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Abstract: Frequency-domain electromagnetic induction (FDEMI) methods are frequently used in
non-invasive, area-wise mapping of the subsurface electromagnetic soil properties. A crucial part
of data analysis is the geophysical inversion of the data, resulting in either conductivity and/or
magnetic susceptibility subsurface distributions. We present a novel 1D stochastic optimization
approach that combines dimension-adapting reversible jump Markov chain Monte Carlo (MCMC)
with artificial bee colony (ABC) optimization for geophysical inversion, with specific application to
frequency-domain electromagnetic induction (FDEMI) data. Several solution models of simplified
model geometry and a variable number of model knots, which are found by the inversion method,
are used to create re-sampled resulting average models. We present synthetic test inversions using
conductivity models based on 14 direct-push (DP) EC logs from Greece, Italy, and Germany, as well
as field data applications using multi-coil FDEMI devices from three sites in Azerbaijan and Germany.
These examples show that the method can effectively lead to solutions that resemble the known
DP input models or image reasonable stratigraphic and archaeological features in the field data.
Neighboring 1D solutions on field data examples show high coherence along profiles even though
each 1D inversion is independently handled. The computational effort for one 1D inversion is less than
120,000 forward calculations, which is much less than usually needed in MCMC inversions, whereas
the resulting models show more plausible solutions due to the dimension-adapting properties of the
inversion method.

Keywords: FDEMI; inversion; artificial bee colony; Markov chain Monte Carlo; electromagnetic
induction; geophysics

1. Introduction

Electromagnetic induction (EMI) measurements allow non-invasive area-wise map-
ping of the subsurface electrical conductivity (EC) and magnetic permeability. Together
with the capability of providing depth information, this makes them an important and
widely used tool in geophysical exploration (e.g., [1]). In frequency-domain EMI (FDEMI),
a controlled source electromagnetic method (CSEM), a transmitter coil emits a primary
harmonic oscillating electromagnetic field (kHz frequency range). This field induces eddy
currents in the subsoil that generate a secondary field, which in superposition with the
primary field, is recorded at the receiver coils. FDEMI measurements are thus determined
by conductivity, the magnetic permeability of the ground, and depending on the used fre-
quency, also dielectric permittivity (e.g., [2]). Different depth sensitivities can be achieved
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by using multiple receiver coils of different distances to the emitter coil, different coil
orientations, varying heights above ground, or different signal frequencies. Hereby, vertical
coplanar (VCP, both coil planes perpendicular to surface) orientations are more sensitive to
the shallow subsurface, and measurements made in horizontal coplanar (HCP, both coil
planes parallel to surface) orientation are sensitive to larger depths, respectively. Larger coil
distances and lower frequencies also enable larger sounding depths (see e.g., [3]). In the
past, several applications of FDEMI measurements have been published and the technique
of FDEMI devices and analysis has been significantly improved. These developments allow
surveying large areas efficiently (e.g., [4]).

An important part in data analysis and the step from maps of apparent conductivity to
specific conductivity distribution models is geophysical inversion. Geophysical inversion is
the inverse procedure of the forward model which calculates data from a given subsurface
conductivity distribution. The inverse problem usually fits synthetic forward modelled
data, based on a variable subsurface model of the desired physical subsoil parameter,
to measured data points, yielding a subsurface model of optimal data fit. If the physical
relation between data and subsurface model is linear, this can be done via a matrix inversion
(see e.g., [5]). In the more common non-linear case, a linearization can be done and the
data-fitting optimization problem can be solved iteratively using gradient search and
regularization. However, in many cases the optimization problems are highly non-unique,
making the application of global searching probabilistic methods worthwhile.

Several works in different geophysical applications have conducted so (e.g., [6–8]). Fur-
thermore, probabilistic methods allow a proper interpretation of model uncertainties and
model parameter trade-offs based on statistical analysis (e.g., [9]). However, these methods
need a large amount of forward calculations, making the efficiency of such a method a very
important factor. In terms of FDEMI inversion, several algorithms have been published and
tested in the past. These methods can recover either only subsurface electrical conductivity
or, in cases where applicable, magnetic permeability and dielectric permittivity. Most
FDEMI inversion algorithms solve for 1D layered-earth models. Ref. [10] summarized that
most works use non-linear least-squares gradient algorithms (e.g., [11–15]). Although these
algorithms provide fast convergence, an analysis of parameter uncertainty, correlation, and
non-uniqueness is often left unaddressed ([10]). Analysis of uncertainty within the least-
squares framework is typically performed through the use of measures computed from the
linearized Jacobian, such as the posterior covariance or resolution matrices, but limited to
its diagonal elements ([10]), thus not addressing trade-offs. Because of this disadvantage,
several probabilistic optimization methods have been applied to the problem. Ref. [10]
introduced a Bayesian Markov chain Monte Carlo (MCMC) approach to provide a direct
assessment of parameter uncertainty, correlation, and non-uniqueness/ambiguity. This
approach for the first time allowed a variable number of layers in the inverted subsurface
models: This means that the dimension of each model was an inversion parameter, too.
Ref. [16] combined a global grid search with a local simplex algorithm. Refs. [3,17,18] intro-
duced different MCMC algorithms for EMI inversion, whilst in [19], a Bayesian sampling
with dimensionality reduction technique was implemented, making the step to neural
network methods in EMI inversion. Ref. [20] applied a Kalman ensemble generator to
the one-dimensional probabilistic multi-layer inversion of EMI data to derive conductivity
and susceptibility simultaneously. Ref. [21] used the shuffled complex evolution (SCE)
algorithm. In several publications on geophysical inversion, the effectiveness and benefits
of probabilistic population-based (evolutionary, genetic algorithms, and swarm intelligence
optimization) methods are shown (e.g., [6–8,22,23]). This family of optimization methods
combines global search, trade-off, and uncertainty analysis, as well as relatively fast conver-
gence properties. Thus, it is obvious to use them in EMI inversion. First approaches have
been using particle swarm optimization (PSO) (e.g., [24]).

