouds. The proposed method is implemented via the PyTorch framework,
on an Intel CoreTM i7-11700F CPU utilizing an NVIDIA RTX 3090 GPU with 24 GB memory.

3.1. Experimental Dataset

Data for the auxiliary task. We considered the integrated scene categories and scales
in the upstream auxiliary task and chose the DALES [38] point cloud dataset, which is
divided into 40 non-overlapping scenes, each of which covers 0.5 and more than 12 million
points. The point cloud density is about 50 points. The number of points in each category
is presented in Figure 5.

Figure 5. DALES point distribution across object categories.

Data for the semantic segmentation task. In the downstream semantic segmentation
task, we utilize the Vaihingen 3D semantic labeling benchmark dataset provided by IS-
PRS [6]. Each point contains spatial coordinates (XYZ), intensity values, and the number of
returns. The five attributes mentioned above are used as the network’s input. According to
the official division, the Vaihingen dataset has two parts: the training and the testing set.

In order to verify the effectiveness of the self-supervised model under the scenario of
insufficient labeled data, and considering the distribution and quantity of each category,
we exploit 10%, 20%, 40%, 60% and 100% of the training data to fine-tune the downstream
semantic segmentation. The point cloud area is depicted in Figures 6 and 7.

Figure 6. ISPRS training set. Section A (left) is the full training set. Section B (right) shows the subsets
of training data cropped from all training sets. The five subsets have the same category distribution.
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Figure 7. ISPRS Vaihingen test set.

In addition to the ISPRS Vaihingen 3D data sets, we also utilize the LASDU dataset
for verification, which was collected in the Heihe River Basin, Northwestern China. This
dataset is divided into four regions, and the total number of points for all regions is
3.12 million. Each point contains its spatial coordinates (XYZ) and intensity value. Regions
2 and 3, illustrated in Figure 8, are used as the training set, while Regions 1 and 4 are used
as the test set.

Figure 8. LASDU data set. Annotated dataset with points of different labels presented in different
colors. The black border divides the entire area into four separate regions.
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3.2. Evaluation Metrics

We evaluate our method’s segmentation performance utilizing the overall accuracy
(OA) and average F1 score (Avg. F1). OA is the percentage of the correctly classified point
out to the total points, and the F1 score is the harmonic average of the precision and recall
of each category, defined as:

OA = (TP + TN)/total
Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1 Score = 2 × Precision × Recall
Precision + Recall

(4)

where total, TP, FP, and FN are all samples, the true positive, false positive, and false
negative, respectively.

3.3. Parameters Set Up

Parameters and preprocessing for the pre-training contrastive learning task. Dur-
ing data processing, we employed 0.4 m as the grid sampling value to deal with extreme
point cloud density variations. Moreover, from the entire point cloud, we randomly extract
the vertices within a spherical volume, which are input to the network. We use the constant
feature equal to 1, normalized intensity, and normalized Z-coordinates within the sphere as
input features. The sphere’s radius is set to 10 m, large enough to include several objects.
The amount of kernel points in the convolution operator is 19, properly set to balance com-
putational cost and descriptive power. All five-layer networks involve a downsampling
process, while the convolution radius of each layer and the downsampling grid size are
presented in Table 2. During importing the two blocks for the contrastive learning process,
the input point cloud is randomly rotated (0°∼360°) and scaled (0.8∼1.2) to augment it.
For the hardest negative sample mining, we do not have to use all the points for mining,
only a portion of the points are considered in the loss function [27,39,40]. The parameter K
for the k-means clustering algorithm is set to 9. For the contrastive learning loss, the number
of positive pairs is set to 4096, and the number of negative samples is set to 2048. Details
about the quantity of positive and negative samples can be found in [35]. The threshold
distance of the negative samples is set to 2.0, and for the positive samples is set to 0.2.

The stochastic gradient descent (SGD) optimization algorithm is employed as the
optimizer, with the learning rate starting from 0.001. One epoch involves 8000 iterations,
and the model is trained for 50,000 epochs.

Table 2. Convolution radius and down-sampling grid size of auxiliary pre-task five-layer subsampling.

Hyper-Parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Down-sampling grid size (m) 0.4 0.8 1.6 3.2 6.4
Convolution radius (m) 2.5 5.0 10 20 40

Parameters and preprocessing for the downstream semantic segmentation task.
During dataset selection, datasets with insufficient data are selected on priority, thus the
ISPRS and LASDU datasets are utilized to verify the gain afforded by self-supervision.
During training data processing, we use grid sampling of 0.4 m, which is similar to the
hyper-parameter setting process for the auxiliary tasks. For ISPRS datasets, we use the
constant 1, intensity values, the number of returns and normalized Z-coordinates within
the sphere as input 4D vector features. For LASDU datasets, we add intensity values and
normalized Z-coordinates as additional features to the constant 1, as input 3D vector. In the
training stage, spheres are randomly selected into the network. In the testing stage, spheres
are regularly selected, and each point is tested more than 20 times. Obviously, we aim to
test all the points in test set to ensure the integrity. In addition, such an approach is similar
to a voting scheme, we are able to obtain the average predicted value to evaluate the testing
stage. As a result, the sphere’s boundary points are well protected.
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For the network parameters, the sphere’s radius is set to 10 m, and the number of
kernel points is set to 19. The convolution radius and the down-sampling grid size for each
layer are presented in Table 2. The learning rate is set to 0.001, the batch size to 4, and the
decay rate is set to 0.98 at every five epochs. We train the model for 200 iterations in one
epoch, and the convergence is expected after 50 epochs.

3.4. Experimental Results and Analysis
3.4.1. Effectiveness of SSL

We prove the efficiency of our self-supervised learning network on data comprehen-
sion. Therefore, we artificially tailor the ISPRS training scene randomly so that the amount
of training data are only about 10% of the original training data. This strategy emphasizes
the information gain provided by our self-supervised framework for downstream semantic
segmentation tasks.

The segmentation results on the test data of the Vaihingen 3D dataset are reported in
Table 3. We also compare our method with other published models, such as PointNet++ [15],
PointSIFT [16], KP-FCNN [36], D-FCN [41], RandLA-Net [26], and DPE [42]. We regard
the results of these methods as a reference and use KP-FCNN as the baseline model.
The baseline networks are trained from scratch, while Table 3 presents the fine-tuned
results of our HAVANA method using the pre-trained weights. It can be seen that our
HAVANA trained with 100% training data achieves competitive improvement with fully
supervised models on the Vaihingen 3D test data. When reducing the training points to
only 10%, the proposed method outperforms the baseline approaches based on KP-FCNN,
especially for small-numbered categories like cars and fences. When only 10% labeled
training data are used for fine-tuning, our HAVANA method outperforms the baseline
model, increasing OA up to 3.9% and Avg.F1 by 3.2%. The benefits of introducing unlabeled
data to self-supervised learning are obvious. This proves that the proposed self-supervised
methods effectively exploit the information learned from the auxiliary pre-tasks. It is
worth mentioning that improving the fully supervised model with limited training data is
worthwhile.

Table 3. Results with different methods for ISPRS datasets. Columns 3–11 show the per-class F1
scores, while the last two columns present the OA and Avg. F1 per method (all value are in %).

Settings Methods Power Low_VEG Imp_SURF Car Fence/Hedge Roof Facade Shrub Tree OA Avg. F1

training dataset
(100%)

PointNet++ 57.9 79.6 90.6 66.1 31.5 91.6 54.3 41.6 77.0 81.2 65.6
PointSIFT 55.7 80.7 90.9 77.8 30.5 92.5 56.9 44.4 79.6 82.2 67.7

D-FCN 70.4 80.2 91.4 78.1 37.0 93.0 60.5 46.0 79.4 82.2 70.7
RandLA-Net 76.4 80.2 91.7 78.4 37.4 94.2 60.1 45.2 79.9 82.8 71.5

DPE 68.1 86.5 99.3 75.2 19.5 91.1 44.2 39.4 72.6 83.2 66.2
KP-FCNN 63.1 82.3 91.4 72.5 25.2 94.4 60.3 44.9 81.2 83.7 68.4
HAVANA 57.6 82.2 91.4 79.8 39.3 94.8 63.9 46.5 82.6 84.5 70.9

training dataset
(10%)