The presented work deals with a novel stochastic optimization approach in combining
artificial bee colony (ABC) with reversible jump Markov chain Monte Carlo (RJ-MCMC)
optimization for geophysical inversion, with specific application to FDEMI data. In par-
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ticular, our general approach follows and extends the work of [25]. They showed for the
case of seismic traveltime tomography how several RJ-MCMC inversions of simplified
model geometry and a variable number of model knots can be used to create a re-sampled
resulting average model. Nevertheless, the RJ-MCMC approach needs a large amount of
forward calculations to derive this solution model. In this paper, we thus pose the following
questions based on this state of research:

• Is it possible to upgrade a swarm intelligence optimization approach with dimension-
adapting properties as used in the MCMC approach by [10] or [25]?

• How does a hybrid approach perform, having available both swarm intelligence con-
vergence effectiveness as well as the Bayesian-statistics-guided dimension-adapting
properties of the RJ-MCMC approach?

To answer these questions, we tested and optimized our approach on the usually
highly under-determined problem of FDEMI inversion. Such data sets enable us to discuss
how and why complex 1D underground models can be derived from multiple ambiguous
solutions to fit a limited number of measurements. Finally, we applied the resulting method
to three field data sets, which enabled us to evaluate the result based on the variance
distribution and coherence along the profiles.

The paper is set up as follows. We will first introduce the forward model and our
choice of model parametrization. Subsequently, we introduce the used inversion scheme
and the statistical solution-model estimation. Then, we present fourteen test models,
based on direct-push EC-log data from six different sites. These models represent a large
number of possible subsurface situations at different sites across Europe. Finally, the
field application examples are introduced. After presenting the results, we close with a
discussion and a conclusion.

2. Methods and Data

In this section, we will describe the methodology behind our used forward model,
the way of 1D conductivity–depth model discretization and model-averaging approach,
and the choice of our test models and parameter space, and describe the ABC and MCMC
combined optimization approach.

2.1. The Forward Model

For a given layered conductivity earth model, the electromagnetic response can be
calculated in different ways. A certain degree of approximation can be applied depending
on the so-called induction number

B = s ·
√

π f µ0σ, (1)

with s[m] being the coil distance, σ[S/m] the electrical conductivity of the subsoil, µ0[N ·
A−2] the vacuum magnetic permeability, and f [Hz] the signal frequency. If HCP and VCP
coil orientations are measured and B << 1, meaning coil distance is much smaller than
skin depth (s/B), which is called the LIN (low induction number) case, the forward model
can be simplified by an approximation using cumulative sensitivity functions introduced
by [26] to obtain the quadrature component. This component is the imaginary part of the
measured ratio of primary and secondary magnetic field. We will refer to this as the LIN
forward model in this paper. To keep it simple and fast, in testing the capabilities of the
presented inversion approach, we used this LIN approximation as a forward model for the
synthetic tests in this work. Nevertheless, the inversion program used in this paper also
comprises forward calculation by [27], using full problem solutions of Maxwell’s equations
based on indefinite integral solution involving recursive-layer-based reflection coefficient
determination. This forward calculation option can be chosen if the LIN approximation is
not valid. We will refer to this as the full forward model throughout this paper.
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2.2. Model Parametrization and Error Estimate

The question of model discretization plays a significant role in the regarded inversion
problem. A model usually consists of a layered half-space having a fixed number of
layers, each defined by their thickness h and conductivity σ (and if regarded the magnetic
permeability). On the one hand, models need to have as few parameters as possible to
reduce ambiguities due to the sparse inverse problem. On the other hand, the subsoil
usually comprises a smooth conductivity–depth solution that would need to be described
by a large number of homogeneous layers or gradient layers, making the problem even
more sparse. An often cited solution for this problem is the work by [28], called Occam’s
Inversion, which uses the smoothest (simplest) model to describe the data with a given
tolerance. In this work, we combine these two ideas. The basic models are parameterized
as follows, using a simple constant-layer approach. A model is defined as

m⃗ = (D, z1, . . . zD, σ1, . . . , σD), (2)

where zi is the depth of the center of layer i in m and σi the corresponding conductivity
(S/m). D is the dimension of the model. The conductivity–depth distribution based on
these (zi, σi)-points is generated by a 1D Voronoi rule. Layer interfaces are thus half between
two zi. D will vary during the inversion process within a reasonable range, based on the
number of data points available. The inversion process results in a set of these very simple
but well-fitting models (see examples in Figure 1). Each individual model is coarse and
blocky and usually does not represent the subsoil situation very well. Thus, instead of being
forced to make a choice between these simple solutions, an average solution model can
be defined that represents all found solutions, weighted by their misfit. For this purpose,
the simple solution models are re-sampled with a finer depth spacing dz (σ(z) = σ(i · dz),
i = 0 : Nz, Nz = zmax/dz). From these re-sampled models, statistical properties like the
mean and standard deviation can be derived for each sublayer (see Figure 1). During the
stochastic inversion process, numerous models and misfit values are saved and can be used
for the calculation of these average/expected model and standard deviation estimates. For
this purpose, [25] analyzed the re-sampled models to derive the arithmetic mean, standard
deviation, or median. They treat the average model as the reference solution, and the
standard deviation is interpreted as a measure of the model error. In our case of 1D FDEMI
inversion, we chose to calculate the expected solution model and model error estimation
following a more general statistical analysis for stochastic inversion, as used for example
in [7] or [9]. We use the l = 1, . . . , nb best models and perform the following steps:

1. Define an evenly finer discretization with depth zi = 0, dz, 2dz, . . . , zmax.
2. Discretize all m⃗l according to zi. This leads to finer discretized models M⃗l .
3. Calculate the expected model using

< M⃗ >=
1
N

nb

∑
l=1

M⃗lξ(M⃗l), (3)

with N being the partition function approximated by

N =
nb

∑
l=1

e−Q(m⃗l) (4)

and ξ being the probability density function based on the quality value

ξ(M⃗l) = e−Q(m⃗l), (5)

where Q is the quality function measuring the misfit between measured and modeled
data (see next section). Variances are then the diagonal elements of the covariance matrix

C =
1
N

nb

∑
l=1

(M⃗l− < M⃗ >)(M⃗l− < M⃗ >)Tξ(M⃗l). (6)
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Figure 1. Parametrization of models. Dots indicate the Voronoi centers of constant layers. The simple
solution models calculated from these Voronoi centers are plotted in thin gray, solid, dotted and
dashed lines. Above, an exemplary re-sampled average model is shown (light grey, thick line).

2.3. The Inverse Problem

Based on the above-defined model m⃗ and the forward calculation by [26] or [27],
we can define the inverse problem as a least-squares problem with a quality function
following [21], weighted by normalized error values:

Q(m⃗) =
1
M

M

∑
i=1

∆σmin
∆σi

|dmeas
i − dmod

i (m⃗)|p

|dmeas
i |p , (7)

where M is the number of data points/coil distances and orientations; dmeas
i are the mea-

sured data (imaginary parts of magnetic fields or apparent conductivity (either logarithmic
or linear values), depending on full- or LIN forward solutions); dmod

i (m⃗) are the modeled
data based on the subsurface model m⃗; and p denotes the norm used. In our case, we tested
p = 1, 2. ∆σmin and ∆σi are the minimum and actual error estimates of the used data points.
The resulting task is to minimize Q(m⃗).

2.4. Optimization Approach

As most stochastic methods like evolutionary algorithms/strategies (e.g., [29]), the
neighborhood algorithm (NA [30]), or particle swarm optimization (PSO) and its variants
(e.g., [7]) use binary operations in parameter space to recombine or move particles or
individuals or agents, a dimension-adapting strategy is thus impossible to include in
these algorithms. Different particles of different dimensions cannot be combined and
have no unique distance measure. All these algorithms are thus not suitable to be used
as a global searcher if the dimension of a problem is a parameter, too. In analogy to the
standard particle swarm optimization, which adapts the behavior of swarms of fish or
birds, [31] developed a method based on the behavior of a bee hive. This method offers
several recombination methods that solve the above-mentioned problem. The artificial bee
colony algorithm (ABC) is basically made of several local searches, supported by a hive
collective, only connected by a change in one randomly chosen parameter dimension. Thus,
ABC enables us to change the dimension of each local search and offers a global search
feature due to the guided abandonment of the local searches (see, e.g., [7]).

The driving force behind the movement of a bee swarm is the search for food sources
and the effective exploitation of those. A fundamental model for simulating the collective
intelligence of a bee hive needs three components ([31]). These are the food sources them-
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selves, the worker drones employed at a source and exploiting the source (local search),
and drones that are not permanently assigned to a source (enhanced local search). Two
basic actions are also required: assigning worker drones to a food source and leaving a
depleted source. In analogy to an optimization problem, a possible food source would
correspond to a region of the parameter space. The area is scanned by the drones, and the
yield of this source is determined by the value of the local quality function and the success
of the optimization. The employed drones are thus particles that carry out a stochastic
search in such an area, harvesting the area, so to speak. Information about the processed
food source is shared with the hive in order to place drone reinforcements at food sources
with a certain probability. Unemployed drones have the task of looking for possible sources
of food. There are two types of unemployed drones: drones that randomly explore new
areas of the parameter space after the depletion of a food source and drones that use the
information from the worker drones to choose a known source and work there. For the ABC
algorithm, this means that the bee colony consists of three types of particles: employed
drones, helping drones, and exploration drones. The employed drones will look for a
food source and exploit it, i.e., conduct a local search in an area of the parameter space.
They share information about that source in the swarm, and the helping drones choose
a source to work with. An employed bee whose food source is empty (no convergence
progress) becomes an exploration drone and randomly finds a new source. Our adapted
ABC approach combines ABC, used as a frame algorithm, and MCMC, used as local search.
Each bee at a food source performs an MCMC search, using the birth/death algorithm also
used in [10,25].

The algorithm comprises the following steps:

1. Define the size of the bee hive, consisting of n employed and n helping bees. The
swarm has a total size of 2 · n.

2. Initialize all j = 1, . . . , n employed bees, which means randomly generate each bee as
a position in search space:

m⃗j = (Dj, z1, z2, z3, . . . , zi, . . . , zD, σ1, σ2, σ3, . . . , σi, . . . , σD) (8)

with Dj being the number of model knots, including, zi depths and σi conductivities
(i = 1, . . . , Dj), as described in the section Model Parametrization and Error Estimate
(Section 2.2). The positions of these bees reflect the position of the so-called food sources.