Pointnet++ * 58.6 66.2 78.6 28.9 25.1 87.1 61.2 43.1 72.6 72.1 57.9
KP-FCNN * 63.2 76.4 85.9 50.4 18.8 84.7 54.7 40.8 69.9 75.9 60.5
HAVANA * 60.2 80.1 90.2 52.5 26.2 90.0 55.6 46.4 72.3 79.8 63.7

Figure 9 illustrates visualized classification results and the error map using our HA-
VANA method on the 100% Vaihingen 3D training dataset. The classification results show
that HAVANA performs well in classification on the test set. From the error map, we can
see that the labels of the majority of points can be predicted correctly. With reference to the
visualized classification results, the majority of roof and impervious surfaces could be cor-
rectly classified. For the misclassified points, it is easy to find that facades are easily divided
into roofs and fences into low vegetation. These categories indeed have similar geometric
properties, local features are similar in neighborhood aggregation, and self-supervision
improvement is also limited.
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Figure 9. Classification results. (a) Visualized classification results of our HAVANA on the ISPRS test
set, (b) error map of our HAVANA on the Vaihingen 3D dataset.

3.4.2. Hardest-Contrastive vs. AbsPAN

In the subsequent trials, we compare the proposed HAVANA method against the
Hardest-Contrastive strategy, a positive and negative sample selection strategy proposed
in [28], with the corresponding results presented in Table 4. The originally reported
Hardest-Contrastive strategy [28] utilizes the MinkowskiNet as the backbone network.
Therefore, for a fair comparison, we replace the KP-FCNN with MinkowskiNet in our
network, and present a KP-FCNN variant with the Hardest-Contrastive strategy.

For comparison, we only use 10% of the Vaihingen 3D training data for fine-tuning.
By comparing MinkowskiNet and KP-FCNN, we find that KP-FCNN performs better on
the proposed pipeline. The corresponding results reveal that if MinkowskiNet is used,
the proposed AbsPAN presents improves OA and Avg.F1 by 0.4% and 1.9%, respectively,
against the Hardest-Contrastive method. Under the KP-FCNN learning framework, the im-
provement is 0.9% and 1.0% for OA and Avg. F1, respectively.

Table 4. Effectiveness of the proposed AbsPAN strategy.

Methods OA (%) Avg. F1 (%)
MinkowskiNet 74.6 58.8
MinkowskiNet

(Hardest-Contrastive)
76.4 59.5

MinkowskiNet
(AbsPAN)

76.8 61.4

KP-FCNN 75.9 60.5
KP-FCNN

(Hardest-Contrastive)
78.9 63.1

KP-FCNN
(AbsPAN)

79.8 64.1

3.4.3. Performance with Different Amounts of Training Data

In order to explore the ability of self-supervised learning to understand ALS point
cloud scenes efficiently, we set up our contrastive learning framework (frame selection is
biased towards lightweight model) to illustrate the adaptive changes in self-supervised
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learning under the five subsets of training data. Due to the uneven class distribution in the
Vaihingen 3D dataset, as the area is too small to include all categories, we crop five subsets
{10%, 20%, 40%, 60%, 100%} of the training area belonging to the official training set by
ISPRS. The results are presented in Figures 10 and 11. “Self-supervised Learning” denotes
the result of fine-tuning with our pre-trained weights, and “Train from scratch” denotes
the result of the train from scratch baseline.

Figure 10. Overall accuracy of different subsets in PointNet++ framework.

Figure 11. Overall accuracy of different subsets.

For the experimental results, we take the average of the three experimental groups
to reduce the impact of the variance. For the two baseline frameworks, we use the same
experimental settings, and observe OA difference between fine-tuned with our pre-trained
weights and trained from scratch under different training subsets, self-supervised pre-
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training weights are used for initialization methods have significantly improved the accu-
racy of semantic segmentation compared to training from scratch. From Figures 10 and 11,
the trend is clear: the fewer semantic labels used for training, the greater the improvement
in SSL. When the 10% labeled data are imported into the network, the OA improvement of
the PointNet++ and KP-FCNN due to SSL is 1.8% and 3.9%, respectively. As the amount of
semantic label data increases, the gap between self-supervision learning and direct training
from scratch becomes smaller. It can be concluded that when labeled training data are
insufficient, the proposed self-supervision learning is very important. However, the results
show that using the SSL method under 10% of the training data still gives worse results
than training from scratch using 100% of the training data. Thus, if possible, labeling more
samples is a good way to ensure classification accuracy.

3.4.4. Further Experiment Results

To verify that the proposed HAVANA model is also improved on other ALS point
clouds, the LASDU dataset [43] specifically designed for the semantic segmentation of
ALS point clouds in dense urban areas is chosen for further experiments. The proposed
HAVANA method with KP-FCNN as the backbone is pre-trained on the DALES dataset,
and then it is fine-tuned on the training data of the LASDU dataset. After that, the model is
tested on the test set of the LASDU dataset. The results are shown in Table 5, where the
results of the baseline methods are the ones reported in the related references, including
PointNet++ [15], PointSIFT [16], KP-FCNN [36], DPE [42], and GraNet [44]. These methods
are all full-supervised methods and training from scratch with LASDU official training.

Table 5. The comparison of classification results for LASDU datasets. Columns 2–5 show the per-class
F1 scores, and the last two columns show each method’s OA and Avg. F1 (all values are in %).

Methods Artifacts Buildings Ground Low_veg Trees OA Avg. F1
Pointnet++ 31.3 90.6 87.7 63.2 82.0 82.8 71.0
PointSIFT 38.0 94.3 88.8 64.4 85.5 84.9 74.2
KP-FCNN 44.2 95.7 88.7 65.6 85.9 85.4 76.0
DPE 36.9 93.2 88.7 65.2 82.2 84.4 73.3
GraNet 42.4 95.8 89.9 64.7 86.1 86.2 75.8

HAVANA (Ours) 47.2 (+3.0) 96.1 (+0.3) 90.8 (+0.9) 65.7 (+0.1) 87.8 (+1.7) 87.6 (+1.4) 77.5 (+1.5)

It can be found from the results that the proposed self-supervised method performed
best on the LASDU dataset, and all five categories achieved the best performance. For the
artifacts category with few training samples, the F1 score is improved by 3%, which benefits
from the representation learning in the self-supervised auxiliary task. The OA of the
HAVANA method reached 87.6%, and the Avg. F1 reached 77.5%, achieving state-of-the-
art performance.

Figure 12 visualizes the classification results of our HAVANA method on the LASDU
dataset, highly realistic to the real urban scenery dataset. On LASDU dataset, our method
achieves an appealing performance, highlighting the significance of our method. Looking
at the classification error map of the LASDU dataset in Figure 13, Most of the regions can
be classified correctly, with a few partially incorrectly classified regions. With regard to
Figure 9, it is easy to find that the building’s boundary classification is clearer, presenting
obvious linear boundaries. This is a question worthy of further study.
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Figure 12. Visualization of LASDU dataset classification results.

Figure 13. Classification error map in LASDU dataset. The green and red points indicate the correct
and wrong classification, respectively.
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To sum up, compared with reported baseline methods, two aspects of conclusions
can be summarized: (1) The proposed methods is competitive with 100% labeled training
data, outperforms supervised baseline methods with limited labeled training data. (2) Self-
supervised contrastive learning pre-training with large amounts of unlabeled point clouds
is helpful for initializing network parameters, which can be further fine-tuned by limited
label data for downstream tasks, like semantic segmentation.

4. Conclusions

This paper proposes a contrastive learning strategy for point clouds, a general unsu-
pervised representation learning framework that performs iterative clustering and guides
the feature learning direction. Through the ALS point cloud, the experiment shows SSL
has great potential for point cloud semantic segmentation tasks when the label is limited.
The point cloud knowledge learned by our auxiliary task can be transferred to the down-
stream semantic classification task. Furthermore, the proposed method is easily integrated
with a variety of deep learning frameworks. In the case of aerial laser point clouds with
insufficient semantic labels, our experiments demonstrate the superiority of self-supervised
contrastive learning. We conclude that self-supervision learning is clearly advantageous
for semantic segmentation of limited labeled ALS point clouds.

There are also some limitations in the proposed method KP-FCNN is a baseline
network using geometric convolution to encode local point-wise features, which shall be
improved to structure learning. The proposed method is convinced that better selecting
negative samples are beneficial for contrastive learning, and it is worth investigating more
robust sampling strategies for positive and negative samples in the future.
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