3. Evaluate the value of each food source by calculating the quality function Q(m⃗j) for
j = 1 . . . n.

4. Calculate an assignment probability Pj for each food source j, depending on its
quality value:

Pj =
Qmax − Qj

∑n
i=1(Qmax − Qi)

, (9)

with Qmax being the actual maximum of all Q.
5. Create c = 1, . . . , n helping bees. For each helping bee, m⃗c choose an existing food

source m⃗k based on their probabilities P, and create the helping bee by a search step
around the employed bee’s position (food source k). Following [31], this is achieved
by altering the value of the employed bee in a randomly chosen dimension i in the
direction of another randomly chosen food source m⃗l :

mc
i = mk

i + (2r − 1)(mk
i − ml

i), (10)

with r being a uniform random number in 0, 1. Considering that each food source
stands alone as a search spot, and several helping bees can be assigned to a food
source. This step can be seen as a local random search, although connected to the
directions and probabilities of the other food sources. If so, the dimensionality of each
food source can change without altering the algorithm’s basics.
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6. Calculate the minimum quality value of all employed and helping bees, Qbest =
min(Qc, Qj), c = 1 . . . n, j = 1 . . . n, to measure convergence.

7. Begin the main iteration loop:

(a) Change employed bees. For each employed bee j, decide randomly between
two possible steps with a probability of 0.5:

• Perform ABC local search: Change the value of the employed bee m⃗j

in a randomly chosen dimension i in the direction of another randomly
chosen food source m⃗k (k is a natural random number out of 1, n):

mj
i = mj

i + (2r − 1)(mj
i − mk

i ), (11)

with r being a uniform random number in 0, 1. The dimension i is ran-
domly chosen up to the minimum of Dk, Dj.

• Perform the RJ-MCMC step to create a proposed bee. Randomly choose
between two possibilities:
I.birth: Add a new model point (z, σ) after a randomly chosen model
point into the employed bee (increase Dj by 1), or
II.death: Remove a randomly chosen model point from the employed bee
(reduce Dj by 1).
Whether a proposed bee will be accepted is based on the proposal dis-
tribution being the product of quotients of posterior probability of the
proposed, m⃗′, and the original model, m⃗, given the data d⃗ and the pro-
posal distribution of the original model given the proposed model and
vice versa ([10]):

α = min

[
1,

p(m⃗′|d⃗)
p(m⃗|d⃗)

p(m⃗|m⃗′)

p(m⃗′|m⃗)

]
. (12)

For a birth step, the probability of acceptance simplifies to

α(m⃗′|m⃗) = min

[
1,

∆σ

δσ2
√

2π
exp

(
(σ′ − σ)2

2 · δσ2
2

− Q(m⃗′)− Q(m⃗)

2

)]
, (13)

with ∆σ = σmax − σmin, δσ2 being the prior covariance and σ′ being the
conductivity of the newly inserted model conductivity. σ is the interpo-
lated conductivity of the original model at the depth of the new model
point. For a death step, the probability is given as

α(m⃗′|m⃗) = min

[
1,

δσ2
√

2π

∆σ
exp

(
(σ′ − σ)2

2 · δσ2
2

− Q(m⃗′)− Q(m⃗)

2

)]
, (14)

with σ′ being the average conductivity at the depth of the removed model
point and σ being the conductivity of the removed model point. α becomes
0 if the proposed conductivities are outside of the parameter space or the
dimension exceeds given limits.

(b) Evaluate and save all new quality values of the employed bees, and re-calculate
the assignment probabilities Pj.

(c) Check for stagnation of all food sources by checking if the change of quality value

dQj = (Qj − Qj,old)/Qj (15)

is less then a constant ϵ1 for more than dk iterations. If so, the food source is
abandoned, and the employed bee performs a random reset in the next iteration.
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(d) Randomly re-assign helping bees based on probabilities Pj. Alter their po-
sition by using the rules in 7 (a) but with a third choice of performing no
death/birth step.

(e) Evaluate and save all missing quality values of the helping bees.

8. Update Qbest.
9. Check the stopping criterion, which is either the maximum number of iterations

reached or Qbest has fallen below a constant ϵ2. Otherwise, go to 7.

2.5. Dp Test Models

To initially test our inversion scheme, we use fourteen direct-push (DP) electrical
conductivity (EC)-downhole logs representing the in situ subsoil conductivity at seven
different sites across Europe. The conductivity–depth curves are used to calculate the
FDEMI response in the HCP and VCP modes, which will then be inverted using the
proposed inversion scheme. The data sets used can be found in the literature, sorted by
their site:

1. TEV ([32]) is an example from an abandoned Tiber meander (Italy), comprising fluvial
deposits of different Tiber channel generations.

2. BIE ([33]) is an example from Biersdorf in the Eiffel area in Germany (Rhenish Massif,
Rheinland-Pfalz), representing hillslope debris flow sediments.

3. DUV ([34]) is an example from the Duvensee bog (Germany), comprising low-
conductive glacial sand and layers of different Gyttja sediments.

4. KAI ([35]) is an example from the Kaiafa lagoon located at the western Peloponnese
in Greece, comprising mostly allochthonous sand sheets.

5. REM ([36]) is an example from a Loess–Palaeosol sequence (LPS) in the Middle Rhine
Valley, Germany (Schwalbenberg LPS).

6. TRE ([37]) is an example from the Wadden Sea area of northern Germany (North Frisia),
comprising mainly sandy, silty and organic layers from tidal flats and marshlands.

7. AST is an example from an ancient Roman artificial channel site in Hesse (Germany)
(see also the section on field data applications).

All EC logs were derived using a Geoprobe 540 MO system mounted to a Nordmeyer drill
rig in combination with a Geoprobe K6050 HPT probe or a Geoprobe SC400 Conductivity
Wenner EC Probe (Geoprobe Environmental Technologies S.A., Braine-le-Comte, Belgium).
The subsoil conductivity curves for all fourteen examples can be seen in Figure 2. Here,
not only are the EC logs plotted, but also the spatial-wavelength power spectra of the
data. The spectra show that the EC logs show small-scale layers in a centimeter range but
also a dominating, long-wavelength portion of features above 2 m in size. Looking at this
long-wavelength portion, which probably can be resolved with FDEMI devices, we can
see that in these cases, the first few meters of subsoil can be represented in terms of only a
few layers.

To generate synthetic FDEMI data, we use these logs for FDEMI forward modeling.
Therefore, the EC logs were re-sampled to constant 0.1 m thick sub-layers. The model’s
maximum depth was chosen based on the sensitivity properties of one FDEMI device, the
CMD Explorer (GF Instruments, Brno, Czech Republic), which we chose as reference for
this test study. We thus have a data set of three HCP, three VCP, or six HCP and VCP
measures for the three different coil distances of the EMI device (1.48 m, 2.82 m, and 4.49 m
(see [38])), giving an estimate of the maximum penetration of about 6.5 m in the HCP case.
The device measures at a frequency of 10 kHz and is considered to be carried at ground
level in this case.
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Figure 2. (Top) Direct-push EC logs, determined at fourteen different sites. (Bottom) Corresponding
power spectra of the EC curves.

The inversion parameters were chosen based on test runs, resulting in best perfor-
mance with n = 400, Dmin = 2, Dmax = 4, maximum number of iterations of 200, stagnation
change threshold for food sources ϵ1 = 1.0 × 10−4 mS/m, and general stopping criterion
ϵ2 = 1.0 × 10−3 mS/m. The 300 best (based on their misfit value) models found by each
inversion were saved for further analysis. By calculating the RMS error between the re-
sulting, re-sampled expected models and the known EC-log test models, we were able to
evaluate some of the used inversion parameters in a grid search. This included Dmax, dk,
the choice of L1 or L2 norm, and np, the number of best models to calculate expected model
and variance. These tests showed that for the HCP and VCP joint-inversion case, Dmax = 4
(which is a natural choice in terms of number of measurements), dk = 5, the L2 norm,
and np = 30 create the best fit. The search space of the inversion was set to one-fourth
of the minimum conductivity of a data set up to twice the maximum conductivity for
all test examples. The MCMC uses δσ2 = 0.68 × (σmax − σmin) as an assumption for the
prior covariance.

2.6. Field Datasets

We demonstrate the application of our inversion strategy on three example profiles
from archaeo-geophysical field data sets measured with the CMD Miniexplorer or the CMD
Explorer (GF Instruments, Brno, Czech Republic). The choice of examples was based on
different additional information available. The first data set example was chosen because a
small-scale structure, a tomb, is known to be on the profile, allowing us to test the ability
of the inversion to image such small structures. The second example was chosen due to
the availability of a direct-push EC-log data, allowing a ground truth of the inversion. The
third data set was chosen because of its high dynamic range in conductivity of one order



Remote Sens. 2024, 16, 470 10 of 23

of magnitude, allowing ua to test the behavior of the inversion and the coherence of the
results with self-adapting parameter space.

The measurement setups for the three data sets are shown in Figure 3. All data
sets are measured only in HCP mode, with a sampling interval of 0.1 s. Acquisition
was carried out in continuous mode, meaning the device was moved along the profile
continuously while measuring GPS position and data, as shown in Figure 3. To summarize
the application examples:

Figure 3. Acquisition geometries for (a) GF Instruments CMD Explorer and (b) GF Instruments CMD
Miniexplorer.

Example 1: Measured with the CMD Miniexplorer in the Kurgan (burial mount) area on
the Uzun–Rama plateau in central Azerbaijan. These mounts were constructed
and used from the mid-4th to 1st millennium BC. For details of the site, see [39].
The example profile comprises 204 single independent 1D inversions. The LIN
forward model was chosen due to the low apparent conductivity along the
profiles ranging from 4 mS/m to 13 mS/m. For measurement parameters and
setup, see Figure 3b.

Example 2: Measured with the CMD Explorer at a Roman river fortlet (burgus) site in
Hesse (Germany). During the 1st century AD, the Romans performed several
river alterations in the vicinity of the River Rhine in Hesse, including channels,
holding anchoring sites protected by these fortlets. The regarded example
profiles cross such a channel. In the middle of the assumed channel, a direct-
push EC log was performed alongside a hydraulic profiling tool, using a
Geoprobe 540 MO system mounted to a Nordmeyer drill rig in combination
with a Geoprobe K6050 HPT probe. The example profile comprises 40 single
independent 1D inversions. The full solution forward model by [27] was used.
For measurement parameters and setup, see Figure 3a.

Example 3: Measured with the CMD Explorer at the edge of a preboreal lake site at Du-
vensee (see, e.g., [34]). The site is at the western sandy-loamy shore of the
former Duvensee lake. The lake itself today is silted up mainly with peat
and gyttja layers (mud of organic origin deposited in lakes and bogs). As a
reference data set, a GPR profile was performed along the profile, imaging at
least the first two to three meters of subsoil. The profile was recorded with
a GSSI SIR-4000 system and a GSSI 200 MHz antenna. Processing included
constant trace distance of 2 cm, amplitude offset removal, t0 correction (14 ns),
band-pass filter opening at 50 MHz and closing at 400 MHz, time-gain func-
tion, and finally, a topographic migration with a constant velocity of 7.2 cm/ns
derived from hyperbola fitting. The EMI example profile comprises 79 single
independent 1D inversions. The full solution forward model by [27] was used.
Each 1D inversion used an automatically adapted search space in terms of
conductivity ranging from one tenth of the minimum apparent conductivity
to twice the maximum conductivity. For measurement parameters and setup,
see Figure 3a.

Inversion parameters were n = 400, Dmin = 2, Dmax = 4, maximum number of iterations
of 200, stagnation threshold for food sources ϵ1 = 1.0 × 10−4 mS/m, and dk = 3. Misfit
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calculation was performed using the L1 norm. The re-sampling of 1D models was in steps
of 5 cm for the CMD Miniexplorer case and 20 cm for the CMD Explorer cases.

3. Results
3.1. DP Test Models

Figures 4 and 5 show the results of the direct-push test model inversions in a direct
comparison to the true-input conductivity–depth models. The inversion results are shown
in terms of the expected model and one σ (68%) confidence interval (blue and green areas)
for both cases, first for six data points (measured in HCP and VCP orientation) (green solid
line) and second for three data points, measured only in HCP orientation (blue dashed
line). All models are plotted together with their derived normalized covariance matrix,

C̃i,j =
Ci,j√
Ci,iCj,j

. As C̃ is symmetrical, only one-half is displayed. Variances are the diagonal

elements, whereas the other elements represent covariances and thus allow a discussion
of trade-off effects for a certain model. The values close to the main diagonal illustrate
local trade-offs between thin layers and are thus a measure of resolution limitations (a
broader diagonal thus shows less resolved models). Elements further off the diagonal show
trade-offs between different separate layers. Some of the examples in Figures 4 and 5 have
such exemplary areas highlighted by dashed boxes, labeled with capital letters. These
letters can also be found in the corresponding depth ranges of the resulting models. All
results show the typical effects due to the limitation and ambiguity of the measuring
method itself. For example, most of the thin layers (below 2 m in thickness) cannot be
resolved. This is especially obvious in model BIE-HPT2 (Figure 4e). Equivalent layer
effects occur as expected (see also, e.g., in models DUV-HPT1 in Figure 4b and TRE-EC1
and 10 in Figure 5b,c). Uncertainties and trade-off effects increase if short-wavelength
changes are in the same amplitude range as long-wavelength trends (e.g., REM-HPT6
(Figure 5e), BIE-HPT2). In general, the dominant long-wavelength trend of the models
could be reconstructed for most models with a simpler long-wavelength geometry, meaning
a two- or three-layer case, independent of conductivity range.

The model AST-HPT11 (Figure 5d) needs to be treated separately because it is investi-
gated in two ways: first as a DP test model and second as an unknown model being part
of the second EMI field data example. At this point, it is noteworthy that in Figure 5d, a
trade-off with a deeper high-conductive layer is observed (labeled A). This trade-off does
not appear in the EMI inversion of the corresponding field data set, as shown later. This is
due to the fact that the EMI device was carried at 1 m height, reducing the overall depth
range, and thus not reaching this high conductivity layer at about 6 m depth.

To test the influence of noise on the inversion results, the test model TRE-EC10 was
tested with added Gaussian noise in the range of two, four, and ten times the data standard
deviation. The noise on the data results from the instrument accuracy and the measurement
setup that is suffering from noise by movement. The standard deviation of the data was
estimated by using a field test, measuring 1000 data points with Field Setup (a) (Figure 3)
on one spot while pretending movement. The data of the second coil distance showed
the largest standard deviation (see Figure 6, top left), which was then chosen as the
representative value for setup/instrument noise. Figure 6 shows the inversion results for
all three noise levels.
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Figure 4. Results of DP test models, Part 1: first 7 of the 14 DP test models (a–g) with original
conductivity-depth profile (gray curve), inversion result in terms of expected model for six data
points in HCP and VCP orientation (green solid line) and for three data points only in HCP orientation
(blue dashed line). The blue and green areas indicate the one σ (68%) confidence interval. The gray
line represents the true conductivity model. On the right side of each inversion result, the derived
covariance matrix is displayed. Labels A and B in (a,b,c,d,f) refer to areas of high covariance and are
discussed in the text.
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Figure 5. Results of DP test models, Part 2: second 7 of the 14 DP test models (a–g) with original
conductivity–depth profile (gray curve), inversion result in terms of expected model for six data
points in HCP and VCP orientation (green solid line) and for three data points only in HCP orientation
(blue dashed line). The blue and green areas indicate the one σ (68%) confidence interval. The gray
line represents the true conductivity model. On the right side of each inversion result, the derived
covariance matrix is displayed. Labels A and B in (a,d,e) refer to areas of high covariance and are
discussed in the text.
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Figure 6. Histogram of 1000 measurements with Setup (a) (Figure 3) on the same spot (top left)
and inversion results for test model TRE-EC10 with added Gaussian noise having two, four, and ten
times the standard deviation of the test measurement. The gray curve represents the true subsurface
conductivity model, and red and black curves show the inversion results for both HCP and HCP and
VCP data sets with corresponding one σ (68%) confidence interval.

The results show that noise only has a negligible effect on the inversion, if in the range
of the instrument noise. For larger noise levels that night occur due to external effects, the
inversion result does change in parts by more than ten percent (in terms of conductivity of
the expected model).

3.2. Field Data Applications

After the presentation of inversion results based on modeled data, we now present
the results of the three chosen field data experiments, highlighting the feasibility of the
inversion approach to different geo-archaeological near-surface settings. Figure 7 shows the
result of the CMD Miniexplorer profile of the burial mount example. Profile (a) basically
shows a three-layer solution throughout the profile, whereas the lowest layer shows a clear
increase in conductivity only in the middle section of the mount, which can be connected
with the tomb inside the mount. The profile shows the capability of the inversion procedure
to image horizontal changes due to archaeological features using a small offset FDEMI
device. The profile furthermore shows good horizontal coherence in terms of the basic
layering and the conductivity values.
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Figure 7. Application Example 1: CMD Miniexplorer example of a burial mount, HCP mode, LIN
solution forward model. (a) Pseudo-2D conductivity profile, horizontally smoothed with a two-model
window. Below: resulting data fit with modeled data being based on the expected model for all
three coil distances of the CMD Explorer. (b) Standard deviation for all resulting models.

Figure 8 shows the result of the CMD Explorer profile from the Roman channel in
central Germany. Profile (a) generally shows a two-layer solution, except at the eastern
part of the profile, where a three-layer case begins to appear. In the middle of the profile,
the top layer shows an increase in conductivity, probably connected to the Roman channel.
In that part of the profile, the direct-push EC log has been measured and compared to the
EMI inversion result in Figure 8b. The EMI estimated model fits well to the EC-log values,
although completely independent in this example. Because of the available ground truth
DP data, we chose this example to additionally show the probability density functions
(pdf) of conductivities for all layers. The pdf is displayed as a blue-scale plot, showing
ambiguity effects in terms of two possible solution maxima at intermediate depths from
approximately 1 m to 3 m.

Figure 9 shows the result of the CMD Explorer profile from the coastline of the
preboreal lake site. The inverted EMI profile (a) shows no general trend but very different
vertical conductivity models, from a nearly constant distribution on the left side of the
profile to a two-layer case with high conductivity on top and a two-layer case with a lower
conductivity on top. The profile shows a high dynamic range, which can be seen in the plot
of several examples of 1D inversion results in (b) extracted from the profile. In comparison
to the recorded GPR profile, (c), a clear correlation of the basic layer interfaces can be
observed, especially in the left part of the profile.
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Figure 8. Application Example 2: CMD Explorer example compared with EC-log DP data, HCP
mode, full solution forward model. (a) Pseudo-2D conductivity profile, horizontally smoothed with
two-model window. Below: resulting data fit with modeled data being based on the expected model
for all three coil distances of the CMD Explorer. (b) Example 1D model result with one σ (68%)
confidence interval and DP EC log in comparison (red). The blue-shaded background shows the
probability density functions of all model depths. (c) Standard deviation for all resulting models.
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Figure 9. Application Example 3: CMD Explorer Example compared with GPR data, HCP mode, full
solution forward model, adaptive conductivity parameter space. (a) Pseudo-2D conductivity profile.
Below: resulting data fit with modeled data being based on the expected model for all three coil
distances of the CMD Explorer. (b) Standard deviation for all resulting models. (c) Comparison of
conductivity model with 200 MHz GPR data.
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4. Discussion

Uncertainty and ambiguity of a geophysical inverse problem are the two key dis-
cussion points when evaluating the results of a new inversion scheme. Furthermore,
a discussion of the performance of a proposed inversion method is provided in the
following section.

The discussion on uncertainty can be based on the results of the presented data ex-
amples as well as the broad variety of realistic direct-push test models. As valid for all
probabilistic inversion approaches, the introduced method provides a quantitative dis-
cussion of parameter estimates and uncertainties due to the large number of forward
calculations and misfit evaluations available. An estimated model, variances, and covari-
ance estimates were calculated for all examples. The results on the test models show that
the re-sampled estimated models (Figures 4 and 5) resemble the long-wavelength trend of
the conductivity–depth models and are thus able to produce a reasonable estimate of the
true subsoil situation, especially for the dominant features of the test models (see Spectra in
Figure 2). This can also be stated even if only HCP data are available. However, trade-off
effects are observed in most of the models, which can be explained by the nature of the
EMI method, which is afflicted by equivalent layer problems (e.g., [40]). These effects could
be quantified in terms of the covariance matrix and can thus be used for evaluating the
result of each single inversion. Besides the stochastic evaluation of model uncertainties and
trade-offs, the plausibility of a single-inversion result can also be evaluated by evaluating
the coherence of neighboring inversions on a profile. Regarding the presented field data
examples it has to be emphasized that the resulting pseudo-2D sections are composed
of completely independent 1D inversions with no smoothness constraints. The results
in Figures 7–9 show convincing lateral coherency along the profiles, but also reasonable
variability to account for changes in geology. The latter can especially be observed in
Example 3 (Figure 9).

In order to address the efficiency and performance of the presented method, a com-
parison to commonly used inversion schemes is provided. We selected two example DP
test models (the example KAI-EC6 (Figure 4c) and TEV-EC1 (Figure 4a)) to be inverted
with the presented and three other more common inversion methods. Both models were
tested for HCP and VCP data, as well as for HCP data only. The compared methods
are a traditional global best particle swarm optimization (PSO [41]); an adaption of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient method (L-BFGS-B), as presented
in [3]; and the shuffled complex evolution algorithm (SCEUA), also by [3]. As a second
population-based method, the PSO inversion was extended by the model-averaging ap-
proach presented in Section 2.2 of this paper. The PSO uses the same swarm size and
number of iterations as the presented hybrid bee colony approach. Weighting factors were
chosen after [7]. The number of free layers in the PSO inversions was fixed to four layers
(including half-space) for HCP and VCP data and three-layers for only HCP. Both L-BFGS-B
and SCEAU were performed using the software of [3]. These inversions are limited to
single-solution models. They were performed both for three-layer models with variable
layer depth and conductivity, as well as for six layers of fixed thickness. Both inversions
were used with the recommended default settings, but using L1-norm and a smoothing
factor of 0.01. Figure 10 shows the result of the comparison. For both models and both
measurement configurations, six inversion results are shown. Both the hybrid bee colony
and the PSO are presented in averaged models (black and red lines), and L-BFGS-B (blue
lines) and SCEUA (green lines) are presented as single-inversion results for both three-
(dotted lines) and six-layer models. The results illustrate that the averaging of multiple
solution models is superior compared to single-inversion results, as they better represent
the stratigraphic features. Figure 10 also shows the differences ∆σ between inversion results
and true subsurface models for the two stochastic approaches on the right-hand side of
each plot. These differences show that the hybrid bee colony performs better than the PSO
(the numbers in the upper right corner are mean differences, black for ABC, red for PSO).
This difference is only about 20%, but taking into account that the hybrid bee colony needs
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much fewer inversion parameters and frees the researcher from choosing the number of
layers to be inverted and the search space bounds, it shows the benefit of the method. In
terms of L-BFGS-B and SCEUA, the inversion results are convincing, reconstructing the
basic trend of the true models. Nevertheless, these inversions create only single solutions to
a multi-modal inversion problem, as illustrated by solutions with different layer numbers.
If repeated several times with different starting models and geometries, these methods
would probably also enable a successful model averaging. The code presented in this
work incorporates all this in one algorithm, enabling a free choice of layer number and
combining/averaging very simple to more complex model solutions.

Figure 10. Two example inversions taken from Figures 4 and 5. Besides the true subsurface model, the
figure shows inversion results for the presented method (black), a basic particle swarm optimization
(PSO, red) with model averaging (as presented in the Methods section ), an L-BFGS gradient approach
(blue) (implemented in [3]), and en evolutionary algorithm (green) (also in [3]) (a). Inversion results
for the KAI-EC6 model for both HCP and VCP (left) and only HCP data (right). (b) Inversion results
for the TEV-EC1 model for both HCP and VCP (left) and only HCP data (right). Both examples also
include a difference (∆σ) plot for the comparison of the presented method and PSO.

Besides the general discussion of the method, we address the questions posed in
the Introduction. The results clearly show that it is possible to upgrade the bee colony
optimization approach with dimension-adapting properties, as used in the MCMC ap-
proach by [10] or [25], combining the benefits of the MCMC with swarm intelligence
effectiveness. A performance comparison to other inversion methods can be performed
by simply checking the number of needed forward calculations. The MCMC by [10] for
example used 300,000 forward calculation, respectively. The presented method uses about
120,000 models per run and less, depending on the convergence behavior of each prob-
lem. For example, for some test models, only 100 iterations were necessary, reducing
the number of forward models to 60.000, which is 20% of the RJ-MCMC. Comparing the
lateral coherence of the results on profile- or area-wise inversions can also be of interest.
Here, several approaches are mentioned in the literature, e.g., the stitched laterally con-
strained inversion code proposed by [42] that ties together single 1D inversions along a
profile by implementing coherency constraints. The presented inversion method does that
without any constraints, exploiting the effect of the average/estimate model. It is thus
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not a matter of either finding the one solution agreeing with a measurement that has the
smallest possible roughness or finding the one solution that fits best. In the presented
case, the inversion creates a smooth (re-sampled) model, statistically representative of all
simple solutions found by the inversion, and is thus a more comprehensive way of subsoil
conductivity estimate. Beyond that, the presented method frees the user from the choice of
solution model. It also needs much fewer parameters than other optimization methods,
including number of layers, smoothing parameters, starting model, weighting parameters,
and parameter space penalty.

However, it is clear that a 1D inversion scheme suffers from the basic assumption of
locally valid 1D subsoil approximations. A true 2D or even 3D inversion based on a 2D or
3D Voronoi discretization, as presented by [25] for seismic tomography, would avoid this
problem and also benefit from the presented hybrid optimization scheme. So far, there are
some approaches to 3D inversion, but they are either based on simultaneously inverting
1D soundings on a 3D conductivity model that are constrained spatially [43], or based on
true 3D deconvolution (e.g., [44]) but restricted to the LIN forward model.

Adapting the dimension of a model can be beneficial in many cases of geophysical
inverse problems, especially when the problem is under- or over-determined. The dimen-
sion of the problem cannot be directly estimated and needs proper sensitivity analysis.
Here, often, the minimum number of layers explaining the data is searched by, e.g., L-curve
analysis (e.g., [45]) and used for inversion. This is the case, for example, in spectral analysis
of surface waves (e.g., [7]) or vertical electric sounding (e.g., [46]). In these cases, the
presented approach could also lead to improvements.

5. Conclusions

A dimension-adapting combination of artificial bee colony swarm intelligence opti-
mization and Bayesian reversible jump Monte Carlo Markov chain algorithm has been
introduced for the purpose of solving the FDEMI 1D inverse problem. Using artificial
bee colony (ABC) optimization solely allows for changing the dimension of the problem
throughout the inversion process because the interaction (collective swarm knowledge) of
local searches is not based on vector calculations that need the same metric. We showed
that the introduction of ABC creates an efficient global searching frame around the local
RJ-MCMC approach and thus reduces the number of needed forward calculations signif-
icantly. By introducing an averaging approach based on a re-sampling of the numerous
simple inversion solutions, the choice of inversion resulting from a set of ambiguous so-
lutions becomes needless. The average or estimated model was proven to give a feasible
solution for the dominant long-wavelength trend of all presented test models. These test
models represented a broad variation of true subsoil conductivity distributions based on
direct-push EC logging from several sites across Europe. The results especially show that
even for very sparse data sets of only three values with different coil separations, the basic
long-wavelength trend of subsoil conductivity distribution is reconstructed reasonably well.
Three field data examples prove the effectiveness of the inversion in terms of lateral model
coherence and in comparison to other data sets. The presented optimization approach
could easily be adapted for other geophysical problems or even to 2D and 3D problems by
using 2D or 3D Voronoi discretization. It thus provides a broad range of applications in
future works.
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